用户名: 密码: 验证码:
有机/无机纳米复合水凝胶的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机纳米复合水凝胶兼有无机材料的强度、热稳定性以及有机聚合物的功能性,涉及有机、无机、材料、高分子等交叉学科,是目前水凝胶领域的研究热点。与有机水凝胶相比,有机/无机纳米复合水凝胶能够改善凝胶的吸水、耐盐及强度等综合性能,可应用于医药、卫生、农林、园艺等领域。
     代替以阳离子表面活性剂为插层剂,本文选用阳离子聚丙烯酰胺为插层剂,在远大于膨润土阳离子交换容量的用量下,通过单体插层聚合法和聚合物溶液直接插层法,分别制备了阳离子聚丙烯酰胺/膨润土纳米复合物,之后进行淀粉接枝丙烯酸的交联聚合反应得到互穿和半互穿结构两种两性纳米插层复合水凝胶。所得凝胶具有良好的溶胀能力与凝胶强度。在99.6%高含水量下,单体插层聚合法制备的凝胶强度是聚合物溶液直接插层法的2倍,可达28.9 KPa;最大溶胀倍率也优于后者,可达1010 g/g。实验分别就两种合成方法下不同反应条件,包括引发剂用量、交联剂用量、丙烯酸用量和粘土含量等因素,对所形成凝胶的溶胀性能以及聚合体系温度的影响进行了全面考察,并通过FTIR、XRD、TEM等分析手段对产品结构和插层效果进行了表征,同时通过凯式定氮、分子量等测定对样品进行了定量表征,从而很好地解释了两性纳米插层复合水凝胶具有优良性能的原因,以及两种不同合成方法下水凝胶表现出的性能差异。为进一步提高两性纳米插层复合水凝胶的溶胀速率,本文通过加入尿素作为制孔剂,利用其水溶液在高温下分解产生CO_2和NH_3的原理制孔,避免了常用碳酸盐类制孔剂对pH、孔发生时间和凝胶化时间等条件的特殊要求,从而使制孔变得简单易行,且吸液性能和吸液速率均得到明显改善,其中溶胀倍率较未加尿素(加热)时所得凝胶提高了约1倍,而吸液速率提高了40倍左右。实验考察了尿素用量、加热速率、不同洗涤方式和干燥方式等因素对溶胀性能的影响,并对吸液动力学进行了探讨。
     基于阳离子聚电解质对膨润土的良好插层以及作为最终水凝胶的半互穿组分对溶胀和强度的贡献,本文又选用水溶性好、电荷密度高,合成方法简单的聚二甲基二烯丙基氯化铵作为插层剂,通过聚合物溶液插层法,制备了剥离型的聚二甲基二烯丙基氯化铵/膨润土纳米复合物。实验详细考察了不同聚合温度、引发剂用量和单体浓度等聚合条件对聚二甲基二烯丙基氯化铵分子量及插层效果的影响,并通过FTIR、XRD、TEM等分析手段对产品结构和插层效果进行了表征。在制得剥离复合物基础上,通过淀粉接枝丙烯酸的交联聚合反应得到半互穿结构两性纳米复合水凝胶。就不同反应条件,包括引发剂用量、交联剂用量、反应温度、丙烯酸用量和聚二甲基二烯丙基氯化铵用量等因素,对所形成凝胶的溶胀性能的影响进行了考察。并测试了两性纳米复合水凝胶对pH、盐种类和盐浓度的响应性和凝胶强度。结果证明,两性半互穿和纳米复合结构提高了水凝胶的溶胀性能与机械强度。与传统水凝胶相比,其凝胶强度提高了1倍以上,在99.2%的含水量下,可达28.2 KPa,且在广泛的pH范围内仍能保持较高的溶胀倍率。
     采用相似的结构设计思想,本文选用无机硅来构建聚丙烯酸/SiO_2纳米杂化复合水凝胶。分别以水溶性的3-氨丙基三乙氧基硅烷和硅酸钠为硅源,用sol-gel方法合成无机硅网络,同时进行丙烯酸的交联聚合反应构建有机网络,最终得到双网络结构聚丙烯酸/二氧化硅纳米杂化复合水凝胶。用HF处理凝胶样品,并与处理前凝胶对比,通过TEM观察SiO_2在凝胶中的分散形式,取得了较好的效果。结果表明:以3-氨丙基三乙氧基硅烷为硅源形成的SiO_2粒子约为100 nm左右,分散在有机聚合物网络中,凝胶表现出良好的压缩强度和溶胀能力,在99.1%含水量下,凝胶强度可达59.0 KPa,最大溶胀倍率为1084.7 g/g,且溶胀后的凝胶仍具有一定的拉伸性;而以硅酸钠为硅源得到的纳米杂化复合水凝胶呈现以SiO_2为核,交联聚丙烯酸为壳的核壳式结构.凝胶最大溶胀倍率可达1252.7 g/g。凝胶的硬度很好,且耐盐性突出:当含水量为99.1%时,凝胶强度达45.6 KPa。当NaCl溶液浓度由0.9%提高到1.8%时,凝胶溶胀能力下降幅度在10%以内,而传统有机凝胶则下降了25%。
Organic/inorganic nanocomposite hydrogels, as a new type of hydrogel, have both stability of inorganic compounds and the functionality of organic compounds. The research on nanocomposite hydrogel covers organic chemistry, inorganic chemistry, material, polymer and other interdisciplinary subjects, and becomes the intensive topic. Compared with conventional organic hydrogels, organic/inorganic nanocomposite hydrogels can improve the swelling, salt tolerance and mechanical strength of hydrogels, so they are expected to have a application in the fields of medicine, sanitary materials, agriculture, forestry and etc.
     Instead of cationic surfactant as an intercalating agent, we choose cationic polyacrylamide to intercalate into bentonite forming cation polyacrylamide/bentonite nanocomposite under a large dosage much more than cationic exchange capacity of bentonite through both monomer intercalative polymerization and polymer solution intercalation. Then amphoteric nanocomposite hydrogels with interpenetrating polymer network (IPN) or semi-IPN structure are obtained by subsequent crosslinking graft polymerization of acrylic acid onto starch. The resulting hydrogels show good swelling capacity and mechanical strength. The strength of hydrogel prepared by monomer intercalative polymerization is 2 times of the one by polymer solution intercalation, and reaches 28.9 KPa under a high water content of 99.6%, while the maximum swelling is achieved at 1010 g/g. Some synthesis conditions, including initiator amount, crosslinker amount, content of acrylic acid, bentonite content, and etc, are investigated with respect to the swelling capacity and temperature in the polymerization system. The chemical composition and structure are observed by FTIR, XRD and TEM while a quantitative analysis is given by Kjeldahl method and molecular weight measurement. This gives a good explanation for the swelling behaviors, as well as the difference on the swelling and compressive stress of amphoteric nanocomposite hydrogels by two methods. Urea is used as pore producer to improve the swelling speed of nanocomposite hydrogels instead of traditional carbonate. A porous hydrogel can be produced by decomposition of urea solution into CO_2 and NH_3 at high temperature. As a result, it avoids the special demands for the pH of solution, pore-producing time and gelation time when the carbonate is used as a pore producer, so the process becomes easily feasible. In addition, the swelling capacity and swelling speed are obviously improved. The swelling increases by one time while the swelling speed increases by about 40 times compared with the nonporous hydrogels. Some factors, such as urea amount, heating velocity, washing style and dry method are studied in termed of the swelling capacity. The swelling kinetic is also discussed.
