用户名: 密码: 验证码:
活性碳纤维(毡)/环氧树脂吸波复合材料的设计与吸波性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为隐身技术发展的关键之一,微波吸收材料的研究越来越受到世界各国的高度重视,成为国防科技领域的热点。在民用方面,随着科学技术和电子工业的发展,电磁辐射的负面效应已经影响到人类生活的各个方面,利用吸波材料来减弱或消除电磁波污染是一种有效的方法。微波吸收材料研究的关键在于设计、制备高效吸收剂(体),活性碳纤维(毡)由于其吸波频带宽、质量轻、吸收强、成本低、易于设计和物化性能稳定的特点,有望成为性能优异的新型吸波剂(体)。
     本文对粘胶基活性碳纤维及其复合材料的吸波性能、制备工艺和吸波机理进行系统的研究,在此基础上,设计了两种新型吸波体-活性碳毡电路屏和活性碳毡天线结构,详细研究了两种吸波体的吸波特性和吸波机理。主要研究内容如下:
     用粘胶基活性碳纤维作为吸收剂制备活性碳纤维/环氧树脂复合材料,研究了纤维含量、试样结构等因素对吸波性能的影响,并通过对比实际测量和理论计算得到的反射率,探索了材料的吸波机理。结果表明:活性碳纤维/环氧树脂复合材料对电磁波的主要衰减机制是介电损耗,复合材料上、下表面的干涉相消作用使得反射衰减曲线在中、高频段出现周期性波动。纤维的含量、分布方式以及吸波层厚度对复合材料的吸波性能有很大的影响。在吸波层中纤维含量相同的情况下,活性碳纤维梯度设计可以显著提高复合材料的吸波性能,吸波层中四个结构层纤维含量分别为0.24wt%、0.48wt%、0.72wt%和0.96wt%时,材料在4.46-18GHz频率范围内对电磁波有-10dB以下的吸收,7.12GHz时取得最大反射衰减-25.9dB。
     通过研究制备工艺对活性碳纤维微观结构和性能的影响规律,分析了纤维在微观层次上与电磁波的相互作用机制,探讨了其微观吸波机理。结果表明:制备工艺对活性碳纤维微观结构、电磁性能和吸波性能有较大的影响。活化时间20min、活化温度900℃、碳化时间60min、碳化温度425℃条件下制备的活性碳纤维,吸波性能最佳,纤维含量梯度分布复合材料的有效带宽达13.68GHz,7.0-18GHz频率范围内,反射衰减高于-20dB。活性碳纤维对电磁波的微观吸波机制包括π电子极化弛豫和界面极化,其中,π电子极化弛豫是纤维有效损耗电磁波的主要原因,界面极化机制在电磁衰减中起次要作用。
     研究了长度1~3mm短切活性碳纤维的介电性能,发现纤维具有频响效应,有利于展宽吸波频带。以短切活性碳纤维作为吸收剂,依据阻抗匹配原理,优化设计了厚度4mm的四层吸波材料,2~18GHz频率范围内反射率达到-10dB以下的频带宽度为8GHz,最大反射衰减-39.3dB。依据分块设计原理,优化设计含三个亚区域的吸波材料,三个区域的面积比S1:S2:S3=3:1:1时,8.2-13.5GHz频率范围内有低于-10dB的反射率,最大反射衰减-28.9dB。
     以活性碳毡为材质制备感性电路屏,研究了电路屏阵列单元的结构、尺寸参数对含电路屏复合材料吸波性能的影响,并依据实验结果对材料的吸波机理进行了探讨。结果表明:含感性活性碳毡电路屏复合材料对电磁波的主要吸收机制是电磁波在电路屏和反射板之间的多次反射、衰减。电路屏的谐振频率与含电路屏复合材料吸收频带的变化规律相一致,当电路屏中碳毡所占面积比适当时,入射波的衰减量与电路屏对它的透过率近似呈正比关系。具有多个谐振频率的分形电路屏是活性碳毡电路屏的发展方向之一,经合理设计,含Minkowski分形电路屏复合材料在5.3-18GHz频率范围内有-10dB以下的吸收,有效带宽达12.7GHz。
     将天线结构首次引入到吸波材料的设计中,研究了含天线结构复合材料吸波性能的影响因素及其吸波机理。结果表明:天线阵列/环氧树脂复合材料对电磁波的吸收机理为天线的电阻损耗。天线的尺寸参数、材质和两臂间电阻阻值与材料的吸波性能密切相关。在天线的起始半径、外半径、参数和两臂间电阻分别为4mm、42mm、23.86mm和150?的条件下,阿基米德平面螺旋天线阵列/环氧树脂复合材料的最大反射衰减-23dB,有效带宽达11GHz。含活性碳毡对称振子阵列复合材料对电磁波的吸收呈各向异性,振子与入射电场平行时,其吸波性能明显优于与入射电场垂直时的吸波性能,设计材料的有效带宽可达13GHz,最大吸收峰值-30.3dB。
As one of the keys for stealthy technologies, microwave absorbing materials (MAMs) have been paid more and more attention all over the world, and they have become the hotspot in national defense fields. In domestic technologies, with the development of science and technology as well as the development of electronic industries, electromagnetic waves (EMWs) are bringing disastrous harm to human environment. The utilization of MAMs is an effective method to eliminate negative effects of EMWs. The primary goal of MAM research is to design and produce high-performance absorbents (absorbing structures).
