用户名: 密码: 验证码:
纳米CuSCN的制备及其在复合涂料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物污损是船体腐蚀中最重要的一个问题,防污损涂料为抵抗污损提供了保护层,涂料中的毒素在涂料表面和海水的界面上产生了一层生物活性层,使涂层处有高浓度毒素,阻止了微生物的生存和繁殖。防污损的效果与防污剂的种类密切相关。
     硫氰酸亚铜是一种优良的无机抗菌剂,将它添加到涂料中可以阻止微生物的生存和繁殖。它本身无毒、无污染,对人体和环境无害。纳米粒子具有特殊的性质导致了其在热、磁、光、敏感特性和表面稳定性等方面不同于常规粒子。鉴于纳米粒子的基本特征,将CuSCN制成纳米微粒加入涂料中,有望使其抗菌和防霉活性得到更有效地发挥,可极大地提高涂料抗菌、防污和防霉功能,同时可有效抑制船体的生物污损。
     本文主要介绍了纳米CuSCN的制备、改性以及应用。
     本文通过逆岐化法、液相沉淀法、直接沉淀法、沉淀转化法合成制备了CuSCN纳米粉体,制备的CuSCN产品粒度在70~90nm左右,产品粒度较均匀。讨论了影响产物粒径的因素,包括分散剂的用量、反应物的浓度和pH值,给出了最佳工作条件。用透射电镜、扫描电镜、红外光谱和XRD对产物进行了表征。结果表明,产物符合要求,粒径大约70~90nm。
     在制备纳米CuSCN粉体的基础上,对CuSCN的改性进行了研究。以不同的改性剂将纳米CuSCN改性后,通过在乙酸乙酯中的沉降高度测试,丙酮和环己烷中的透过率测试选出最佳的改性剂为山梨醇。又通过在乙酸乙酯中的沉降高度测试确定山梨醇的最佳用量为0.4%。用扫描电镜和红外光谱对改性后的纳米CuSCN进行了表征。结果表明山梨醇与CuSCN之间形成化学键。
     将改性后的纳米CuSCN粉体添加到纯丙乳液中制备出纳米复合乳液,对复合乳液的性能进行了初步研究。通过测定乳液的固含量、单体转化率、残渣率、粘度等,选出最佳的乳液配方为:乳化剂配比(阴/非)=2∶1,乳化剂用量:4%,引发剂用量:0.6%,温度:80℃。用扫描电镜、红外光谱、差示扫描量热仪对乳液进行了表征,选择了四种目标菌对乳液的抗菌性能进行了检测。结果表明:纳米CuSCN粒子能均匀地分散在乳液中,纳米CuSCN复合乳液在抗菌性等方面比普通纯丙乳液性能优良。
After corrosion,fouling is the most important problem to take into account in ship hull's protection .
     Antifouling paints give protection against fouling attack.Toxicants are leached from the paint and generate alayer high bioactivity by toxicant solubilization in the paint surface/seawater interface .This high toxic concentration in the vicinity of the film prevents larval or propagules settlement.the effectiveness of these paints is highly dependent on the kind of toxicant present in the film .
     Cuprous thiocyanate is a kind of fine inorganic antibacterial agent, which can prevent the survival and reproduce of bacteria. It is innoxious, not harmful for human and environment. Nanoparticle differs from other normal particles in heat, magnetism, light, sensitivity characteristic and surface stability due to its peculiar characters. According to the basic characters of nanoparticle, it is expected that antibacterial and bactericidal activation of CuSCN can be advanced by adding CuSCN nanoparticles into coating, which can improve the antibacterial and bactericidal function along with antifouling of coating.
     Preparation, modification and application of cuprous thiocyanate nanoparticles were mostly introduced.
     Cuprous thiocyanate nanoparticles were prepared by Converse-disproportionation reaction method and Liquid-phase precipitation method as well as direct precipitation method and transformation of precipitation method, The factors that influence the size of particles were investigated. These factors include quantities of dispersant, the concentration of reactants, and pH value. The best conditions in preparation is given. TEM, SEM, IR and XRD were used to characterize the particles. The result suggests that the particles are fine and the size of the particles was 70~90nm.