     Based on satisfactory intercalation of cationic polyelectrolyte into bentonite interlayers and contribution to the good swelling and hydrogel strength, polydiallyldimethylammonium chloride is chosen as another intercalating agent due to satisfactory hydrophility, high charge density and easy synthesis method. Polydiallyldimethylammonium chloride/bentonite nanocomposites are prepared by polymer intercalation. Polymerization conditions are investigated, including polymerization temperature, initiator dose and monomer concentration in respect to the molecular weight and intercalation. FTIR, XRD and TEM are used to characterize the chemical structure and intercalation. Based on the successful exfoliation, amphoteric nanocomposite hydrogels are formed by crosslinking polymerization of acrylic acid onto starch. Some synthesis conditions, including initiator amount, crosslinker amount, polymerization temperature, content of acrylic acid, and content of polydiallyldimethylammonium chloride, are investigated in terms of the swelling capacity. In addition, pH and salt sensitivity, as well as the hydrogel strength of amphoteric nanocomposit hydrogel are measured. The results confirm that amphoteric IPN structure and nanocomposite make a big contribution to the swelling capacity and mechanical strength. The hydrogel strength increases by one time more than the traditional hydrogels and reaches 28.2 KPa under a water content of 99.2%. In addition, the high swelling can be kept in a wide pH range.
     Inorganic silica is used to fabricate organic/inorganic hybrid hydrogels adopting the similar design above. Silica network is obtained by using the soluble 3-aminopropyltriethoxysilane and sodium silicate as silica precursor through sol-gel technology, while organic polymer network is formed by the crosslinking polymerization of acrylic acid. As a result, the polyacrylic acid/silica nanocomposite hydrogel are formed with double network structure. The hydrogel is treated by HF treatment, and then the distribution of SiO_2 is observed by TEM. The results show SiO_2 particles are distributed in the polymer network in a size of about 100 ran when 3-aminopropyltriethoxysilane is used. The hydrogel exhibits good compressive stress and high swelling capacity. The hydrogel strength reaches 59.0 KPa under a water content of 99.1% and the maximum swelling is 1084.7 g/g, The hydrogel is stretchy even in the fully swollen state. Differently, a core-shell nanocomposite hydrogel with PAA outer shell and SiO_2 inner core is formed when sodium silicate is used. The resulting nanocomposite hydrogel shows distinguished salt tolerance and high hardness. The hydrogel strength reaches 45.6 KPa when the water content is 99.1%. The swelling shows a decrease of 10% below, while the traditional organic hydrogels show a decrease of 25% when the concentration of NaCl solution increases from 0.9% to 1.8%.
引文
1.翁丽惠.聚合物水凝胶的表征及其智能行为研究.博士论文.武汉:武汉大学,2004
    2.Flory P J.Principles of polymer chemistry.Cornell:Cornell University Press,1953.
    3.Tanaka Y,Gong J P,Osada Y.Novel hydrogels with excellent mechanical performance.Prog Polym Sci.2005,30:1-9.
    4.Pourjavadi A,Mahdavinia G R,Zohuriaan-Mehr M J.Modified chitosan.Ⅱ.H-chitoPAN,a novel pH-responsive superabsorbent hydrogel.J Appl Polym Sci.2003,90:3115-3121.
    5.Sutar P B,Mishra R K,Pal K,et al,Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system.J Mater Sci - Mater Med.2008,19:2247-2253.
    6.Dulong V,Mocanu G,Le Cerf D.A novel amphiphilic pH-sensitive hydrogel based on pullulan.Colloid Polym Sci.2007,285:1085-1091.
    7.Birgersson E,Lib H,Wua S.Transient analysis of temperature-sensitive neutral hydrogels.J Mech Phys Solids.2008,56:444-466.
    8.Xu X D,Zhang X Z,Wang B,et al.Fabrication of a novel temperature sensitive poly (N-isopropyl-3-butenamide) hydrogel.Colloids Surf B.2007,59:158-163.
    9.Lee S J,Bae Y,Kataoka K,et al.In vitro release and in vivo anti-tumor efficacy of doxorubicin from biodegradable temperature-sensitive star-shaped PLGA-PEG block copolymer hydrogel.Polym J.2008,40:171-176.
    10.Zhao Y,Su H,Fang L,et al.Superabsorbent hydrogels from poly(aspartic acid) with salt-,temperature-and pH-responsiveness properties.Polymer.2005,46:5368-5376.
    11.Jabbari E,Tavakoli J,Sarvestani A S.Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field.Smart Mater Struct 2007,16:1614-1620.