     Activated carbon fibers (ACFs) have the characteristics of broad absorption band, light mass, strong absorption, low cost, easy design and stable physico-chemical performance, and it will become a kind of promising absorbent.
     In this paper, microwave absorbing property, preparation technology and absorbing mechanism for viscose-based ACFs and ACF composites have been systematically investigated. On the basis of above research, two kinds of new absorbing structures: inductive activated carbon-fiber felt screens (IACFFSs) and antenna structures are designed, and their absorbing property and mechanism have been studied. The main research contents are summarized as follows:
     Viscose-based ACFs / epoxy resin composites are prepared, and the influences of different fiber contents and composite structures on the absorbing property were studied. Through the comparison between actually measured and theoretically calculated reflection loss, the absorbing mechanism was studied. The results show that dielectric loss is the main mechanism for EMW attenuation of epoxy resin composites containing viscose-based ACFs, and interference counteraction of the composite top and bottom surfaces is the reason for periodic fluctuation of absorption curves in median and higher frequencies. The absorbing performances of composites are strongly dependent on ACF content, distribution and arrangement modes and the absorbing layer thickness. In the case that average ACF content in the absorbing layer is identical, ACF gradient design can significantly improve the absorbing property of composites. When ACF contents of four structure layers in the absorbing layer are 0.24wt%, 0.48wt%, 0.72wt% and 0.96wt%, the composite has a reflection loss below -10dB in the frequency range from 4.46GHz to 18GHz, and the maximum absorption reaches -25.9dB at 7.12GHz.
     Through analyzing the effects of preparation technologies on microstructures and performances of ACFs, the microscopic interaction between ACFs and EMWs and the absorbing mechanism were investigated. The results indicate that preparation processing parameters (carbonization temperature and activation time) have a great influence on microstructure and characteristics of ACFs. ACFs prepared at the conditions (activation time=20min, activation temperature=900℃, carbonization time=60min, carbonization temperature=425℃) show the optimum absorbing effect. The composite with gradient distributing ACFs provides a bandwidth below -10dB of 13.68GHz, and the reflection loss is below -20dB in the frequency range 7.0-18GHz. EMW microscopic absorbing mechanism of viscose-based ACFs consists ofπelectron and interfacial polar relaxation.πelectron polar relaxation is the leading reason for electromagnetic loss, and interfacial polar relaxation takes the secondary action in electromagnetic attenuation.
     Dielectric property of ACFs with average length of 1~3mm were investigated. The results show that ACFs have the frequency response effect, which is helpful for broadening the absorbing bands. According to ACF permittivity, the optimal design is carried out for four-layer microwave absorbing materials with thickness of 4mm based on the impedance matching design method. Following the optimization results the four-layer absorbing material was prepared, and it obtains a reflection loss below -10dB over 8GHz and the minimum value reaches -39.3dB in 2-18GHz. By applying the block design method, the composite was divided into three sub-regions, and it achieves a reflection loss below -10dB in 8.2-13.5GHz and the minimum value is -28.9dB when the area ratio of three sub-regions is S1:S2:S3=3:1:1.
     ACF felt is used as the material of inductive screens, and the effects of the lattice and element configurations of IACFFSs on the absorbing property of composites with IACFFSs embedded in them were investigated. On the basis of experimental data, the absorbing mechanism was studied. The results show that the main EMW attenuating mechanism of composites containing IACFFSs is EMW multiple reflection and attenuation between the screen and reflector plate. Resonant frequencies of IACFFSs have the same alteration rules as absorption bands of composites containing IACFFSs, and the decrement of the incident wave is direct proportion to the EMW transmission ratio of the screen when the ACF felt area ratio is proper. The fractal screen, which has multi-resonant frequencies, would be a kind of promising IACFFS for microwave absorption. If properly designed, the composite containing the Minkowski fractal screen can show a reflection loss blow -10dB in the frequency region 5.3-18GHz.
     For the first time, the antenna structure was used as the absorbing structure to design MAMs. The influence factors for the absorbing property and the absorbing mechanism were studied. The results show that microwave absorbing mechanism of antenna structure/epoxy resin composites is resistance loss. The absorptivity greatly depends on antenna kinds, dimension parameters and the magnitude of resistance connecting antenna arms. When the initial radius R0 , the outer radiusR1 , the constant R and the magnitude of resistance connecting two arms are 4mm, 42mm, 23.86mm and 510? respectively, the composite containing the Archimedean plane spiral antenna array exhibits a reflection loss below -10dB in the bandwidth 11GHz and the minimum value reaches -23dB. Microwave absorption of composites containing ACF felt dipole arrays presents anisotropy, and when dipoles are parallel to the incident electric field, composites show better absorbing performances. If properly designed, the composite containing the ACF felt dipole array obtains an effective bandwidth 13GHz and the maximum reflection loss -30.3dB.
引文
[1] Yoshiyuki Naito. Wave Absorber [M]. Tokyo: OHM Company, 1987. 2-3.
    [2] 钟华, 李自力. 隐身技术—军事高技术的“王牌”[M]. 北京: 国防工业出版社, 1999. 72-73.
    [3] 周敏, 周建军. 吸波材料研究进展[J]. 西安工业学院学报, 2000, 20(4): 296-302.
    [4] 彭军, 鞠智芹. 反雷达隐身技术概述[J]. 光电技术应用, 2003, 18(5): 18-21.
