用户名: 密码: 验证码:
精密超磁致伸缩微位移驱动智能构件技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异形孔结构能够显著提高活塞的使用寿命,但由于异形孔结构的特殊性,给异形孔的加工提出了难题。为了解决活塞异形孔加工这一难题,本文研究了一种新的加工方法-超磁致伸缩材料(Giant Magnetostrictive Material,GMM)智能镗杆构件。深入系统地研究了GMM智能镗杆构件的设计及精密位移控制等若干关键技术,如:GMM智能镗杆构件的电-磁-机三场耦合有限元分析模型、与电-磁-机三场耦合有限元模型相结合的多目标优化设计方法、温度控制方法及其流-热耦合温度分布有限元分析模型、迟滞非线性建模和控制方法、温度对GMM智能镗杆构件性能的影响,建立了GMM智能镗杆构件测试平台。
     第1章介绍加工活塞异形孔微位移驱动机构研究现状,在分析GMM执行器(GMA)有限元建模、优化设计、热误差消除策略及迟滞非线性控制基础上,指出目前GMA设计研究中存在的一些问题,从而确定本文的研究内容和选题意义。
     第2章在分析目前GMM有限元模型研究不足的基础上,提出了适合工程设计需要的GMM智能镗杆构件的电-磁-机三场耦合分步有限元模型。为了减少求解自由度,将GMM电-磁-机耦合分解为:首先求解载流线圈产生磁场,然后求解GMM磁-机耦合。通过理论分析得出载流线圈的电-磁、GMM的磁-机耦合场弱解形式的有限元公式。模型在COMSOL 3.4中实施,分析设计GMM智能镗杆构件的静态变形和固有频率及频率响应。
     第3章根据设计GMM智能镗杆构件的结构,提出了基于GMM电-磁-机三场耦合有限元的GMM智能镗杆构件多目标优化模型。模型优化目标为:GMM智能镗杆构件最大弯曲变形、一阶固有频率、GMM镗杆构件驱动线圈的电感、驱动线圈的响应时间常数和驱动线圈的效率常数。深入研究了多目标遗传算法NSGA-Ⅱ,并应用NSGA-Ⅱ实现了上述优化模型。根据优化结果,设计了GMM智能镗杆构件。
     第4章针对目前各种GMA热误差消除方法的特点,提出了GMM智能镗杆构件温度控制方法-简化强制水冷温度控制,并给出了具体控制方案。在分析GMM智能镗杆构件强制水冷特点基础上,建立了GMM智能镗杆构件流-热耦合有限元分析模型。应用此模型研究分析了所设计温控系统,根据分析结果,设计了GMM智能镗杆构件温度控制系统。
     第5章在深入分析迟滞非线性系统建模基础上,通过将智能镗杆构件的输出位移及其变化率作为网络的输入,镗杆构件的输入驱动电流作为输出,使GMM迟滞输入和输出之间一对多映射关系转化为一对一。在此基础上,提出了迟滞非线性系统的CMAC神经网络建模方法,并应用该CMAC网络建立了GMM智能镗杆构件的迟滞非线性模型。提出了基于CMAC和PD反馈相结合的GMM智能镗杆构件控制方法,仿真结果表明所提控制方法能实现GMM智能镗杆构件精密位移跟踪控制。
     第6章建立了基于虚拟仪器的GMM智能镗杆构件综合实验平台。实验研究智能镗杆构件静态刚度、静态电流位移关系、输入电流和磁场关系、驱动磁场和位移关系。实验分别研究了温升对GMM智能镗杆构件电流位移关系、电流和驱动磁场以及驱动磁场和弯曲量关系的影响。本章的研究为提高GMM智能镗杆构件性能提供技术支持。
     第7章概括全文的主要研究工作,并对将来的研究工作作了展望。
The non-circular hole of a piston can remarkable increase its useful life. Due to the particularity of non-circular hole of a piston, the problems for machining non-circular hole appear. In order to solve the difficult problems of precise machining a non-cylinder pin hole of a piston, a new machining method is presented using embedded giant magnetostrictive material (GMM) in the component. Some key technologies of GMM smart component design and precision position control are studied in depth in this dissertation, such as: the GMM smart component coupled electric, magnetic and mechanical fields finite element model suitable for engineering use, multi-objective optimization integrated above mentioned FE model method, temperature control strategy, coupled fluid and thermal fields FE model, hysteresis nonlinear modeling, control strategy eliminating hysteresis and temperature rising effects on the performance of GMM smart component. The GMM smart component test platform is constructed.
     In chapter 1, research on micro-displacement mechanism for machining noncircular hole of a piston is stated.Based on analysis on the GMA FEM modeling, optimization design, eliminating thermal error strategy and hysteresis nonlinear control, the problems are proposed in the GMA design, and then the main content of this dissertation and the project significance are proposed.
     In chapter 2, on the basis of the deficiencies of GMM FE analysis model at the present time, the coupled electric, magnetic and mechanical fields fractional step model suitable for engineering use is proposed. To reduce the freedom of node needed to solved, firstly the magnetic field of coil is solved, secondly the coupled magnetic and mechanical fields are calculated. According to Hamilton's principle, the finite element weak form formulations for purely magnetic field of coil and coupled magnetic and mechanical fields of the GMM are derived. The proposed model is implemented by using COMSOL Multiphysics 3.4. The effects on the GMM smart component designed deformation and the system resonance frequencies are studied.