    12.Luo R M,Li H,Birgersson E,et al.Modeling of electric-stimulus-responsive hydrogeis immersed in different bathing solutions.J Biomed Mater Res A.2008,85A:248-257.
    13.Shang J,Shao Z Z,Chen X.Electrical behavior of a natural polyelectrolyte hydrogel:Chitosan/carboxymethylcellulose hydrogel.Biomacromolecules.2008,9:1208-1213.
    14.Kim S J,Yoon S G,Lee Y H,et al.Bending behavior of hydrogels composed of poly(metha.crylic acid)and alginate by electrical stimulus.Polym Int.2004,53:1456-1460.
    15.Shang J,Chen X,Shao Z Z.The electric-field-sensitive hydrogels.Prog.Chem.2007,19:1393-1399.
    16.Mundargi R C,Patil S A,Kulkarni P V,et al.Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine.J Microencapsulation.2008,25:228-240.
    17.Hoare T R,Kohane D S.Hydrogels in drug delivery:Progress and challenges.Polymer.2008,49:1993-2007.
    18.顾雪蓉,朱育平.凝胶化学.北京:化学工业出版社,2005.
    19.Oh J K,Drumright R,Siegwart D J,et al.The development of microgels/nanogels for drug delivery applications.Prog Polym Sci.2008,33:448-477.
    20.Kundakci S,Uzum O B,Karadag E.Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels.React Func Polym.2008,68:458-473.
    21.Vivek A V,Dhamodharan R.Amphiphilic polystyrene-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) hydrogels synthesized via room temperature ATRP:Studies on swelling behaviour and dye sorption.React Funct Polym.2008,68:967-973.
    22.Bekiari V,Sotiropoulou M,Bokias G,et al.Use of poly(N,N-dimethylacrylamide-co-sodium acrylate)hydrogel to extract cationic dyes and metals from water.Colloids and Surfaces A:Physicochem Eng Aspects 2008,312:214-218.
    23.Abedi-Koupai J,Sohrab F,Swarbrick G.Evaluation of hydrogel application on soil water retention characteristics.J Plant Nutr.2008,31:317-331.
    24.Sadeghi M,Hosseinzadeh H.Synthesis and superswelling behavior of carboxymethylcellulose-poly(sodium acrylate-co-acrylamide) hydrogel.J Appl Polym Sci.2008,108:1142-1151.
    25.陈传品,王鹏,郑彤等.微波辅助耐盐性高吸水性树脂的制备工艺及性能研究.现代化工.2002,22(suppl):127-129,132.
    26.Liu M,Liang R,Zhan F,et al.Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties.Polym Adv Technol.2006,17:430-438.
    27.Liu M Z,Liang R,Zhan F L,et al.Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization.Polym Int.2007,56:729-737.
    28.Wu L,Liu M Z,Liang R.Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention.Bioresour Technol.2008,99:547-554.
    29.Wu R L,Xu S M,Huang X J,et al.Swelling behaviors of a new Zwitterionic N-carboxymethyl-N,N-dimethyl-N-allylammonium/acrylic acid hydrogel.J Polym Res.2006,13:33-37.
    30.Chaterji S,Kwon I K,Park K.Smart polymeric gels:Redefining the limits of biomedical devices.Prog Polym Sci.2007,32:1083-1122.
    31.刘延栋,刘京.高吸水树脂的吸水机理.高分子通报.1994,3:181-185.
    32.龙明策,王鹏,郑彤等.高吸水性树脂溶胀热力学及吸水机理.化学通报.2002,10:705-709.
    33.陶勇.含有聚苯胺的水凝胶的性能研究:博士论文.上海:东华大学,2005
    34.Bonn D,Kellay H,Prochnow M,et al.Delayed fracture of an inhomogeneous soft solid.Science.1998,280:265-267.
    35.Pourjavadi A,Ghasemzadeh H,Soleyman R.Synthesis,characterization,and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites.J Appl Polym Sci.2007,105:2631-2639.
    36.Santiago F,Mucientes A E,Osorio M,et al.Synthesis and swelling behaviour of poly(sodiurn acrylate)/sepiolite superabsorbent composites and nanocomposites.Polym Int.2006,55:843-848.
    37.Zhang J P,Chen H,Wang A Q.Study on superabsorbent composite.Ⅲ.Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite.Eur Polym J.2005,41:2434-2442.
    38.Yun-Pu W,Ji Z,Kun Y,et al.Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization.Mater Lett.2007,61:316-320.
    39.Li A,Wang A,Chen J.Studies on poly(acrylic aeid)/attapulgite superabsorbent composite.i.Synthesis and characterization.J Appl Polym Sci.2004,92:1596-1603.
    40.Santiago F,Mucientes A E,Osorio M,et al.Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate).Effect of amount of bentonite on the swelling behaviour.Eur Polym J.2007,43:1-9.
    41.Zheng Y,Li P,Zhang J P,et al.Study on superabsorbent composite ⅩⅥ.Synthesis,characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites.Eur Polym J.2007,43:1691-1698.
    42.Qi x H,Liu M Z,Chen Z B,et al.Preparation and properties of diatomite composite superabsorbent.Polym Adv Tech.2007,18:184-193.
    43.Mohan Y M,Murthy P S K,Rao K M,et al.Swelling behavior and diffusion studies of high-water-retaining acrylamide/potassium methacrylate hydrogels.J Appl Polym Sci.2005,96:1153-1164.