    [5] 许歉. 浅谈隐身技术[J]. 空载雷达, 2003, (4): 30-34.
    [6] 邓惠勇, 官建国, 高国华. 雷达用隐身吸波材料研究进展[J]. 化工新型材料, 2003, 31(3): 4-6.
    [7] 郑惠群, 胡冬星. 谈谈电磁污染[J]. 技术物理教学, 2003, 11(1): 47-48.
    [8] 张雪峰, 龚志军, 侯小娟, 等. 电磁污染的危害和防护[J]. 包头钢铁学院学报, 2003, 22(2): 189-192.
    [9] 赵玉峰, 赵冬平, 于燕华, 等. 现代环境中的电磁污染[M]. 北京: 电子工业出版社, 2003. 19-22.
    [10] 郑长进. 纤维(毡)/环氧树脂电路模拟吸波材料的制备与性能研究[D]. 天津: 天津大学, 2005.
    [11] 卢敬参. 电磁污染与防护措施[J]. 中国标准导报, 2004, (2): 36-37.
    [12] 王彦玲. 电磁污染与电磁兼容[J]. 山西电子技术, 2000, (5): 45-48.
    [13] 单国栋, 戴英侠, 王航. 计算机电磁信息泄露与防护研究[J]. 电子技术应用, 2002, (4): 6-8.
    [14] 陶松垒, 陶均炳. 手机微波防护器的研究与测试[J]. 微波学报, 2002, 18(2): 94-96.
    [15] 陈小力, 阎克路, 赵择卿. 纳米吸波材料在人体防护中的应用现状及其发展方向[J]. 纺织科学研究, 2002, 13(2): 27-30.
    [16] 张雄, 习志臻. 建筑吸波材料及其开发利用前景[J]. 建筑材料学报, 2003, 6(1): 72-75.
    [17] 李黎明, 徐政. 吸波材料的微波损耗机理及结构设计[J]. 现代技术陶瓷, 2004, 25(2): 31-34.
    [18] 吴晓光, 车晔华. 国外微波吸收材料[M]. 长沙:国防科技大学出版社, 1992.
    [19] 胡传炘. 隐身涂层技术[M]. 北京:化学工业出版社, 2004. 194-196.
    [20] 郑长进, 李家俊, 赵乃勤, 等. 吸波材料的设计和应用前景[J]. 宇航材料工艺, 2004, 34(5): 1-5.
    [21] 康青. 新型微波吸收材料[M]. 北京: 科学出版社, 2005. 1-5.
    [22] 邢丽英. 隐身材料[M]. 北京: 化学工业出版社, 2004. 3-6.
    [23] 孟建华, 杨桂琴, 严乐美, 等. 吸波材料研究进展[J]. 磁性材料及器件, 2004, 35(4): 11-14.
    [24] 赵九蓬, 李垚, 吴佩莲. 新型吸波材料研究动态[J]. 材料科学与工艺, 2002, 10(2): 219-224.
    [25] 徐国亮, 蒋刚, 朱正和. 吸波材料研究现状及碳团簇型吸波材料设计[J]. 原子与分子物理学报, 2004, (S1): 216-218.
    [26] 王结良, 黄英, 梁国正, 等. 雷达吸波涂层用材料的研究进展 [J]. 现代涂料与涂装, 2003, (2): 28-31.
    [27] 黄远. 新型雷达吸波复合材料的制备与研究[D]. 天津: 天津大学, 1997.
    [28] 邓龙江, 过壁君. 新型六角晶系铁氧体吸收剂的研制及应用[J]. 宇航材料工艺, 1991, (5): 46-50.
    [29] S.Sugimoto, S.Kondo, K.Okayama, etal. M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range[J]. IEEE Transactions on Magnetics, 1999, 35(5): 3154-3156.
    [30] Pardavi-Horvath, Martha. Microwave applications of soft ferrites[J]. Journal of Magnetism and Magnetic Materials, 2000, 215-216(6): 171-183.
    [31] Shengping Ruan, Baokun Xu, Hui Suo. Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material[J]. Journal of Magnetism and Magnetic Materials, 2000, 212(1-2): 175-177.
    [32] 徐劲峰, 郭方方, 徐政. 六角晶系钡铁氧体纳米晶的制备和表征[J]. 同济大学学报(自然科学版), 2004, 32(7): 929-938.
    [33] A.N.Yusff, M.H.Abdullah. Microwave electromagnetic and absorption properties of some LiZn ferrites[J]. Journal of Magnetism and Magnetic Materials, 2004, 269(2): 271-280.
    [34] 熊国宣, 邓敏, 徐玲玲, 等. 隐身材料和隐身混凝土的研究现状与趋势[J]. 功能材料与器件学报, 2003, 9(4): 486-492.
    [35] 饶克谨, 赵伯琳, 高正平. 电路模拟吸收材料—原理、特性及设计方法[J]. 电子科技大学学报, 1995, 24 (2): 164-170.
    [36] 高正平, 董恩昌, 华宝家, 等. 电路模拟多层雷达吸收材料的设计[J]. 宇航材料工艺, 1996, (3): 20-23.
    [37] 蒋诗才, 邢丽英, 张宝艳. 电路模拟结构在结构吸波材料中的应用探索研究[J]. 材料工程, 2003, (7): 23-25.