     On the foundation of upwards of studies, the modification of nano-cuprous thiocyanate was researched. Before using different modificator, C_6H_(14)O_6 is choosed as the best modificator by testing the height of sedimentation in ethyl acetate and light transmittance in acetone and cycloexane. The best quantities of modificator is 0.4%, which is confirmed by testing the height of sedimentation in ethyl acetate. SEM and IR were used to characterize the particles. The result suggests that there are an chemical band between CuSCN and C_6H_(14)O_6.
     Nano-compound emulsion was prepared by adding modified nano-CuSCN into acrylic emulsion, and the properties of the compound emulsion were initially researched. The content of particles, conversion of monomers, residues percent and viscosity was measured to educe the best material proportion. The ratio of SDS and OP is 2:1, the quantities is 4%, initiator concentration is 0.6%, and the temperature is 80℃. SEM, IR and DSC were used to characterize the emulsion. Four index-bacteria were choosed to determine the antibacterial capability. The result suggests that the nanoparticles can be dispersed equably in the emulsion, and the nano-compound acrylic emulsion's properties are better than normal emulsion's.
引文
[1]姜英涛,涂料工艺,第五分册,北京:化学工业出版社,1992.58-62
    [2]黄宗国,蔡如星,海洋污损生物及其防除,青岛:海洋出版社,1984.85-95
    [3]李诗卓,董祥林,材料的冲蚀磨损与微动磨损,北京:机械工业出版社,1984.110-135
    [4]陈冠国,褚秀萍,张宏亮,关于冲蚀磨损问题,河北理工学院学报,1997,19(4):27-32
    [5]K.Shimizu,T.Noguchi,H.Sitoh,Fem Analysis of the Dependency on Impact Angle during Erosive Wear,Wear,1999,233-235:157-159
    [6]何奖爰,王玉玮,材料磨损与耐磨材料,沈阳:东北大学出版社,2001.7-15
    [7]洪啸吟,冯汉保,涂料化学,北京:科学出版社,1997.28-32
    [8]高南竽,《特种涂料》,上海科学出版社,1984.43-52
    [9]Eva Bie Kjaer,Bioactive material for antifouling coating,Progress in Organic Coating,20(1992)339-352
    [10]王泳厚编译,涂料配方原理及应用,成都:四川科学技术出版社,1987.78-80
    [11]宇佐美,日本造船学会志,第750号(平成3年12月)754-758
    [12]宋玉苏,姚树人,涂层与基体金属附着力的研究进展,材料保护,1999,32(9):21-22
    [13]潘肇基,有机涂层湿附着力的研究,材料保护,1994,27(2):9-12
    [14]刘国节,现代涂料工艺新技术,北京:中国轻工业出版社,2000.25-31
    [15]张兴华,水基涂料:原料选择、配方设计、生产工艺,北京:中国轻工业出版社,2001.152-154
    [16]刘福春,韩恩后,柯伟,纳米复合涂料的研究进展,材料保护,2001,34(2):1-4
    [17]唐电,王永康,李永胜等,纳米二氧化硅制备的初步研究,氯碱工业,1997,(5):25-27
    [18]王柯,张琴,吴照勇等,聚丙烯纳米复合材料的研究进展,工程塑料应用,2001,29(12):43-45
    [19]李凤生,超细粉体技术,第一版,北京:国防工业出版社,2000.275-288
    [20]王正东,超分散剂的设计合成及应用性能研究:[博士学位论文],上海;华东 理工大学,1996.10-15
    [21]周春隆,有机颜料润湿、分散及分散稳定性,化工进展,1988,4:52-54
    [22]杨其岳,润湿分散剂(一),涂料工业,1991,21(5):52-55
    [23]杨其岳,润湿分散剂(二),涂料工业,1992,22(1):49-52
    [24]钱伯容,汽车涂料中的颜料分散技术,涂料技术,1999,(4):52-55