     In chapter 3, the smart component multi-objective optimization model integrated the GMM electric, magnetic and mechanical fields FE model GMM is proposed. The optimum objects are the deformation of GMM smart component's top under 3 A input current, the first nature frequency, the inductance of driving coil, the responsive time constant and the energy efficiency constant of driving coil. On the basis of analysis of the multi-objective genetic algorithm NSGA-II in depth, the above mentioned optimization model is implemented using NSGA-II. According to the optimum results, the GMM smart component is designed.
     In chapter 4, base on the various measures for eliminating thermal effects on GMA, the reduced forced water cool control strategy is proposed for the giant magnetostrictive smart component and control schemes is provided in detail too. Through the characterizations of forced water cool analysis, a coupled fluid-thermal field finite element model is constructed. The model constructed is used to analyze the GMM smart component temperature distribution. The temperature control system for GMM smart component is constructed on the basis of the FE analysis.
     In chapter 5, on the basis of analysis on hysteresis nonlinear modeling, the input datas of neural network are the current smart component output and the output rate, the output of neural network is smart component input. Thus, the mathematical relation between these two outputs of smart component and its current input becomes an one-to-one mapping, which guarantees the complex rate-dependent inverse hysteresis model can be approximated by the neural network. The CMAC modeling method for hysteresis is proposed. The GMM smart component hysteresis model is constructed using this CMAC. A real-time hysteretic compensation control strategy combining a CMAC neural network feed forward controller and a proportional derivative (PD) feedback controller is proposed to implement the precision position tracking control of the smart component. Simulation shows that this control strategy can on-line obtain inverse hysteresis model of the smart component, eliminate the hysteretic nonlinear impact and achieve the precision control of the smart component.
     In chapter 6, the experimental table for GMM smart component based on the virtual instrument technologies is built up. The GMM smart component static stiffness, the relationships between input current and displacement, between input current and driving magnetic field, between driving magnetic field and displacement are studied through experiment, respectively. At various temperatures, the GMM smart component relationships between input current and displacement, between input current and driving magnetic field, between driving magnetic field and displacement are studied through experiment, respectively. Through this part's research efforts, the performance of GMM smart component is learned more. So these works can provide technical assistance for GMM smart component.
     In chapter 7, the main conclusions of this dissertation are summarized and the future research work is put forward.
引文
[1]黄为民.2007年车用发动机活塞市场分析及2008年预测[J].天津汽车,2008,2:9-12
    [2]王宝沛等.活塞异形销孔的设计及加工[J].经验交流,1991,3:5-12
    [3]Silva,F.S..Fatigue on engine pistons -A compendium of case studies[J].Engineering Failure Analysis,2006,(13):480-492
    [4]Suhara,T.,Takei,T.,Takiguti,M..Characteristics of friction force on piston pin boss bearings[J].JSAE Review,1996,17(4):453-453
    [5]吴劲松,吴声震.活塞异形销孔的研究[J].内燃机配件,1994,(4):9-13
    [6]杨大智.智能材料与智能系统[M].天津:天津大学出版社.2000
    [7]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学.2005
    [8]李梅等.超磁致伸缩材料及其应用[J].现代电子技术.2005,(18):114-117
    [9]方紫剑,王传礼.超磁致伸缩材料的应用现状[J].煤矿机械.2006,27(5):725-727
    [10]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社.2003
    [11]翟鹏,张承瑞,兰红波.车用高负荷活塞异形销孔结构发展趋势及加工技术研究[J].汽车技术,2006,26(3):39-43
    [12]张宝国.为了适应发动机更高要求[J].现代零部件,2007,4:78-79
    [13]张会兵,冯栓良.活塞镗孔挖槽专机的研发[J].内燃机配件,2005,(5)39-41
    [14]范淑果,郝宏伟,韩彦军.镗削活塞喇叭形销孔的气液压刀具补偿系统[J].液压与气动,2005,(2):54-55
    [15]章云,杨宜民,李医民.微驱动技术在新型镗床中的应用[J].高技术通讯,1998,(5):40-43
    [16]杨宜民,章云,李医民等.异形销孔加工专用NC镗床的研制[J].机床与液压,1998(1):18-20
    [17]张凯,胡德金,马浩全.新型活塞异形销孔加工方法[J].上海交通大学学报,2003,37(增刊):29-32
    [18]张凯,胡德金,马浩全.新型活塞异形销孔加工方法的研究[J].组合机床与自动化加工技术,2003(8):6-8
    [19]马浩全,张凯,胡德金.活塞异形销孔加工的研究[J].压电与声光,2005,27(5):518-528
    [20]马浩全,胡德金,张凯.压电电压反馈控制在异形销孔镗削中的应用[J].上海交通大学学报,2005,39(1):105-107
    [21]张凯,胡德金,杨亚川.异形销孔加工及控制方法研究[J].机械设计与研究,2004,20(1):58-60