    [38] Y. Kotsuka, M. Amano. Broadband EM-wave absorber based on integrated circuit concept[C]. IEEE MTT-S International Microwave Symposium. Piscataway: The Institute of Electrical and Electronic Engineers, Inc., 2003: 1263-1266.
    [39] P.N. Kaleeba, A. Tennant, B. Chambers, etal. Electromagnetic analysis of active radar absorbers[C]. IEEE Antennas and Propagation Society International Symposium. Piscataway: The Institute of Electrical and Electronic Engineers, Inc., 2003: 295-298.
    [40] B.Chambers, A.Tennant. Design and implementation of a smart radar absorber[C]. IEEE Antennas and Propagation Society International Symposium. Piscataway: The Institute of Electrical and Electronic Engineers, Inc., 2003: 22-27.
    [41] 于仁光, 乔小晶, 张同来, 等. 新型雷达波吸收材料研究进展[J]. 兵器材料科学与工程, 2004, 27(2): 63-66.
    [42] 张卫东, 吴伶芝, 冯小云, 等. 纳米雷达隐身材料研究进展[J].宇航材料工艺, 2001, (3): 1-3.
    [43] 王海泉, 陈秀琴. 吸波材料的研究进展[J]. 材料导报, 2003, (17):170-173.
    [44] Zang Haijun, Yao Xi, Zhang Liangying. The preparation and microwave properties of Ba3ZnzCo2-zFe24O41 ferrite by citrate sol-gel process[J]. Materials Science and Engineering:B, 2001, 84(3): 252-257.
    [45] Viau G, Ravel F, Acher, O. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles[J]. Magnetism and Magnetic Materials, 1995, 140-144(1): 377-378.
    [46] 张卫东, 冯小云, 孟秀兰. 国外隐身材料研究进展[J]. 宇航材料工艺, 2003, 30(3): 1-4.
    [47] 焦桓, 周万城. 雷达吸波剂研究进展[J]. 材料导报, 2000, 14(3): 11-12.
    [48] 曹莹, 孙克宁, 周育红, 等. 纳米雷达吸波涂层的研制[J]. 材料保护, 2002, 35(6): 23-24.
    [49] 张雄, 李敏, 窦丹若. 纳米六角晶型吸波铁氧体的制备与性能研究[J]. 材料导报, 2003, (17): 69-71.
    [50] 罗振华, 张昌盛, 陈树德. 纳米晶铁基丝的制备及其导磁性能的研究[J]. 上海大学学报(自然科学版), 2002, 8(5): 437-440.
    [51] 吁霁, 庄稼, 迟燕华. 纳米ZnFe2O4的低温固相合成及其电磁损耗特性[J]. 材料科学与工程学报, 2004, 22(1): 110-112.
    [52] 黄涛, 黄英, 贺金瑞. 吸波材料研究进展[J]. 玻璃钢/复合材料, 2003, (1): 37-40.
    [53] 曹茂盛, 王彪, 徐国忠. 手性材料研究新进展[J]. 现代物理知识,1999,(6): 24-25.
    [54] 赵粮, 尹光俊, 廖绍彬. 非手性与手性介质界面对电磁波的反射[J]. 宇航材料工艺, 1994, (5): 23-26.
    [55] 秦嵘, 陈雷. 国外新型隐身材料研究动态[J]. 宇航材料工艺, 1997, (4): 17-23.
    [56] A.M.M.Allam. Chiral absorbing material[C]. Radio Science Conference, 2000. 17th NRSC '2000. Seventeenth National. Piscataway: The Institute of Electrical and Electronic Engineers, Inc., 2000: B3/1-B3/8.
    [57] R. Ro, V.V. Varadan, V.K. Varadan. Electromagnetic activity and absorption in microwave chiral composites[J]. Microwaves, Antennas and Propagation, 1992, 139(5): 441-448.
    [58] 章平, 刘祖黎, 孙国才. PAN 和 MnZn 铁氧体复合基质手性材料电磁性质[J]. 华中理工大学学报, 1999, 24(A01): 29-34.
    [59] 李玉莹, 刘祖黎, 潘华锦. 不同螺旋体浓度旋波介质吸波性能的研究[J]. 宇航材料工艺, 2000, (1): 46-49.
    [60] 李玉莹, 徐晓文, 刘祖黎, 等. 不同复合基底旋波介质的吸波特性研究[J]. 宇航材料工艺, 2000, (6): 39-42.
    [61] 王国强, 王绍明, 章平. 不同电导率基底旋波介质手性参量的特性研究[J]. 郧阳师范高等专科学校学报, 2004, 24(3): 21-25.
    [62] 伍振尧. 现代高新技术—等离子体技术及其应用[J]. 厦门科技, 1994, (3): 29-31.
    [63] 高识. 独领风骚的等离子体隐形术[J]. 海峡科技, 2002, (2): 22.
    [64] 赵选科, 徐军, 何俊发. 等离子体隐身技术[J]. 大学物理, 2002, 21(5): 38-40.
    [65] D.L.Tang, A.P.Sun, X.M.Qiu. Interaction of electromagnetic waves with a magnetized nonuniform plasma slab[J]. IEEE Transactions on Plasma Science, 2003, 31(3): 405-410.
    [66] 夏新仁, 邓发升. 等离子体隐身技术的特点及应用[J]. 雷达与对抗, 2002, (1): 17-21.