    44.陈密峰,张秀娟,杨健茂等.反相悬浮法合成高耐盐性的超强吸水剂.精细化工.2002,19:543-547.
    45.Lim D W,Song K G,Yoon K J,et al.Synthesis of acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization.Eur Polym J.2002,38:579-586.
    46.Lim D W,Yoon K J,Ko S W.Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate.J Appl Polym Sci.2000,78:2525-2532.
    47.Kabiri K,Faraji-Dana S,Zohuriaan-Mehr M J.Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels.Polym Adv Technol.2005,16:659-666.
    48.Lee W F,Yuan W Y.Thermoreversible hydrogels Ⅺ:Effect of salt on the swelling properties of the (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels.J Appl Polym Sci.2001,79:1675-1684.
    49.Zhao Y B,Chen W Y,Yajiang Y J,et al.Swelling behavior of ionically cross-linked polyampholytic hydrogels in varied salt solutions.Colloid Polym Sci.2007,285:1395-1400.
    50.刘启溶.带溴端基的聚氧化乙烯与聚乙烯亚胺的交联反应及阳离子型高吸水树脂.高等学校化学学报.1992,13:558-560.
    51.路建美,朱秀林,王丽华等.微波法合成两性高吸水性树脂.石油化工.1997,26:152-156.
    52.Wei J,Xu S M,Wu R L,et al.Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride).J Appl Polym Sci.2007,103:345-350.
    53.Pourjavadi A,Kurdtabar M,Ghaseazadeh H.Salt- and pH-resisting collagen-based highly porous hydrogel.Polym J.2008,40:94-103.
    54.Wan T,Wang L,Yao J,et al.Saline solution absorbency and structure study of poly(AA-AM) water superabsorbent by inverse microemulsion polymerization.Polym Bull.2008,60:431-440.
    55.Gong J P,Katsuyama Y,Kurokawa T,et al.Double-network hydrogels with extremely high mechanical strength.Adv Mater.2003,15:1155-1158.
    56.Lihui W,Gouldstone A,Yuhong W,et al.Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan.Biomaterials.2008:2153-2163.
    57.Xiang Y Q,Peng Z Q,Chen D J.A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties.Eur Polym J.2006,42:2125-2132.
    58.Liu Y,Zhu M,Liu X,et al.High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics.Polymer.2006,47:1-5.
    59.Yang L,Meifang Z,Xiaoli L,et al.Mechanical properties and phase transition of high clay content clay/poly(n-isopropylacrylamide) nanocomposite hydrogel.Macromol Syrup.2007:353-360.
    60.Haraguchi K,Farnworth R,Ohbayashi A,et al.Compositional Effects on Mechanical Properties of Nanoeomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay.Macromolecules.2003,36:5732-5741.
    61.Haraguchi K,Takehisa T.Nanocomposite hydrogels:A unique organic-inorganic network structure with extraordinary mechanical,optical,and swelling/De-swelling properties.Adv Mater.2002,14:1120-1124.
    62.Ma J H,Xu Y J,Fan B,et al.Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogeis.Eur Polym J.2007,43:2221-2228.
    63.Ma J H,Xu Y J,Zhang Q S,et al.Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly(N-isopropyl acrylamide) crosslinked by clay.Colloid Polym Sci.2007,285:479-484.
    64.Okumura Y,Ito K.The Polyrotaxane gel:Atopological gel by figure-of-eight cross-links.Adv Mater.2001,13:485-487.
    65.Lin Z H,Wu W H,Wang H Q,et al.Studies on swelling behaviors,mechanical properties,network parameters and thermodynamic interaction of water sorption of 2-hydroxyethyl methacrylate/novolac epoxy vinyl ester resin copolymeric hydrogels.React Func Polym.2007,67:789-797.
    66.Tang Q W,Wu J H,Lin J M,et al.A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method,e-Polym.2008,021:1-6
    67.Calvert P.Materials science - rough guide to the nanoworld.Nature.1996,383:300.
    68.Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials.Mater Sci Eng.2000,28:1-63.
    69.Okada A,Fukushima Y,Kawasumi M,et al.Composite material and process for manufacturing same.US,4739007.1988.
    70.Wypyeh F,Satyanarayana K G.Functionalization of single layers and nanofibers:a new strategy to produce polymer nanocomposites with optimized properties.J.Colloid Interf Sci,2005,285:532-543.
    71.Wang S,Hu Y,Z Q,et al.Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite Mater Lett.2003,57:2675-2678.
    72.Messersmith P B,Znidarsich F,Komarneni S.Synthesis and LCST behavior of thermally responsive poly(N-isopropylacrylamide)/layered silicate nanocomposites",in nanophase and nanocomposite materials Ⅱ.Mater Res Soe Sym Ser.1997,457:507-512.
    73.贺爱华,胡友良.聚烯烃/层状硅酸盐纳米复合材料的研究进展.石油化工.2002,31:1028-1031.
    74.徐博,郑强.熔融插层法制备聚合物/层状硅酸盐纳米复合材料的调控因素.高分子材料科学与工程.2005,21:43-45.
    75. Paranhos C M, Soares B G, Oliveira R N, et al. Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: Swelling behavior and characterization. Macromol Mater Eng 2007,292: 620-626.
    