    [22]张凯,胡德金.一种用于非圆异形孔加工的电磁驱动机构及控制方法研究[J].高技术通讯,2005,15(12):36-40
    [23]王海峰,胡德金.基于磁悬浮主轴的活塞异形销孔加工原理研究[J].内燃机工程,2006,27(3):54-57
    [24]李小弟,崔红娟,杜金榜,张翊诚.新型活塞异形销孔数控镗削技术的研究[J].机电工程,2001,18(2):3-5
    [25]邱如金.活塞异形销孔加工系统闭环控制研究[D].长沙:国防科技大学,2003
    [26]翟鹏,张承瑞,兰红波,王海涛.基于模态分析的高频响伺服刀杆优化设计[J].中国机械工程,2006,17(23):2430-2434
    [27]程鹏,张承瑞,兰红波.基于模态分析的高频响伺服镗刀杆研究[J].振动与冲击,2006,25(6):170-173
    [28]翟鹏,张承瑞,王海涛等.基于GMM的活塞异形销孔加工原理研究[J].压电与声光,2007,29(1):125-128
    [29]邬义杰,项占琴.新功能材料在活塞异形销孔制造中的应用[J].制造技术与机床,1997,(8):36-38
    [30]项占琴,齐津.磁致伸缩材料结构的镗杆,中国,实用新型专利,CN2375399Y,2000.4.26
    [31]D.R.Browning,I.Golioto,N.B.Thompson.Active chatter control system for long-overhang boring bars[C].Proceedings of the SPIE- The International Society for Optical Engineering,1997,3044:270-280
    [32]W.M.Chiu,K.W.Chan.Design and testing of piezoelectric actuator-controlled boring bar for active compensation of curing force induced errors[J].International Journal of Production Economics,1997,51:135-148
    [33]R.D.Hanson,T.C.Tsao.Reducing cutting force induced bore cyliodricity errors by learning control and variable depth of cut machining[J].Journal of Manufacturing Science and Engineering,1998,120:547-554
    [34]A.Katsuki,H.Onikura,T.Sajima,T.Takei,D.Thiele.Development of high-performance laser-guided deep-hole boring tool:optimal determination of reference origin for precise guiding[J].Precision Engineering,2000,24:9-14
    [35]G.P.O' Neal,B.K.Min,Z.J.Pasek,Y.Korean.Integrated structural/control design of micro-positioner for boring bar tool insert[J].Journal of Intelligent Material Systems and Structures,2001,12:617-627
    [36]G.P.O' Neal,B.K.Min,C.J.Li,Z.J.Pasek,Y.Korean,P.Szuba.Precision piezoelectric micro-positioner for line boring bar tool insert[C]. Proceedings of ASME International Mechanical Engineering Congress and Exposition, Vibration and Noise Control DSC, 1998,65:99-106
    [37] Y. Koren, Z. Pasek, P. Szuba. Design of a precision, agile line boring station[J]. CIRP Annals —Manufacturing Technology, 1999, 48 (1): 313-316
    [38] B.K. Min, G.P. O' Neal, Y. Koran, Z. Pasek. A smart boring tool for process control[J]. Mechatronics, 2002,12:1097-1114
    [39] J.R. Michler, K.S. Moon, J.W. Sutherland, A.R. Kashani. Development of a magnetostriction based cutting tool positioner[C]. in: Transactions of the North American Manufacturing Research Institute of SME. 1993, pp. 421 (?)427.
    [40] D. Liu, J.W. Sutherland, K.S. Moon, T.J. Sturos, W.L. Kanizar.Surface texture improvement in the turning process via application of magnetostrictive actuated tool holder[J]. Journal of Dynamic Systems Measurement and Control, 1998, 120:193-199
    [41] H. Eda, E. Ohmura, M. Sahashi, T. Kobayashi. Ultra-precise machine tool equipped with a giant magnetostrictive actuator[J]. Annals of the CIRP,1992, 41: 421-424
    [42] Y. Yamamoto, H. Eda, J. Shimizu. Application of giant magnetostrictive materials to positioning actuator[C]. in: Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999, pp. 215-220
    [43] J. Rojas, C. Liang, Z.J. Geng. Experimental investigation of active machine tool vibration control[C]. Proceedings of SPIE—The International Society for Optical Engineering, 1996, 2721:373-384
    [44] A.H. El-Sinawi, R. Kashani. Improving surface roughness in turning using optimal control of tool's radial position[J]. Journal of Materials Processing Technology, 2005, 167: 54-61
    [45] Engdahl, G., and Svensson, L.. Simulation of the magnetostrictive performance of terfenol-D in mechanical devices[J]. Journal of Applied Physics, 1988,63(8):3924-3926
    [46] Tiberg H, Berggvist A, Kvarnsjo L and Engdahl G . A method of computing electro-mechanical transfer function for magnetostrictive functional units[J]. IEEE Trans. Magn., 1992,28:2808-2818
    [47] Tiberg H, Berggvist A and Engdahl G. Evaluation of a magnetostrictive drive element model[J]. J. Appl. Phys., 1993,73:5851-5854
    [48] Kvarnsjo, L., and Engdahl, G..Nonlinear 2-D transient modeling of Terfenol-D Rods[J].IEEE Transactions on Magnetic, 1999,27(6):5349-5351
    
    [49] Delince F, Genon A, Gillard J M, et al.. Numerical computation of the Magnetostrictive effect in ferromagnetic materials[J].J.Appl.Phys. 1991,69:5794-5710
    [50]Claeyssen,F.,Bossut,R.,and Boucher,D..Modeling and characterization of the magnetostrictive coupling[C].Proceedingsof the International Workshop,Power Transducers for Sonics and Ultrasonics,1990:132-151,Toulon,France.