    [67] V.Semenov, M.Lisak, D.Anderson. Electric field enhancement and power absorption in microwave TR-switches[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(2): 286-292.
    [68] 刘春生. 等离子体技术在军事领域的应用[J]. 航天电子对抗, 2000, (3): 55-58.
    [69] 奎编译. 法国研究等离子体在航空领域的应用[J]. 航天电子对抗, 2003, 34(3): 52-54.
    [70] Yan Yi, Su DongLin. The reflection, transmission, and absorption of microwave in nonuniform plasma[C]. Environmental Electromagnetics, 2003. CEEM 2003. Proceedings. Asia-Pacific Conference on. Piscataway: The Institute of Electrical and Electronic Engineers, Inc., 2003: 518-522.
    [71] 赵乃勤, 曹婷, 李家俊, 等. 炭纤维(炭毡)/树脂复合吸波材料的研究[J]. 复合材料学报, 2003, 20(5): 63-67.
    [72] K.L. Chen. Optimization and engineering of microwave absorbers [D]. Pennsylvania: Pennsylvania State University, 1998.
    [73] C.P. Neo, V.K. Varadan. Optimization of carbon fiber composite for microwave absorber[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(1): 102-106.
    [74] C.I. Su, J.Y. Li, C.L. Wang. Absorption characteristics of phenolic-based carbon fiber absorbents[J]. Textile Research Journal, 2005, 75(2): 154-156.
    [75] 李铁, 徐劲峰, 徐政. 吸波纤维研究进展[J]. 现代技术陶瓷, 2005, 26(1): 24-29.
    [76] 迟伟东, 沈曾民, 张绍辉, 等. 纺丝工艺条件对中间相沥青基异形纤维形状的影响[J]. 炭素技术, 1999, (S1): 14-16.
    [77] 孟辉, 王智慧, 胡传炘. 碳纤维/羰基铁粉复合涂层吸波效果及机理分析[J]. 材料保护, 2006, 39(1): 17-19.
    [78] 孟辉. 纤维型雷达隐身吸波材料的研究进展[J]. 现代涂料与涂装, 2005, 8(6): 8-11.
    [79] 何燕飞, 龚荣洲, 何华辉. 碳纤维(毡)的电磁改性现状与发展趋势[J]. 功能材料与器件学报, 2005, 11(2): 260-263.
    [80] 毕辉, 寇开昌, 张教强. 螺旋炭纤维的研究进展[J]. 炭素材料, 2006, 25(2): 23-27.
    [81] SHEN Zeng-min, GE Min, ZHAO Dong-lin. The microwave absorbing properties of carbon microcoils[J]. New Carbon Materials, 2005, 20(4): 289-293.
    [82] 邹田春, 赵乃勤, 师春生, 等. 微量碳纤维/树脂复合吸波材料的研究[J]. 功能材料, 2005, 36(11): 1689-1692.
    [83] 赵乃勤, 邹田春, 师春生, 等. 活性碳毡电路屏(直立碳纤维)/树脂复合吸波材料[J]. 复合材料学报, 2006, 23(2): 47-52.
    [84] 郭伟凯. 碳纤维排布方式对结构吸波材料吸波性能的影响及其机理分析[D]. 天津: 天津大学, 2004.
    [85] 孙晶晶, 李建保, 张波, 等. 陶瓷吸波材料的研究现状[J]. 材料工程, 2003, (2): 43-47.
    [86] 罗友, 周万城, 焦桓. 高温吸波材料研究现状[J]. 宇航材料工艺,2002, (1): 8-11.
    [87] 王军, 王应德, 王娟, 等. 异型截面碳化硅纤维的制备及其雷达吸波特性[J]. 功能材料, 2000, 31(6): 628-629.
    [88] 王应德, 冯春祥, 王娟, 等. 具备吸收雷达波功能的三叶型碳化硅纤维研制[J]. 复合材料学报, 2001, 18 (1): 42-45.
    [89] 赵伯琳, 王卓, 饶克谨. 多向定向铁纤维吸波材料的雷达反射特性研究[J]. 电波科学学报, 2004, 19(3): 280-285.
    [90] 李小莉, 闫翠芬, 张晓芸, 等. 多晶铁纤维的取向及其对涂层吸收性能的影响[J]. 电子显微学报, 2004, 23(4): 456.
    [91] 余洪斌, 赵振声, 聂彦, 等. 一种多晶铁纤维的表面改性方法 [J]. 表面技术, 2002, 31 (1): 45-47.
    [92] 廖绍彬, 尹光俊. 吸波材料对电磁波的吸收与反射[J]. 宇航材料工艺, 1992, (2): 16-20.
    [93] 潘华锦, 张庆海, 李玉莹. 电磁波在旋波介质中的传播特性研究[J]. 大学物理, 2002, 21(9): 17-19.
    [94] Jaggard D L, Engheta N, Liu J. Chiroshield: a salisbury/dallenbach shield alternative[J]. Electronics Letters, 1990, 26(17): 1332-1334.
    [95] 葛副鼎, 朱静, 陈利民. 单层及双层手性吸波涂料的计算机辅助设计[J]. 功能材料, 1996, 27(2): 143-146.
    [96] 程杰, 王为. 吸波材料的计算机辅助设计[J]. 雷达与对抗, 2002, (2): 18-25.
    [97] Jaggard D L, Engheta N. ChirosorbTMas a invisible medium[J]. Electro-nics Letters, 1989, 25(3): 173-174.