    76. Meier L P, Nuesch R. The lower cation exchange capacity limit of montmorillonite. J Colloid Interf Sci. 1999,217:77-85.
    
    77. Stretz H A, Paul D R, Li R, et al. Intercalation and exfoliation relationships in melt-processed poly(styrene-co-acrylonitrile)/montmorillonite nanocomposites. Polym Int. 2005,46:2621-2637.
    
    78. Ogawa M, Ishii T, Miyamoto N, et al. Intercalation of a cationic azobenzene into montmorillonite. Appl Clay Sci. 2003, 22: 179-185.
    
    79. Vaia R A, Teukolsky R K, Giannelis E P. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 1994,6:1017-1022.
    
    80. Dharaiya D, Jana S C. Thermal decomposition of alkyl ammonium ions and its effects on surface polarity of organically treated nanoclay. Polymer. 2005,46:10139-10147.
    
    81. Xie W, Gao Z, Pan W, et al. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem Mater. 2001,13:2979-2990.
    
    82. Starodoubtsev S G, Lavrentyeva E K, Khokhlov A R, et al. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants. Langmuir. 2006, 22: 369-374.
    
    83. Starodoubtsev S G, Ryabova A A, Dembo A T, et al. Composite gels of poly(acrylamide) with incorporated bentonite. Interaction with cationic surfactants, ESR and SAXS study. Macromolecules. 2002,35: 6362-6369.
    
    84. Starodoubtsev S G, Ryabova A A, Khokhlov A R, et al. Smectic arrangement of bentonite platelets incorporated in gels of poly(acrylamide) induced by interaction with cationic surfactants. Langmuir. 2003, 19: 10739-10746.
    
    85. Zhang W, Luo W, Fang Y. Synthesis and properties of a novel hydrogel nanocomposites. Mater Lett. 2005, 59: 2876-2880.
    
    86. Lee W, Yang L G. Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly(sodium acrylate) and montmorillonite nanocomposite superabsorbents. J Appl Polym Sci. 2004, 92: 3422-3429.
    
    87. Lee W F, Chen Y C. Preparation of Reactive Mineral Powders Used for Poly(sodium acrylate) Composite Superabsorbents. J Appl Polym Sci. 2005,97: 855-861.
    
    88. Xu K, Wang J, Xiang S, et al. Polyampholytes superabsorbent nanocomposites with excellent gel strength. Compos Sci Tech. 2007,67:3480-3486.
    
    89.柯扬船,皮特斯壮.聚合物-无机纳米复合材料.北京:化学工业出版社,2003.
    
    90. Lee W F, Chen Y C. Superabsorbent Polymeric Materials. XIV. Preparation and Water Absorbency of Nanocomposite Superabsorbents Containing Intercalated Hydrotalcite. J Appl Polym Sci. 2004, 94: 2417-2424.
    
    91. Lee W F, Chen Y C. Effect of Intercalated Hydrotalcite on Swelling and Mechanical Behavior for Poly(acrylic acid-co-N-isopropylacrylamide)/Hydrotalcite Nanocomposite Hydrogels. J Appl Polym Sci. 2005,98:1572-1580.
    