    [25]G.dale.Cheever,John C.Ulicny,Interrelationship between pigment surface energies and pigment dispersions in polymer solutions,Journal of Coatings Technology,1983,55(697):53-56
    [26]杨咏来,宁桂玲,液相法制备纳米粉体时防团聚方法概述,材料导报,1998,12(2):11-13
    [27]Tatsuo Sato,Stability of Dispersion,Journal of Coatings Technology,1993,65(825):113-116
    [28]Henry L.Jakubauskas,Use of A-B Block polymers as Dispersants for Non-aqueous Coating Systerms,Journal of Coatings Technology,1986,58(736):71-79
    [29]徐燕莉,非离子表面活性剂在颜料表面处理中的应用,北京化工大学学报,1998,25(3):77-82
    [30]许迪春,郝晓春,湿法化学制备ZrO_2(Y_2O_3)超细粉末过程中团聚状态的控制,硅酸盐学报,1992,20(1):48-54
    [31]Shanti Swarup,Clifford K.Schoff,A survey of surfactants in coatings technology,Progress in Organic Coatings,1993,23:1-4
    [32]胡松青,李琳,郭祀远等,现代颗粒粒度测量技术,现代化工,2002,22(1):58-61
    [33]P.Stamatakis,B.R.Palmer,Optimum Particle Size of Titanium Dioxide and Zinc Oxide for Attenuation of Ultraviolet Radiation.Journal of Coatings Technoligy,1990,62(789):95-98
    [34]郑柏存,超细粉末在涂料中的应用,上海建材,1999,6:31-33
    [35]周铭,纳米二氧化钛研究进展,涂料工业,1996,26(4):36-39
    [36]张梅,杨绪杰,前景广阔的纳米TiO_2,航天工艺,2000,1:53-57
    [37]刘景春,韩建成,跨世纪高新科技纳米材料一员-纳米SiO_2,涂料工业,1998,28(1):34-35
    [38]Robert F.Sharrock,A European Approach to UV Protection with a Novel Pigment,Journal of Coatings Technology,1990,62(789):125-128
    [39]任雪潭,曾令可,二氧化钛与环保建材,新型建筑材料,2000,7:36-37
    [40]豆俊峰,邹振扬,郑泽根,纳米TiO_2的光化学特性及其在环境科学中的应用,材料导报,2000,14(6):35-37
    [41]戴长虹,杨静漪.微波法合成SiC纳米微粉,青岛化工学院学报,1999,20(1):25-28,43
    [42]朱立群,李卫平,ZrO_2纳米微粉在Ni-W-B非晶态复合镀层中的作用研究,机械工程材料,1998,22(4):9-11,27
    [43]杨广慧,张彦,纳米氧化锆的制备及应用,化工新型材料,1999,27(5):21-23
    [44]黄新民,吴玉程,纳米ZrO_2功能涂层的制备与组织结构,新技术新工艺,2000,2:31-32
    [45]张玉峰,复合刷镀纳米Ni-ZrO_2高温耐磨性的研究,电镀与涂饰,2000,19(4):18-21
    [46]王剑华,郭玉忠,超细粉制备方法及其团聚问题,昆明理工大学学报,1997(2):71-77
    [47]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001.2-7
    [48]郭小龙,陈沙鸥,戚平,纳米颗粒对陶瓷力学性能的影响,青岛大学学报,2000(6):60-65
    [49]饶俊明,一种含硅基纳米材料的建筑涂料,中国专利,CN1277234A,2000-12-20
    [50]周树学,武利民,纳米复合涂料的发展述评,涂料工业,2001,(9):28-30
    [51]胡圣飞,龙万堂,黄光斗,纳米粒子及其改性涂料,精细与专用化学品,2000,2:13-14
    [52]蒋晓明,王晓勇,陈月珠,一种新型润滑油抗磨添加剂的研究,石油学报(石油加工),2002,18(1):61-65
    [53]胡宗智,聚合物基纳米复合材料的制备及应用,中山大学研究生学刊(自然科学版),2001,22(1):63-72
    [54]李春霞,李立平,纳米粒子表面改性的研究进展,北京纺织,2002,23(1):57-61
    [55]高其标,申屠宝,纳米改性聚合物材料研究进展,化工生产与技术,2001,8(6):22-26
    [56]李小兵,刘竞超,纳米粒子及其在复合材料改性中的应用,上海化工,1998,8:4-7
    [57]张乃枝,孙振亚,重质碳酸钙矿物表面改性研究及其应用,湖北化工,1999,4:25-30
    [58]郭卫红,李盾,纳米材料及其在聚合物改性中的应用,工程塑料应用,1998,26(4):11-15
    [59]丁浩,卢寿兹,搅拌磨湿法超细磨矿中铝酸酯偶联剂改性重质碳酸钙的研究,中国矿业,1999,8(2):67-70
    [60]王林江,重质碳酸钙超细与改性一体化工艺研究,化工矿物与加工,2000,3:1-4
    [61]王利军,炭黑表面开始的接枝聚合改性方法,炭素,1999:135-140
    [62]欧玉春,在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料,高分子学报,1997,2:199-205.