    [98] 黄全亮, 刘祖黎, 潘华锦, 等. 手性材料电磁参量测量方法的理论研究[J]. 计量学报, 1997, 18(3): 222-226.
    [99] Lee Shung-wu, Zarrillo Gino, Law Chak-lam. Simple formulas for transmission through periodic metal grids or plates[J]. IEEE transactions on antennas and propagation, 1982, AP-30(5): 904-909.
    [100]高正平, 董恩昌, 华家宝, 等. 电路模拟多层雷达吸波材料的设计[J]. 宇航材料工艺, 1996, 26(3): 20-23.
    [101]高正平. 蜂窝状结构型吸波材料的计算机辅助设计[J]. 宇航材料工艺, 1989, (4-5): 71-73.
    [102]曹婷. 炭纤维(炭毡)/ 环氧吸波复合材料的制备及性能研究[D]. 天津: 天津大学, 2002.
    [103]周馨我, 张公正, 范广裕. 功能材料学[M]. 北京: 北京理工大学出版社,2002. 236-238.
    [104]邵蔚, 赵乃勤, 师春生, 等. 吸波材料用吸收剂的研究及应用现状[J]. 兵器材料科学与工程, 2003, 26(4): 65-68.
    [105]袁艳, 姚淑霞, 安成强. 新型隐身材料吸收剂的研究进展[J]. 表面技术, 2004, 33(4): 4-6.
    [106]夏文干, 韩养军, 杨洁, 等. 高功率高透波材料的研究[J]. 高科技纤维与应用, 2003, (2): 39-43.
    [107]郭笑坤, 殷立新, 詹茂盛. 低介质损耗雷达罩用复合材料的研究进展[J]. 高科技纤维与应用, 2003, (6): 29-33.
    [108]Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. London: Acdemic Press, 1982. 42-46.
    [109]Girgis B S, Yunis S S, Soliman A M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation[J]. Materials Letters, 2002, 57(1): 164-172.
    [110]Cao N Z, Darmstadt H, Roy C, et a1. Thermogravimetric study on the steam activation of charcoal obtained by vacuum and atmospheric pyrolysis of softwood bark residues[J]. Carbon, 2002, 40(4): 471-479.
    [111]刘松茂. QJ3074《碳纤维及其复合材料电阻率测试方法》的特点[J]. 航天标准化, 1999, (3): 17-18.
    [112]赵东林, 沈曾民, 迟伟东, 等. 碳纤维结构吸波材料及其吸波碳纤维的制备[J]. 高科技纤维与应用, 2000, 25(3): 8-14.
    [113]赵东林, 沈曾民. 吸波Cf和SiCf的制备及其微波电磁特性[J]. 宇航材料工艺, 2001, 31(1): 4-9.
    [114]赵东林, 沈曾民. 螺旋形手征碳纤维的微波介电特性[J]. 无机材料学报, 2003, 18(5): 1057-1062.
    [115]贺福, 王茂章. 碳纤维及其复合材料[M]. 北京: 科学出版社, 1997. 133-146.
    [116]J.H. Wu, D.D.L. Chung. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers[J]. Carbon, 2002, 40(3): 445-447.
    [117]全泽松. 电磁场理论[M]. 成都: 电子科技大学出版社, 1995. 198-200.
    [118]任斌, 邓廷成. 电波暗室用铁氧体瓦的设计[J]. 安全与电磁兼容, 2003, (2): 39-41.
    [119]朱新文, 江东亮, 谭寿洪. 碳化硅网眼多孔陶瓷的微波吸收特性[J]. 无机材料学报, 2002, 17(6): 1152-1156.
    [120]谢国华, 张佐光, 吴瑞彬. 红外低辐射层与吸波层参数匹配性研究[J].航空材料学报, 2003, 23(3): 46-49.
    [121]Wu MZ, Zhao ZS, He HH, Yao X. Preparation and microwave characteristics of magnetic iron fibers[J]. Journal of Magnetism and Magnetic Materials, 2000, 217(1-3):89-92.
    [122]Meshram MR, Agrawal, NK, Sinha B, Misra PS. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J]. Journal of Magnetism and Magnetic Materials, 2003, 271(2-3): 207-214.
    [123]Gorobets N N, Tsekhmistro R I. Phase relations in the near zone field of short vibrator antennas[C]. Microwave Conference, 1999. Microwave & Telecommunication Technology. 1999 9th International Crimean. London: IEEE, 1999: 223-224.
    [124]华宝家, 肖高智. 碳纤维在结构隐身材料中的应用研究[J]. 宇航材料工艺, 1994, 24(3): 31-34.
    [125]罗发, 周万成. 结构吸波材料中纤维的电性能和吸波性能[J]. 材料工程, 2000, (2): 37-40.
    [126]范寿康, 卢春兰, 李平辉. 微波技术与微波电路[M]. 北京: 机械工业出版社, 2003. 36-37.
    [127]曹义, 程海峰, 周永江, 等. 一种新型结构吸波材料的制备[J]. 国防科技大学学报, 2005, 27(1): 44-46.
    [128]杨全红, 郑经堂, 王茂章, 等. 微孔炭的纳米孔结构和表面微结构[J]. 材料研究学报, 2000, 14(2): 113-122.
    [129]杨全红, 郑经堂, 王茂章, 等. 用 SEM 和 XRD 研究改性活性炭纤维的结构[J]. 新型炭材料, 1998, 13(4): 60-64.