    92. Wang K, Wang L, Wu J, et al. Preparation of highly exfoliated epoxy/clay nanocomposites by"slurry compounding": process and mechanisms. Langmuir. 2005,21:3613-3618.
    93.Luo W,Zhang W,Chen P,et al.Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via x-ray irradiation technique.J Appl Polym Sci.2005,96:1341-1346.
    94.任强,史铁钧,王华林等.丙烯酸-丙烯酰胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究.功能高分子学报.2003.16:469-473.
    95.张小红,崔英德,张维刚等.聚丙烯酸钠/蒙脱石复合高吸水性树脂的合成与性能.高分子材料科学与工程.2005,21:88-91.
    96.Lin J,Wu J,Yang Z,et al.Synthesis and Properties of Poly(acrylic acid)/Mica Superabsorbent Nanocomposite.Macromol Rapid Commun.2001,22:422-424.
    97.Zhang J,Wang A.Study on superabsorbent composites.Ⅸ:Synthesis,characterization and swelling behaviors of polyacrylamide/clay composites based on various clays.React Funct Polym.2007,67:737-745.
    98.Haraguchi K.Nanocomposite gels:New advanced functional soft materials.Macromol Syrup.2007,256:120-130.
    99.Haraguchi K,Li H J,Matsuda K,et al.Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels.Macromolecules.2005,38:3482-3490.
    100.Haraguchi K,Takehisa T,Fan S.Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay.Macromolecules.2002,35:10162-10171.
    101.Haraguchi K,Li H-J.Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels.Angew Chem Int Edit.2005,44:6500-6504.
    102.Haraguchi K,Li H J.Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content.Macromolecules.2006,39:1898-1905.
    103.Haraguchi K,Song L Y.Microstructures formed in co-cross-linked networks and their relationships to the optical and mechanical properties of PNIPA/clay nanocomposite gels.Macromolecules.2007,40:5526-5536.
    104.Liu Y,Zhu M,Liu X,et al.High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics.Polymer.2006,47:1-5.
    105.Zhu M,Liu Y,Sun B,et al.A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation.Macromol Rapid Commun 2006,27:1023-1028.
    106.Zhang W,Liu Y,Zhu M F,et al.Surprising conversion of nanocomposite hydrogels with high mechanical strength by posttreatment:From a low swelling ratio to an ultrahigh swelling ratio.J Polymer Sci Polymer Chem.2006,44:6640-6645.
    107.李笃信,黄伯云.聚合物/无机物纳米复合材料研究进展.材料导报.2002,16:55-58.
    108.Chujo Y,saegusa T.organic polymer hybrids with silica gel formed by means of sol-gel method.Adv Polym Sci.1992,100:11-28.
    109.Costantini A,Luciani G,Annunziata G,et al.Swelling properties and bioactivity of silica gel/pHEMA nanocomposites.J Mater Sc - Mater Med.2006,17:319-325.
    110.Loos W,Pres F d.The sol-gel approach towards thermo-responsive poly(N-isopropyl acrylamide)hydrogel with improved mechanical properties.Macromol Symp.2004,210:483-491.
    111.Pourjavadi A, Seidi F, Salimi H, et al. Grafted CMC/silica gel superabsorbent composite: Synthesis and investigation of swelling behavior in various media. J Appl Polym Sci. 2008,108: 3281-3290.
    
    112.Shchipunov Y A, Karpenko T Y, Krekoten A V. Hybrid organic-inorganic nanocomposites fabricated with a novel biocompatible precursor using sol-gel processing. Compos Interf. 2005,11: 587-607.
    
    113.Matejka L, Oksana, D. Organic-inorganic hybrid network. Macromol Symp 2001, 171: 181-188.
    
    114.Oh I S, Park N H, Park J H, et al. Composite of SiO_2 and hydrogel having microphase separated structure: Physical properties dependence on pH. J Macromol Sci Pure Appl Chem. 1998, A35: 1695-1709.
    
    115.Loos W, Verbrugghe S, Goethals E J, et al. Thermo-responsive organic/inorganic hybrid hydrogels based on poly(N-vinylcaprolactam). Macromol Chem Phys 2003, 204: 98-103.
    
    116. Martinez Y, Retuert J, Yazdani-Pedram M, et al. Hybrid ternary organic-inorganic films based on interpolymer complexes and silica. Polymer. 2004,45: 3257-3265.
    
    117.Mansur H S, Orefice R L, Mansur A A P. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer. 2004,45:7193-7202.
    
    118.Patel S, Bandyopadhyay A, Vijayabaskar V, et al. Effect of acrylic copolymer and terpolymer composition on the properties of in-situ polymer/silica hybrid nanocomposites. J Mater Sci. 2006, 41: 927-936.
    
    119.Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. 2003, 28: 83-114.
    
    120.Strachotova B,Strachota A,Uchman M,etal.Super porous organic-inorganic poly(N- isopropylacrylamide)-based hydrogel with a very fast temperature response.Polymer.2007,48: 1471-1482.
    
    121.Gill I, Ballesteros A. Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol-Gel Polymers: An Efficient and Generic Approach. J Am Chem Soc. 1998,120: 8587-8598.
    
    122.Shchipunov Y A, Karpenko T Y. Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir. 2004, 20: 3882-3887.
    
    123.Can H K, Rzaev Z M O, Guner A. Synthesis and characterization of new hydrogels on the basis of water-soluble maleic anhydride copolymers with gamma-aminopropyltriethoxysilane. J Appl Polym Sci. 2003,90:4009-4015.
    
    124.Barsbay M, Can H K, Guner A, et al. Synthesis of new hydrogels based on the macromolecular reaction of citraconic anhydride copolymers with gamma-aminopropyltriethoxysilane (APTS). Polym Adv Tech. 2005, 16:32-37.
    