    [63]赵安赤,贺鹏,聚合物改性中纳米复合新技术,塑料加工,2000,1:33-38.
    [64]朱军,李毕忠,聚合物/无机纳米复合材料研究进展,化工新型材料,2000,28(10):3-10,13
    [65]杨勇,漆宗能,有机-无机纳米复合材料研究进展,上海交通大学学报,1998,32(9):130-133
    [66]左美祥,黄志杰,张玉敏,纳米SiO_x在涂料中的分散及改性作用.现代涂料与涂装,2001,2:1-3
    [67]周树学,武利民,纳米涂料制备技术及其系列化产品研究开发,材料导报,2002,16(3):41-43
    [68]陈家华,陈敏,许志刚,纳米材料在皮革涂饰剂中的应用,中国皮革,2002,31(1):11-13
    [69]J.Winkler,E.Klinke et al,Theory for the deagglomeration of pigment clusters in dispersion machinery by mechanical forces,Journal of Coatings Technology,1987,59(754):35-37
    [70]J.Winkler,E.Klinke et al,Theory for the deagglomeration of pigment clusters in dispersion machinery by mechanical forces,Journal of Coatings Technology,1987,59(754):45-49
    [71]徐国财,邢宏龙,纳米SiO_2在紫外光固化涂料中的应用,涂料工业,1999,29(7):3-5
    [72]S.E.Booth,Ultrasonics as a method of mixing dispersion and homogenization,Paint and Resin,1986,56(6):17-20
    [73]James O.Stoffer,Maher Fahim,Ultrasonics dispersion of pigment in water based paints,Journal of Coatings Technology,1991,63(797):61-66
    [74]李玲,龚克成,超声波在纳米材料合成中的应用,材料导报,1998,12(4):18-19,5
    [75]朱海清,超声波对沉淀二氧化硅的分散解聚研究,无机盐工业,2002,34(1):12-13
    [76]韩顺昌,纳米材料的结构特征及其表征,材料开发与应用,1998,13(1):36-40
    [77]祖庸,王训,超细二氧化钛分散性研究,涂料工业,1999,29(6):6-8
    [78]剧金兰,张鑫,纳米涂料的开发与应用国内外发展情况综述,全国第二届纳米和技术应用会议论文集,C43
    [79]赵石林,李晓男,纳米复合材料的研究开发现状,涂料工业,2001,31(10):24-26
    [80]刘登良,边蕴静,纳米技术在涂料中的应用前景,中国涂料,2001,(3):9-11
    [81]盖国胜,超细粉碎分级技术-理论研究·工艺设计.生产应用,第一版.北京:中国轻工业出版社,2000,292
    [82]咸才军,郭保文,纳米材料及其技术在涂料产业中的应用,新型建筑材料,2001,9(5):3-5
    [83]柯博,黄志杰,纳米SiO_2在涂料中的应用,涂料工业,1998,28(12):29-30
    [84]左美祥,乔健,马全利,纳米SiO_2的制备及在涂料中的应用,现代涂料与涂装,2002,31(2):40-43
    [85]徐国财,邢宏龙,纳米SiO_2在紫外光固化涂料中的应用,涂料工业,1999,29(7):3-5
    [86]de la.Court,F.H,A classification system for anti-fouling paints based on a dynamic flow test,J Oil Colour Chemists Assoc,1986,69(9):241-245.