    [51]ATILA -3-D CAD software for piezoelectric and magnetostrictive structures,ISEN Lille,Distr CEDRAT,Meytlan&MAGSOFT.
    [52]Benatar,J.G.,Flatau,A.B.FEM implementation of a magnetostrictive transducer[J].Smart Structures and Materials,2005,5764:482-493
    [53]Karim Azoum,Mondher Besbes and Fr'ed'eric Bouillault.3D FEM of magnetostriction phenomena using coupled constitutive laws[J].International Journal of Applied Electromagnetics and Mechanics,2004,19:367-371
    [54]贺西平,孙进才,李斌.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究:Ⅰ.理论部分[J].声学学报,2000,25(6):521-527
    [55]Carman,G.P.,and Mitrovic,M..Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J].Journal of Intelligent Material Systems and Structures,1995,6(5):673-683
    [56]Roberts,M.M.,M.Mitrovic and G.P.Carman.Nonlinear behavior of coupled magnetostrictive material systems analytical/experimental[J].Smart Materials,1995,2441:341-355
    [57]Carman,G.P.and M.Mitrovic.Nonlinear behavior of magnetostrictive materials[C].Engineering Mechanics,Proceedings of the 10~(th) Conference of the ASCE,Boulder,CO,1995:714-718
    [58]Carman,G.P.and M.Mitrovic.Nonlinear constitutive relations for magnetostrictive materials[C].Proc.ofthe 2~(nd) International Conference on Intelligent Materials,1994:265-278
    [59]BenbouzidM E H,Reyne G and Meunier G.Variational formulation for nonlinear FE modeling of terfenol-D rods using surface splines for material in data[J].Magnetoelastic Effects and Applications(Amsterdam:Elsevier),1993:185-191
    [60]Hom,C.,and Shankar,N..A Finite element method for electrostrictive ceramic devices[J].International Journal for Solids and Structures,1995,33(12):1757-1779
    [61]Dapino,M.J.,Smith,R.,Faidley,L.E.,and Flatau,A.B..A coupled structural magnetic strain and stess model for magnetostrictive transducers[J].Jouranl of Intelligent Material Systems and Structures,2000,11(2):135-152
    [62]Marcelo J Dapino,Ralph C Smith,Alison B Flatau.Structural magnetic strain model for magnetostrictive transducers[J].IEEE Trans Magn,2000,36(3):545-556
    [63]Kannan,K.S..Galerkin finite element scheme for magnetostrictive structures and composites[D].Department of Mechanical Engineering,University of Maryland,1997
    [64]Pérez-Aparicio,J.,L.,and Sosa,H..A continuum three dimensional,fully coupled,dynamic,non-linear finite element formulation for magnetostrictive materials[J].Smart Materials and Structures,2004,13:493-502
    [65]M.Besbes,Z.Ren and A.Razek.A generalized finite element model of magnetostriction phenomena[J].IEEE Transactions on Magnetics,2000:37(5):3324-3328
    [66]M.Kaltenbacher,S.Schneider and R.Simkovics.Nonlinear finite element analysis of magnetostrictive transducers[C].In Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials,2001,4326:160-168
    [67]Jaehwan Kim and Eunmi Jung.Finite element analysis for acoustic characteristics of a magnetostrictive transducer[J].SMART MATERIALS AND STRUCTURES,2005(14):1273-1280
    [68]树学锋,于文芳,李志刚.采用磁致伸缩模型进行磁弹性有限元分析的基本理论[J].太原理工大学学报,2004,35(1):6-8
    [69]陈海燕,杨庆新,刘素贞等.超磁致伸缩薄膜磁-机械特性的弱耦合与强耦合模型的比较研究[J].河北工业大学学报,2004,33(4):70-75
    [70]王福吉,贾振元,刘巍等.超磁致伸缩薄膜磁致伸缩耦合机理的有限元分析[J].中国机械工程,2005,16(18):1654-1657
    [71]贾宇辉,谭久彬.超磁致伸缩驱动器及有限元分析方法的研究[J].光学精密工程,2000,8(2):161-164
    [72]曹志彤,蔡炯炯,陈宏平等.超磁致微致动器能量耦合转换有限元分析[J].浙江大学学报(工学版),2005,39(7):939-942
    [73]闫荣格,王博文,曹淑瑛等.巨磁致伸缩材料的磁致伸缩模型与计算[J].河北工业大学学报,2002,31(4):30-32
    [74]杨庆新,阎荣,徐桂芝.超磁致伸缩器件的数值计算模型[J].电工技术学报,1999,14(4):17-20
    [75]黄文美,王博文,闫荣格,曹淑瑛.超磁致伸缩换能器有限元动态模型的研究[J].河北工业大学学报,2004,33(5):1-4
    [76]刘楚辉.基于超磁致伸缩材料的微位移致动器设计与研究[D].杭州:浙江大学,2004
    [77]黄赟.超磁致伸缩驱动器器件研制关键问题研究[D].西安:西北工业大学,2005
    [78]李恒菊.磁致伸缩材料在微动工作台中的应用[D].武汉:武汉理工大学,2005
    [79]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究[J].浙江大学学报(工学版),2004,38(6):747-750.