    [130]马咸尧. X 射线衍射与电子显微分析基础[M]. 武汉:华中理工大学出版社, 1993. 32-36.
    [131]A.K. Kercher, D. C. Nagle. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis[J]. Carbon, 2003, 41(1): 15-27.
    [132]戴星, 朱本松. 活化工艺对活性碳纤维结构的影响[J]. 北京服装学院学报, 2002, 22(2): 11-15.
    [133]杨海丽, 桑晓明. 粘胶基活性碳纤维的微观结构[J]. 河北理工学院学报, 2001, 23(2): 57-61.
    [134]牛中奇, 朱满座, 卢智远, 等. 电磁场理论基础[M]. 北京: 电磁工业出版社, 2001. 31-34.
    [135]吕丹, 耿方志, 童创明, 等. 涂敷介质目标反射系数及其雷达散射截面[J]. 光电技术应用, 2006, 21(4): 7-10.
    [136]田莳. 材料物理性能[M]. 北京: 北京航空航天大学出版社, 2001. 85-90.
    [137]李翰如. 电介质物理导论[M]. 成都: 成都科技大学出版社, 1990. 39-72.
    [138]R.科埃略, B.阿拉德尼兹, 著, 张冶文, 陈玲译. 电介质材料及其介电性能[M]. 北京: 科学出版社, 2000. 129-132.
    [139]陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982. 170-185.
    [140]J.Byrne, H.Marsh. Porosity in carbons[M]. New York: Halsted Press, 1995.
    [141]李景德, 雷德铭. 电介质材料物理和应用[M]. 广州: 中山大学出版社, 1992. 24-26.
    [142]王曾辉, 高晋生. 碳素材料[M]. 上海:华东化工学院出版社, 1991. 20-25.
    [143]B.M.亚沃尔斯基, A.A.杰特拉夫, 著, 宓鼎樑等译. 物理学手册[M]. 北京: 科学出版社, 1986. 691-694.
    [144]金亚秋. 电磁散射和热辐射的遥感理论[M]. 北京: 科学出版社, 1998. 1-11.
    [145]华中, 仲亚娟, 于万秋. PAN 基炭纤维的电阻率与炭化温度的关系[J]. 吉林师范大学学报(自然科学版), 2005, (5): 1-2.
    [146]张永德. 量子力学[M]. 北京:科学出版社, 2002. 12-16.
    [147]华中, 王月梅. PAN基炭纤维中sp2杂化的C-C原子键距对电阻率影响的研究[J]. 河北理工学院学报, 2003, (3): 39-41.
    [148]曾谨言. 量子力学导论[M]. 北京: 北京大学出版社, 1992. 288-304.
    [149]邢丽英, 刘俊能, 任淑芳. 短碳纤维电磁特性及其在吸波材料中应用研究[J]. 材料工程, 1998, (1): 19-21.
    [150]沈国柱, 徐政, 蔡瑞琦. 短切碳纤维-铁氧体填充的复合材料吸波性能[J]. 同济大学学报(自然科学版), 2006, 34(7): 934-936.
    [151]许健翔, 张巍. 短切导电纤维填充的复合材料吸波性能研究[J]. 玻璃钢/复合材料, 2002, (7): 16-19.
    [152]焦桓, 罗发, 周万城. Si/C/N 纳米粉体的吸波特性研究[J]. 无机材料学报, 2002, 17(3): 595-599.
    [153]焦桓, 周万城, 罗发. Si/C/N 晶须的微波介电性能[J]. 复合材料学报, 2003, 20(4): 34-38.
    [154]田莳. 材料物理性能[M]. 北京: 北京航空航天大学出版社, 2002. 90-94.
    [155]全泽松. 电磁场理论[M]. 成都: 电子科技大学出版社, 1995. 220-222.
    [156]邹田春, 赵乃勤, 师春生, 等. 吸波材料吸波性能的计算及其优化设计[J]. 功能材料, 2005, 36(7): 988-991.
    [157]马汉炎. 天线技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 1997. 24-36.
    [158]侯杰昌. 电磁波传播原理[M]. 武汉: 武汉大学出版社, 1991. 329-333.
    [159]王相元, 钱鉴, 伍瑞新, 等. 微波吸收材料的分块设计方法[J]. 南京大学学报(自然科学), 2001, 37(5): 625-629.
    [160]邢丽英. 隐身材料[M]. 北京: 北京化学工业出版社, 2004. 139-143.
    [161]高正平, 饶力. 电路模拟技术在吸波结构中的应用[J]. 电子科技大学学报, 1998, 27(2): 136-139.
    [162]Yanan Sha, K. A. Jose, C. P. Neo, et al. Experimental investigations of microwave absorber with FSS embedded in carbon fiber composite[J]. Microwave and Optical Technology Letters, 2002, 32(4): 245-249.
    [163]Sourav Chakravarty, Raj Mittra, Neil Rhodes Williams. Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3): 284-296.
    [164]A. Tennant, B. Chambers. A single-layer tuneable microwave absorber using an active FSS[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(1): 46-47.
    [165]N.Q. Zhao, T.C. Zou, C.S. Shi. Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites[J]. Materials Science and Engineering B, 2006, 127(2-3): 207-211.