    [87]Vetere VF,Perez MC,Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae,Journal of Coatings Technology 1997,69(March,866):39-45
    [88]Tennakone Kirthi,Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization,Thin Solid Films 261:1995 307-310
    [89]陈立军,张心亚,黄洪等,纯丙乳液研究进展,中国胶粘剂,2005,14(9):34-38
    [90]张华腾,庚美月,纯丙乳液合成涂料的研究,高桥石化,2001,16(5):8-9
    [91]张珍英,管蓉,陈正国,含氟乳化剂丙烯酸酯乳液的制备及性能,胶体与聚合物,2001,19(1):14-17
    [92]鲁德平,熊传溪,高分子乳化剂在丙烯酸酯乳液共聚中的应用,高分子材料科学与工程,2002,16(2):26-28
    [93]刘敬芹,张力,朱志博,丙烯酸酯乳液的合成与性能研究,华南师范大学学报(自然科学版),2002,(4):98-103
    [94]Okubo.M,Yamada.A,Matsumoto.T,Estimation of morphology of composite polymer emulsion particles by soap titration method,Journal of Polymer Science:Polymer Chemistry Edition,1980,18(11):3219-3228
    [95]Okubo.M,Ando.M,Yamada.A,et al,Studies on suspension and emulsion:Anomalous composite polymer emulsion particles with voids produced by seeded emulsion polymerization,Journal of Polymer Science:Polymer Letter Edition,1981,19(3):143-147
    [96]Okubo.M,Katsuta.Y,Matsumoto.T,Studies on suspension and emulsion:Peculiar morphology of composite polymer latex particles produced by emulsion polymerization,Journal of Polymer Science:Polymer Letter Edition,1982,20(1):45-51
    [97]Mint.I,Klein.A,El-Aasser.M.S,et al,Morphology of grafting in polybutylacrylate-polystyrene core-shell emulsion polymerezation,Journal of Polymer Science:Polymer Chemistry Edition,1983,21(10):2845-2861
    [98]Merket.M.P,Dimonie.V.L,El-Aaasser.M.S,et al,Morphology and grafting reaction in core/shell latexes,Journal of Polymer Science:Polymer Chemistry Edition,1987,25(5):1219-1233
    [99]Ray.A.D,Cheung.M.F,Seymout.N,Heterogeneous polymer-polymer composites preparation and properties of model systems,Journal of Applied Polymer Science,1973,17(1):65-78
    [100]Lee.D.I,Ishikawa.T,The formation of "inverted" core-shell latexes,Journal of Polymer Science:Polymer Chemistry Edition,1983,21(1):147-154
    [101]Muroi.S,Hashimoto.H,Hosoi.K,Morphology of latex particles,Journal of Polymer Science:Polymer Chemistry Edition,1984,22(6):1365-1372
    [102]Teng.G,Soucek.M.D,Synthesis and characterization of cycloaliphatic diepoxide crosslinkable core-shell latexes,Polymer,2001,42(7):2849-2862
    [103]李维盈,凌爱莲,桑鸿勋等,丙烯酸酯乳液影响因素的研究,北京工业大学学报,2002,28(2):150-154
    [104]Court,F.H.de la,A classification system for anti-fouling paints based on a dynamic flow test,J Oil Colour Chemists Assoc,1986,69(9):241-245.
    [105]Vetere VF,Perez MC,Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae,Journal of Coatings Technology,1997,69(866):39-45
    [106]Tennakone Kirthi,Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization,Thin Solid Films,261:1995 307-310
    [107]周公度,段连云,结构化学基础.第二版,北京:北京大学出版社,2001.67-75
    [108]Li Wei,Gao Lian,Adsorption of polyethylenimine on nanosized zirconia particles aqueous suspension,J Colloid and Interface Sci,1999,216:436-439
    [109]金叶玲,陈 静,钱运华,等.超声水热法制备高纯超细凹凸棒石黏土非金属矿,2005,28(3):42-44.
    [110]陈庆春,几种表面活性剂分散效果的比较研究和应用,化工矿物与加工,2003,(1):18-20.
    [111]曾玉燕,沈培康,童叶翔,纳米二氧化钛粉体的分散研究,中山大学学报,2004,43(3):18-20
    [112]许醇醇,于凯,何宗虎,纳米TiO2在水中分散性能的研究,化工进展,2003,22(10):1095-1097
    [113]A.F.C.Campos,F.A.Tourinbo,G.J.da Silva,Eur.Phys,J.E,2001,6:29-35
    [114]Cesarano J.Ⅲ,Aksay J.A,J.Am Ceram Soc,1988,71(4):250-255
    [115]B.Ptaszyniski,E.Skiba and J.Krystek,Journal of Thermal Analysis and Calorimetry,2001,65:231-239
    [116]J.Boucle,N.Herlin-Boime,A.Kassiba,Journal of Nanoparticle Research,2005,7:275-285
    [117]毛 萱,吴佩珠,汤顺清,等.六偏磷酸钠对纳米羟基磷灰石水中分散行为的影响,材料科学与工程学报,2004,22(5):726-728
    [118]A F C Campos,F A Tourinbo,G J da Silva,Eur Phys J E,2001,6:29-5.