    [80]李明范,项占琴,吕福在.超磁致伸缩换能器磁路设计及优化[J].浙江大学学报(工学 版),2006,40(2):192-196
    [81]孟爱华,项占琴,吕福在.GMM换能器的设计优化[J].传感技术学报,2005,18(4):771-776
    [82]杨斌堂,陶华,BONIS M,等.Terfenol-D磁致伸缩微小驱动器磁路设计[J].机械科学与技术,2005,24(3):293-295
    [83]Jie Bi.A study of magnetostrictive mini-acutators[D].Maryland,USA:1997.
    [84]PHILIPPE BOUCHILLOUX and KENJI UCHINO.Combined Finite Element Analysis-Genetic Algorithm Method for the Design of Ultrasonic Motors[J].Journal of Intelligent Material Systems and Structures,2003(14):657-667
    [85]Xiaojing Zheng,Le Sun.A one-dimension coupled hysteresis model for giant magnetostrictive materials[J].Journal of Magnetism and Magnetic Materials,2007,309:263-271
    [86]K.Prajapati,A.G.Jenner,R.D.Greenough.Magnetoelastic behavior of aluminum substituted TerfenoI-D at elevated temperatures[J].IEEE Transactions on Magnetics.1995,31(6):3976-3978
    [87]A.E.Clark,D.N.Crowder.High temperature magnetostriction of TbFe_2 and Tb_(.27)Dy_(.73)Fe_2[J].IEEE Transactions on Magnetics,1985,(5):1945-1947
    [88]李碚,伍虹.国外稀土超磁致伸缩材料的研究状况[J].稀土,1990,11(6):52-59
    [89]贾振元,杨兴,郭东明,侯璐景.超磁致伸缩材料微位移执行器的设计理论及方法[J].机械工程学报,2001,37(11):46-49
    [90]卢全国,陈定方,钟毓宁,陈敏.超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007,18(1):16-19
    [91]严自力,王宏升.相变温控材料[J].中国个体防护装备,2001,(1):P23-24。
    [92]Shankar Krishnan,Suresh V.Garimella,Sukhvinder S.Kang.A novel hybrid heat sink using phase change materials for transient thermal management of electronics[J].IEEE Transactions on Components and Packaging Technologies,2005,28(2):281-289
    [93]Carsie.A.Mall,Ⅲ,Emmanuel K.Glakpe,and Joseph N.Cannon,Thomas W.Kerslake.Parametric analysis of cyclic phase change and energy storage in solar heat receivers[C].Energy Conversion Engineering Conference,1997.IECEC-97.Proceedings of the 32nd Intersociety,1997,446-453
    [94]Ryan J.Elwell,Richard W.Garman,and Micheal Doyle.Thermal management techniques for an advanced linear motor in an electric aircraft recovery system[J].IEEE Transactions on Magnetics,2001,37(1):476-479
    [95]苏亚欣,何传俊.空间站太阳能热动力发电系统吸热器研究[J].能源工程.2003,(4):14-18
    [96]梁久来,何玉贤.温控储热相变材料及在医药工业中的应用[J].长春中医学院学报,1996,12(58):62
    [97]宫惠峰.相变贮能材料的研究进展[J].邢台职业技术学院学报,2006,23(1):33-35
    [98]孙永人.相变温控实验及在航天器上应用[J].国外导弹与航天运载器,1991,(8):62-66
    [99]钟学明,肖金辉,姜亚龙,李才生.相变贮热材料及其在太空中的应用[J].江西科学,2004,22(5):135-158
    [100]邬义杰,徐杰.超磁致伸缩执行器热误差补偿及抑制方法研究[J].工程设计学报.2005,12(4):213-218
    [101]R.E.Simons and R.C.Chu.Application of thermoelectric cooling to electronic equipment:a review and analysis[C].16~(th) IEEE SEMI-THERM~(TM) Symposium.2000:1-9
    [102]徐君.超磁致伸缩执行器热误差补偿方法研究及测控平台建立[D].杭州:浙江大学,2007
    [103]于宗保.超磁致伸缩材料换能器喷嘴挡板伺服阀的热变性补偿研究[J].煤炭学报.2006,31(3):396-400
    [104]Yoshio Yamamoto,Hiroshi Eda,Jun Shimizu.Application of giant magnetostrictive materials to positioning actuators[C].Proceeding of the 1999 IEEE/ASME.International Conference on Advanced Intelligent Mechatronics:215-220
    [105]夏春林,丁凡,陶国良.超磁致伸缩电-机械转换器热变形补偿试验研究[J].中国机械工程.1999,10(5):563-565
    [106]Frederick Calkins and Alison Flatau.Transducer based measurements of TerfenoI-D material properties[C].Proc.Of SPIE:Smart Structures and Integrated Sytems,1996,2717:709-719
    [107]田春.超磁致伸缩执行器的本征非线性研究及其补偿控制[D].上海:上海交通大学,2007
    [108]马颖.回滞非线性系统的鲁棒自适应控制[D].广州:华南理工大学,2006
    [109]A.A.Adly,I.D.Mayergoyz.Experimental testing of the average Preisach model of Hysteresis[J].IEEE Transactions on Magnetics,1992,28(5):2268-2270
    [110]J.B.Restorff,H.T.Savage,A.E.Clark,M.Wun-Fogle.Preisach modeling of hysteresis in Terfenol-D[J].Journal of Applied Physics,1990,67(9):5016-5018
    [111]R.C.Smith.Hysteresis modeling in magnetostrictive materials via Preisach operators[J].Journal of Mathematical Systems,Estimation,and Control,1998,8(2):249-252
    [112]C.Natale,F.Velardi,C.Visone.Identification and compensation of Preisach hysteresis models for magnetostrictive actuators[J].Physica B:Condensed Matter,2001,306(1-4):161-165