    125.Luciani G, Costantini A, Silvestri B, et al. Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol-gel process. J Sol-Gel Sci Technol 2008, 46: 166-175.
    
    126.王云普,袁昆,裴小维.聚 N-异丙基丙烯酰胺/纳米SiO_2复合水凝胶的合成及溶胀性能.高分子学报.2005:584-588.
    
    127.Lee W F, Chen Y C. Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents. Eur Polym J. 2005,41: 1605-1607.
    
    128.Li A, Wang A, Chen J. Studies on Poly(acrylic acid)/Attapulgite Superabsorbent Composite. I. Synthesis and Characterization. J Appl Polym Sci. 2004,92: 1596-1603.
    
    129.Kabiri K, Zohuriaan-Mehr M J. Superabsorbent hydrogel composite. Polym Adv Technol. 2003, 14: 438-444.
    130.Wu J H,Wei Y L,Lin H M,et al.Study on starch-graft-acrylamide/mineral powder superabsorbent composite.Polymer.2003,44:6513-6520.
    131.漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,2002.
    132.Morgan A B,Gilman J W.Characterization of polymer-layered silicate(clay) nanocomposites by transmission electron microscopy and X-ray diffraction:a comparative study.J Appl Polym Sci.2003,87:1329-1338.
    133.谢建军,刘新容,梁吉福等.吸水树脂吸附分离研究进展.高分子通报.2007:52-58.
    134.Haraguchi K,Takehisa T,Fan S.Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay.Macromolecules.2002,35:10162-10171.
    135.Tanaka Y,Kuwabara R,Na Y-H,et al.Determination of Fracture Energy of High Strength Double Network Hydrogels.J Phys Chem B 2005,109:11559-11562.
    136.Burmania J A,Stevens K R,Kao W J.Cell interaction with proteinloaded interpenetrating networks containing modified gelatin and poly(ethylene glycol) diaerylate.Biomaterials.2003,24:3921-3930.
    137.Leonard M,Rastello D B M,Hubert P,et al.Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties.J Control Release.2004,98:395-405.
    138.Kim D,Park K.Swelling and mechanical properties of superporous hydrogels of poly (acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks.Polymer.2004,45:189-196.
    139.Kabiri K,Omidian H,Hashemi S A,et al.Synthesis of fast-swelling superabsorbent hydrogels:effect of crosslinker type and concentration on porosity and absorption rate.Eur Polymer J.2003,39:1341-1348.
    140.Zhang X-Z,Yang Y-Y,Chung T-S,et al.Preparationand characterization of fast response macroporous poly(n-isopropylacrylamide) hydrogels.Langmuir.2001,17:6094-6099.
    141.Kato N,Gehrke S H.Microporous,fast response cellulose ether hydrogel prepared by freeze-drying.Colloids Surf B:Biointerfaces 2004,38:191-196.
    142.Zhang J-T,Cheng S-X,Huang S-W,et al.Temperature-sensitive poly(N-isopropylacrylamide)hydrogels with macroporous structure and fast response rate.Macromol Rapid Commun 2003,24:447-451.
    143.卢国冬,燕青芝,宿新泰等.多孔水凝胶研究进展.化学进展.2007,19:485-493.
    144.胡秀荣,吕光烈,杨芸.六氨合钴离子交换法测定粘土中阳离子交换容量.分析化学.2000,28:1402-1405.
    145.Garai A,Kuila B K,Nandi A K.Montmorillonite clay nanocomposites of sulfonic acid doped thermoreversible polyaniline gel:Physical and mechanical properties.Macromolecules.2006,39:5410-5418.
    146.Morgan A B,Gilman J W.Characterization of polymer-layered silicate(clay) nanocomposites by transmission electron microscopy and X-ray diffraction:A comparative study.J Appl Polymer Science.2003,87:1329-1338.
    147.Vilas D.Athawale V L.Factors influencing absorbent properties of saponified starch-g-(acrylic acid-co-acrylamide).J Appl Polym Sci.2000,77:2480-2485.
    148.Peng G,Xu S,Peng Y,et al.A new amphoteric superabsorbent hydrogel based on sodium starch sulfate.Biores Tech.2008,99:444-447.
    149.Zheng L,Xu S,Peng Y,et al..Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride).Polym.Adv.Tech.2007,18:194-199.
    150.Mohan Y M,Dickson J P,Geckeler K E.Swelling and diffusion characteristics of novel semi-interpenetrating network hydrogels composed of poly[(acrylamide)co-(sodium acrylate)]and poly[(vinyisulfonic acid),sodium salt].Polym.Int.2007,56:175-185.
    151.Guilherme M R,Campese G M,Radovanovic E,et al.Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties.Polymer.2005,46:7867-7873.
    152.郭磊.氨基甲酸酯系淀粉衍生物的合成与应用.大连理工大学博士论文.大连:大连理工大学,2006
    153.Serrano Aroca A,Campillo Fernandez A J,Gomez Ribelles J L,et al.Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent.Polymer.2004,45:8949-8955.
    154.曾尤,王瑞春,谷雅欣等.孔隙率对多孔聚乙烯醇缩甲醛凝胶性能的影响.高分子材料科学与工程.2005,21(4):185-188.
    155.Lee W-F,Lin Y-H.Effect of porosigen on the swelling behavior and drug release of porous N-isopropylacrylamide/poly(ethylene glycol) monomethylether acrylate copolymeric hydrogels.J Appl Polym Sci.2006,102:5490-5499.
    156.Barbieri R,Quaglia M,Delfini M,et al.Investigation of water dynamic behaviour in poly(HEMA) and poly(HEMA-co-DHPMA) hydrogels by proton T2 relaxation time and self-diffusion coefficient n.m.r,measurements.Polymer.1998,39:1059-1066.
    157.Bajpai S K,Johnson S.Superabsorbent hydrogels for removal of divalent toxic ions.Part Ⅰ:Synthesis and swelling characterization.React Funct Polym.2005,62:271-283.
    158.Krusic M K,Dankovic D,Nikolic M,et al.Poly(acrylamide-co-itaconic acid) and semi-IPNS with poly(ethylene glycol):Preparation and characterization.Macromol Chem Phys.2004,205:2214-2220.
    159.Yang S C,Park K N,Rocca J G.Semi-interpenetrating polymer network superporous hydrogels based on poly(3-sulfopropyl acrylate,potassium salt) and poly(vinyl alcohol):Synthesis and characterization.J Bioact Compat Polym.2004,19:81-100.
    160.Miyata T,Asami N,Okawa K,et al.Rapid response of a poly(acrylamide) hydrogel having a semi-interpenetrating polymer network structure.Polym Adv Tech.2006,17:794-797.
    161.Zhao Y,Kang J,Tan T W.Salt-,pH- and temperature-responsive semi-interpenetrating polym network hydrogel based on poly(aspartic acid) and poly(acrylic acid).Polymer.2006,47:7702-7710.
    162.Guo B L,Gao Q Y.Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs.Carbohydra Res.2007,342:2416-2422.
    163.Guo B L,Yuan J F,Yao L,et al.Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel.Colloid Polym Sci.2007,285:665-671.
    164.Ju H K,Kim S Y,Lee Y M.pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide).Polymer.2001,42:6851-6857.
    165.Li S, Yang Y, Li H, et al. PH-Responsive semi-interpenetrating networks hydrogels of poly(acrylic acid-acrylamide-methacrylate) and amylose. i. synthesis and characterization. J Appl Polym Sci. 2007, 106: 3792-3799.
    