    [166]黄大庆, 哈恩华, 何山, 等. 宽频段雷达表面波衰减特征规律研究[J]. 材料工程, 2005, (3): 33-36.
    [167]邢丽英. 隐身材料[M]. 北京: 化学工业出版社, 2004. 13-16.
    [168]全泽松. 电磁场理论[M]. 成都: 电子科技大学出版社, 1995. 258-262.
    [169]全泽松. 电磁场理论[M]. 成都: 电子科技大学出版社, 1995. 262-267.
    [170]Jin Au kong, 著, 吴季等译. 电磁波理论[M]. 北京: 电子工业出版社, 2003. 56-57.
    [171]赵成美, 丁兰英.干涉与衍射[M]. 北京: 科学出版社, 1991. 168-178.
    [172]谢文娇, 武哲. FSS 基本缝隙单元频率特性的实验研究[J]. 飞机设计, 2003, (3): 51-54.
    [173]Peter J. Collins, J. Paul Skinner. A Hybrid Moment Method Solution for TEz Scattering From Large Planar Slot Arrays[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(2): 145-156.
    [174]熊波. 频率选择表面在吸波材料中的应用进展[J]. 信息记录材料, 2005, 6(3): 57-60.
    [175]黄爱萍, 冯则坤, 聂建华, 等. 干涉型多层吸波材料研究[J]. 材料导报, 2003, 17(4): 21-24.
    [176]刘英, 龚书喜, 傅德民. 分形天线的研究进展[J]. 电波科学学报,2002, 17(1): 54-58.
    [177]付云起, 张国华, 袁乃昌. 具有分形特征的 PBG 微带线[J]. 电子学报, 2002, 30(6): 913-915.
    [178]Romeu J, Rahmat-Samii Y. Dual band FSS with fractal elements[J].Electronics Letters, 1999, 35(9): 702-703.
    [179]Kern D J, Werner D H, Monorchio A, et al. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(1): 8-17.
    [180]Gianvittorio J P, Romeu J, Blanch S, et al. Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(11): 3088-3096.
    [181]Thomas A, Milligan. Modern Antenna Design[M]. New York: McGraw-Hill, 1985. 2-6.
    [182]Samuel Silver. Microwave Antenna Theory and Design[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1984. 3-5.
    [183]江贤祚. 天线原理[M]. 北京: 北京航空航天大学出版社, 1993. 332-334.
    [184]Ramirez R R, Alexopoulos N G. Single feed proximity coupled circularly polarized microstrip monofilar Archimedean spiral antenna array[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(2): 406-407.
    [185]Bell J M, Iskander M F. A low-profile Archimedean spiral antenna using an EBG ground plane[J]. Antennas and Wireless Propagation Letters, 2004, 3(1): 223-226.
    [186]Fumeaux C, Baumann D, Vahldieck R. Finite-volume time-domain analysis of a cavity-backed Archimedean spiral antenna[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 844-851.
    [187]Li Ronglin, Ni Guangzheng, Yu Jihui, etal. A new numerical technique for calculating current distributions on curved wire antennas - parametric B-spline finite element method[J]. IEEE Transactions on Magnetics, 1996, 32(3): 906-909.
    [188]Arjavalingam G, Pastol Y, Halbout J M, etal. Optoelectronically-pulsed antennas: characterization and applications[J]. Antennas and Propagation Magazine, IEEE, 1991, 33(1): 7-11.
    [189]Cui S, Mohan A, Weile D S. Pareto optimal design of absorbers using a parallel elitist nondominated sorting genetic algorithm and the finite element-boundary integral method[J]. IEEE Transactions on Antennas andPropagation, 2005, 53(6): 2099-2107.
    [190]赵成美, 丁兰英. 干涉与衍射[M]. 北京: 科学出版社, 1991. 1-17.
    [191]康行健. 天线原理与设计[M]. 北京: 北京理工大学出版社,1993. 36-42.
    [192]B.S. Guru, H.R. Hiziro?lu. Electromagnetic Field Theory Fundamentals[M]. Boston: PWS Publishing Company, 1998.
    [193]W.L. Stutzman, G.A. Thiele. Antenna Theory and Design[M]. second ed., New York: John Wiley & Sons, Inc., 1998.
    [194]Z.N. Chen, M.Y.W. Chia. Broadband Planar Antennas: Design and Applications[M]. New York: John Wiley & Sons, 2006.
    [195]李连辉. 自补型阿基米德平面螺旋天线的设计与分析[J]. 遥测遥控, 2003, 24(4): 31-36.
    [196]王元坤, 李玉权. 线天线的宽频带技术[M]. 西安: 西安电子科技大学出版社, 1995. 111-116.
    [197]林昌禄. 天线工程手册[M]. 北京: 电子工业出版社, 2002. 382-385.
    [198]潘仲英. 电磁波、天线与电波传播[M]. 北京: 机械工业出版社, 2003. 254-268.
    [199]W.L. Stutzman, G.A. Thiele. Antenna Theory and Design[M]. second ed., New York: John Wiley & Sons, Inc., 1998.
    [200]林昌禄. 天线工程手册[M]. 北京: 电子工业出版社, 2002. 142-148.
    [201]全泽松. 电磁场理论[M]. 成都: 电子科技大学出版社, 1995. 306-311.
    [202]Y.T. Lo, S.W. Lee. Antenna Handbook: Theory, Applications, and Design[M]. New York: Van Nostrand Reinhold Company Inc., 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700