    [113]M.Brokate.Some mathematical properties of the Preisach model for hysteresis[J].IEEE Transactions on Magnetics,1989,25(4):29-22
    [114]Augusto Visintin.Differential models of hysteresis[M].New York:Springer-Verlag,1994
    [115]Martin Brokate,Jurgen Sprekels.Hysteresis and phase transitions[M].Berlin,Germany:Springer-Verlag,1996
    [116]Chunyi Su,Yonghong Tan,Y.Stepanenko.Adaptive control of a class of nonlinear systems preeeded by an unknown backlash-like hysteresis[C].Poreeedings of the IEEE Conference on Decision and Control,Sydney,Australia.2000:1459-1464
    [117]Chunyi Su,Masahiro Oya,Henry Hong.Stable adaptive fuzzy control of nonlinear systems preeeded by unknown backlash-like hysteresis[J].IEEE Transactions on Fuzzy Systems,2003,11(1):1-5
    [118]Willian S.Galinaitis.Two methods for modeling scalar hysteresis and their use in controlling actuators with hysteresis[D].Virginia Polytechnic Institute and State University,1999
    [119]王湘江,王兴松.基于KP模型的GMA迟滞系统辨识与补偿[J].中国机械工程,2008,19(10):1167-1173
    [120]Coleman B D,Hodgon M.L..A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials[J].International J.Engrg.Sci.,1986,24:897-919
    [121]Coleman B D,Hodgon M.L..On a class of constitutive relations for ferromagnetic hysteresis[J].Arch.Rational Mech.Anal.,1989,402:375-396
    [122]F.Preisach.(u|¨)ber die magnetische nachwrikung[M].Zeitschrift f(u|¨)r Physik,1935,94:277-302
    [123]D.Hughes,J.T.Wen.Preisach modeling and compensation for smart material hysteresis[J].SPIE,Active Materials Smart Struct.,1994,2427:50-64
    [124]D.A.Philips,L.R.Dupre,J.A.Melkebeek.Comparison of Jiles and Preisach hysteresis models in magnetodynamics[J].IEEE Transactions on Magnetics,1995,31(6):3551-3553
    [125]A.A.Adly,I.D.Mayergoyz.Magnetostriction simulation using anisotropic vector Preisach-type models[J].IEEE Transactions on Magnetics,1996,32(5):4773-4775
    [126]R.B.Gorbet,D.W.L.Wang,K.A.Morris.Preisach model identification of a two-wire SMA actuator[C].Proceedings-IEEE International Conference on Robotics and Automation,Leuven,Belgium,1998,3:2161-2167
    [127]S.Majima,K.Kodama,T.Hasegawa.Modeling of shape memory alloy actuator and tracking control system with the model[J].IEEE Transactions on Control Systems Technology,2001,9(1):54-59
    [128]C.Natale,F.Velardi,C.Visone.Modelling and compensation of hysteresis for magnetostrictive actuators[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Como,Italy,2001,2:744-749
    [129]Y.Bernard,E.Mendes,EBouillault.Dynamic hysteresis Modeling based on preisach model[J]. IEEE Transactions on Magnetics.2002,38(2):885-888
    [130] J.M.Liu, Z.G. Lin, H. L. W .Chan, C.L. Choy. Dynamic hysteresis in a planar X-Y model and its scaling property[J].Materials Letters,2003,57:1520-1527
    [131] Sergei I. Sandacci, Alexander N. Grigorenko,Larissa V. Panina, Desmond J.Mapps.Dynamic hysteresis in magnetostrictive amorphous microwires[J].IEEE Transactions on Magnetics,2002,38(5):2409-241
    
    [132] X.Tan,J.S.Baras,P.S.Krishnaprasad. A dynamic model for magnetostrictive hysteresis[C].Proceedings of the 2003 American Control Conference,Denver,CO,United States,2003,2:1074-1079
    [133] M.J.Dapino,R.C.Smith,A.B.FIatau.Coupled structural-magnetic strain model for magnetostrictive transducers[C].Proceedings of SPIE-The International Society for Optical Engineering, 1999,3668( 1 ):405-416
    [134] F.T.Calkins,R.C.Smith,A.B.Flatau.Energy-based hysteresis model for magnetostrictive transducers[J].IEEE Transactions on Magnetics,2000,36(2):429-439
    [135] K.H.Carpenter.A differential equation approach to minor loops in the Jiles-Atherton hysteresis model[J].IEEE Transactions on Magnetics, 1991,27(6):4404-4406