    166.Zhang Y L, Xu L, Yi M, et al. Radiation synthesis of poly[(dimethylaminoethylmethacrylate)-co-(diallyl dimethyl ammonium chloride)] hydrogels and its application as a carrier for notoginsenoside delivery. Eur Polym J. 2006,42:2959-2967.
    
    167.Xu S M, Wu R L, Huang X J, et al. Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride). J Appl Polym Sci. 2006,102: 986-991.
    
    168.Kim S J, Yoon S G, Kim S I. Effect of the water state on the electrical bending behavior of chitosan/poly(diallyidimethylammonium chloride) hydrogels in NaCl solutions. J Polym Sci Part B: Polym Phys. 2004, 42: 914-921.
    
    169.Kim S J, Yoon S G, Lee S M, et al. Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HC1 solutions. Sens Actuators B, Chem 2003,96:1-5.
    
    170.Zhang Y X, Wu F P, Li M Z, et al. pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer. 2005,46: 7695-7700.
    
    171.Wandrey J. Zur Bestimmung der relativen Mdmasse von Poly(dimethyl-diallyl-ammoniumchlorid) urch Losungsviskosimetrie. Acta Polym. 1982,33: 156-158.
    
    172.Singhal R, Datta M. Synthesis and characterization of novel poly(o-toluidine) montmorillonite nanocomposites: Effect of surfactant on intercalation. J Appl Polym Sci. 2007,106: 1909-1916.
    
    173.Bajpai S K, Singh S. Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water uptake. React FuncPolym. 2006,66:431 -440.
    
    174.Jin S P, Liu M Z, Zhang F, et al. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer. 2006, 47: 1526-1532.
    
    175.Pourjavadi A, Ghasemzadeh H. Carrageenan-g-poly(acrylamide)/poly(vinyisulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior. Polym Eng Sci. 2007,47: 1388-1395.
    
    176.Pourjavadi A, Hosseinzadeh H, Sadeghi M. Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater. 2007, 41: 2057-2069.
    
    177.Loos W, Pres F d. The sol-gel approach towards thermo-responsive poly(N-isopropyl acrylamide) hydrogel with improved mechanical properties. Macromol Symp 2004,210:483-491.
    
    178.Sierra L, Lopez B, Guth J L. Preparation of mesoporous silica particles with controlled morphology from sodium silicate solutions and a non-ionic surfactant at pH values between 2 and 6. Micro Meso Mater. 2000, 39: 519-527.
    
    179.Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem Comm. 2000:1661-1662.
    
    180.Elimelech H, Avnir D. Sodium-silicate route to submicrometer hybrid PEG/silica particles. Chem Mater. 2008,20:2224-2227.
    181.Ogawa Y, Ogawa K, Kokufuta E. Swelling-shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions. Langmuir. 2004, 20: 2546-2552.
    182.Ye H, Zhao J-Q, Zhang Y-H. Novel degradable superabsorbent materials of silicate/acrylic-based polymer hybrids. J Appl Polym Sci. 2004,91:936-940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700