    [136] M.J.Sablik,D.C.Jiles.Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis[J].IEEE Transactions on Magnetics, 1993,29(4):2113-2123
    [137] F.T.Calkins,R.C.Smith and A.B.Flatau.An energy-based model for magnetostrictive transducers[R].NASA/CR-97-206046,ICASE Report No.97-60,1997
    [138] D.C.Jiles.A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis[J].IEEE Transactions on Magnetics, 1992,28(5):2602-2604
    [139] R.C.Smith.Modeling techniques for magnetostrictive actuators[C].Proceedings of SPIE:The International Society for Optical Engineering,San Diego,CA,USA, 1997,3041:243-253
    [140] R.C.Smith,M.J.Dapino,S.Seelecke. Free energy model for hysteresis in magnetostrictive transducers[J].Journal of Applied Physics,2003,93(1):458-466
    [141] Sushant M. Dutta,Fathi H. Ghorbel. Differential hysteresis modeling of a shape memory alloy wire actuator[J].IEEE/ASME Transactions on Automatic Control.2005,50(6):827-839
    [142]P Krejei,K.Kuhnen. Inverse control of systems with hysteresis and creep[C].IEE Pocreeding of Contorl Theoyr Application.2001,148(3): 185-192
    [143] G Song, Jingqiang Zhao, Xiaoqin Zhou, J. Alexi sDe Abreu-Gareia.Traeking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model[J].IEEE/ASME Transaetions on Mechatronics.2005,10(2): 198-209
    [144] W. Steven Galinaitis, Robert Rogers.Control of hysteretic actuator using inverse hysteresis compensation[C].The SPIE Coference on Mathematics and Contorl in Smart Struetures, San Diego,Caliofrnia. 1998,3323:267-277
    [145] Ralph C. Smith, Chad Bouton.Partial and full inverse compensation of hysteresis in smart material systems[C].Porceeding of the American Control Coference, Chieago, Illinois. 2000:2750-2754
    [146] Hartmut Janocha, Klaus Kuhnen. Real-time compensation of hysteresis and creep in piezoeleetric Actuators[J].Sensors and Actuators,2000,79:83-89
    [147]Juergen Schaefer and Hartmut Janocha. Compensation of hysteresis in solid-state actuators[J].Sensors and Actuators,A:Physical,1995,49(1-2):97-102
    [148] Carrie Dickinson,Declan C. Hughes and John T. Wen. Hysteresis in shape memory alloy actuators :the control issue[C].Proc. of SP1E: Smart Structures and Materials, 1996,2715.494-506
    [149] Gang Tao, Petar. V Kokotovi.Adaptive control of plants with unknown hysteresis[J].IEEE Transactions on Auotmatic Contort, 1995,40(2):200-212.
    [150] Gang Tao. Petar. V Kokotovi.Adaptive control of systems with unknown non-smooth non-linearities[C]. International Jurnal of Adaptive Contorl and Sginal Poreessing, 1997,11:81-100
    [151] Willian S. Galinaitis. Two methods for modeling scalar hysteresis and their use in contorllling actuators with hysteresis[D].Virginia Polytechnic Institute and State University 1999
    [152] Ping Ge and Musa Jouaneh. Modeling hysteresis in piezoceramic actuators[J].Precision Engineering, 1995,17:211-221
    [153] Ping Ge and Musa Jouaneh. Tracking control of a piezoceramic actuator[J].IEEE Trans. on Control Systems Tech, 1996,4(3):209-216
    [154] Ping Ge and Musa Jouaneh. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators[J].Precision Engineering, 1997,20:99-111
    [155] MITTAL S,MEAQ CH.Hysteresis compensation in electromagnetic actuator through Preisach model inversion [J].IEEE/ASME Trans on Mechatronics,2000,5(4):394-409.
    [156] MAJIMA S, KODAMA K, HASEGAWA T.Modeling of shap memory actuator and tracking control system with the model [J] IEEE Trans on Control Systems Technology,2001,9( 1 ):54-59.
    [157] WEBB G,KURDILA A,LAGOUDAS D.Adaptive hysteresis model for model reference control with actuator hysteresis [J].J of Guid-ance,Control and Dynamics,2000,23(3):459-465.
    [158] KURDILA A J, WEBB G.Compensation for distributed hystereis Operators in active structured systems[J].J of Guidance,Control and Dynamics,1997,20(6):1125-1132.
    [159]Juan Manuel Cruz-Hernandez,Vieent Hayward.Phase control approach to hysteresis reduction[J].IEEE Transaetions on Contorl Systems TeChnology.2001,9(1):17-26
    [160]Young-Woo Park,Yong-Tai Seok,Jeong-Yong Chung.Application of sliding mode control to the magnetostrictive actuator[C].The 3~(rd) International Symposium on Nanomanufacturing,the University of Cyprus,2005
    [161]Mao Jianqin,Bu Qingzhong.Low order H∞ Robust controller design for active vibration control[C].The Fourth International Conference on Control and Automation(ICCA'03),MontreaI,Canada,2003:311-314
    [162]Xingsong Wang,Chunyi Su,Henry Hong.Adaptive sliding inverse control of a class of nonlinear systems Proceeded by unknown non-symmetrical dead-zone[C].Proceedings of the IEEE international Symposium on Intellgient Contorl,Houston,Texas,2003:16-21
    [163]Jing Zhou,Changyun Wen,Ying Zhang.Adaptive backstepping control of a class of uncertain nonlinear systems with unknown dead-zone[C].Porceeding of the IEEE Conference on Robotics,Automation and Mechatronics,SingaPore.2004:513-518
    [164]Xingsong Wang,Henry Hony,Chunyi Su.Model reference adaptive control of continuous-time systems with an unknown input dead-zone[C].IEEE Porceeding of Contorl Theory Application,2003,150(3):261-266
    [165]赵彤,谭永红.迟滞非线性动态系统神经网络自适应控制[J].计算机仿真,2004,21(8):104-108
    [166]Salapaka S,Sebastian A,Cleveland J P,et al..High bandwidth nanopositioner:a robust control approach[J].Review of Scientific Instruments,2002,73(9):3232-3241
    [167]Salapaka S,Sebastian A,Cleveland J P,et.al..Design,identification and control of a fast nanopositioning device[C].Anchorage,AK,USA:Proceeding of the American Control Conferecne,2002
    [168]Adly A A,Abd-EI-Hafiz S K.Using neural networks in the identification of Preisach-type hysteresis models[J].IEEE Trans on Magnetics,1998,34(3):629-635
    [169]SERPICO C,VISONE C.Magnetic hysteresis modeling via feed-forward neural networks [J].IEEE Trans on Magnetics,1998,34(3)623-628
    [170]SALIAHH H,LOWTHER D A.Modeling magnetic using artifice neural networks[J].IEEE Trans on Magnetics,1998,34(5)3056-3059
    [171]KUCZMANN M,IVANYI A.A new neural-network-based scalar hysteresis model[J].IEEE Trans on Magnetics,2002,38(2)857-860
    [172]HWANG C L,JAN ChAU,CHEN Y H.Piezomechanic using intelligent variable-structure control[J].IEEE Trans on Industrial Electronic,2001,48(1):47-59
    [173]王湘江,王兴松.超磁致驱动器迟滞系统逆模补偿控制[J].中国机械工程,2007,18(10):1151-1156
    [174]F.Claeyssen,N.Lhermet,R.Le Letty,P.Bouchilloux.Actuators,transducers and motors based on giant magnetostrictive materials[J].Journal of Alloys and ompounds,1997,258,61-73
    [175]Esa Heinonen,Jari Juuti,Seppo Leppavuori.Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software[J].Journal of the European Ceramic Society,2005,(25):2467-2470.
    [176]Dean J.,Gibbs M.R.J.,Schrefl,T..Finite-element analysis on cantilever beams coated with magnetostrictive material[J].IEEE Trans.Magn.,2006,42(2):283-288
    [177]R.Watts et al..Finite-element modeling of magnetostrictive bending of a coated cantilever[J],Appl.Phys.Lett.,1997,70(19):2607-2609
    [178]莫喜平,朱厚卿,刘建国.Terfenol-D超磁致伸缩换能的有限元模拟[J].应用声学,2000,19(4):5-8
    [179]电气工程师手册(第二版)[M].北京:机械工业出版社,2002
    [180]张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社,1987
    [181]王勇,蔡自兴,周育人,肖赤心.约束优化进化算法研究及其进展[J].软件学报,2007,18(11):2691-2706
    [182]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997
    [183]J.D.Schaffer.Multiple object optimization with vector evaluated genetic algorithm[C].Proceedings of the 1~(st) Int.Conf.on Genetic Algorithms,1985:93-100
    [184]Horn.J.,Nafpliotis,N.,Goldber,D.E.A niched pareto genetic algorithm for mutli-objective optimization[C].Proceedings of the 1~(st) IEEE Conference on Evolutionary Computation,IEEE world congress on computational inelligence,Piscataway,NJ:IEEE service Center,1994:82-87
    [185]N.Srinivas,K.Deb.Multiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation,1995,2(3):221-248
    [186]Zitaler E.Multiobjective evolutionary algorithm,a comparative case study and the strength pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271
    [187]Deb,K.,Pratap,A.,Agrawal.S.,&Meyarivan,T..A fast elitist non-dominated sorting genetic algorithm for multi-objective optimizations:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
    [188]吴玉林,刘树红.粘性流体力学[M].北京:中国水利水电出版社,2007.
    [189]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [190]苏铭德,Friedrich,R..沿纵向弯曲壁面湍流边界层的大涡模拟[J].力学学报,1984,16(4):321-332
    [191]马铁犹.计算流体力学[M].北京:北京航空学院出版社,1986
    [192]范正翘,许学咨,朱水令.燃烧室内有旋射流的数值模拟[J].空气动力学报,1986,4(1):74-80
    [193]朱谷君.工程传热传质学[M].北京:航空工业出版社,1989
    [194]Patankar,S.V.,Ivanovic,M.and Sparrow,E.M..Analysis of turbulent flow and heat transfer in internally finned tubes and annuli[J].ASME.J.Heat Transfer,1979,101:29-2
    [195]MAYERGOYZ D.Dynamic preisach models of hysteresis[J].IEEE Trans on Magetics.,1988,24(6):2929-2927
    [196]YU Y H,XIAO Z C,NAGI G.NAGANATHAN,RAO V DUKKIPATI.Dynamic preisach modeling of hysteresis of the piezoceramic actuator system[J].Mechanism and Machine Theory,2002,37:75-89
    [197]Miller W T,Hewes R P,Glanz F H,et al..Real-time dynamic control of an industry manipulator using a neural network based learing controller[J].IEEE Trans.On Robotics and Automation,1990,6(1):1-9
    [198]王洪瑞.液压六自由度并联机器人运动控制研究[D].秦皇岛:燕山大学,2002
    [199]刘金锟.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2006
    [200]CAVALLO A,NATALE C,PIROZZI S,et al..Feedback control systems for micropositioning tasks with Hysteresis compensation[J].IEEE Trans.Magn.,2004,40(2):876-879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700