    [119]Cesarano J Ⅲ,Aksay J A,Stability of aqueous α-Al_2O_3 suspensions with poly(methacrylic acid)polyelectrolyte,J Am Ceram Soc,1988,71(4):250-55
    [120]刘立华,宋云华,陈建铭等,脂酸钠改性纳米氢氧化镁效果研究[J].北京化工大学学报,2004,31(3):31-34
    [121]宋晓岚,杨振华,邱冠周,纳米Al_2O_3颗粒的制备及其悬浮液的分散稳定,中南工业大学学报,2003,34(5):484-488
    [122]李理,扬丰科,侯耀永,纳米ZrO_2水悬浮液稳定性的研究,无机材料学报,1997,12(5):665-670
    [123]顾峰,沈悦,徐超,分散剂聚合度对纳米氧化铝粉体特性的影响,功能材料,2005,2(36):318-320
    [124]孙静,高濂,郭景坤,分散剂用量对几种纳米氧化锆粉体尺寸表征的影响,无机材料学报,1999,14(3):465-469
    [125]罗永明,潘伟,陈健,分散剂对纳米碳化硅粉末在水中分散的影响,材料导报,2000,14:349-351
    [126]崔月芝,段洪东,赵传山,涂布纸涂料用交联型苯丙乳液的制备及应用,涂料工业,2002,2:9-11
    [127]周建,白华萍,李凤生,碳纳米管/聚甲基丙烯酸甲酯复合粒子的制备及表征,高分子材料科学与工程,2006,22(2):90-92
    [128]崔月芝,段洪东,赵传山,涂布纸涂料用交联型苯丙乳液的制备及应用,涂料工业,2002,2:9-11
    [129]周建,白华萍,李凤生,碳纳米管/聚甲基丙烯酸甲酯复合粒子的制备及表征,高分子材料科学与工程,2006,22(2):90-92
    [130]张径,杨玉昆,在无机纳米SiO_2粒子存在下的苯丙乳液共聚合,高等学校化学学报,2002,23(3):481-485
    [131]刘文芳,郭朝霞,于建,St/交联剂乳液共聚包覆硬脂酸改性碳酸钙颗粒的研究,高分子学报,2006,1:59-64
    [132]查亿春,曹灿,曲刚,低成本环保型苯丙乳液的研制,涂料工业,2003,33(9):10-13
    [133]高世萍,戴洪义,陈丽凤,乙烯基硅氧烷改性苯丙乳液的研究,涂料工业,2003,33(5):1-4
    [134]周谋志,庞凯鹰,刘延宁,高弹性苯丙乳液的研究,西安建筑科技大学学报,2004,36(3):360-367
    [135]郭玉,古国华,焦艳荣,用两亲聚合物制备大颗粒苯丙乳液,.高分子材料科学与工程,2003,19(4):40-43
    [136]Min T I,et al.Mophology grafting in Poly(butylacrylate)Polystureren core-shell emulsion Polymerization,J.Poly.Sci Polym Chem Ed,1983,21(10):2845-2849
    [137]钱翼清,范牛奔,烷基化纳米SiO_2/MMA核壳无皂乳液聚合、产物表征及其应用,高分子材料科学与工程,2002,18(4):69-73
    [138]张雪娜,郑岳华,材料防霉抗菌功能及检测方法,陶瓷学报,2001,22(3):200-203
    [139]冯艳文,梁金生,梁广川,健康环保建筑内墙涂料的研制,装饰装修材料,2003,10:49-52
    [140]代群威,董发勤,李国武,铜型有源抗菌剂的扩大试验及其抗菌效果的应用研究,材料科学与工程学报,2004,22(5):738-741
    [141]王静,冀志江,金宗哲,抗菌功能建材抗菌性能评价方法,绿色建材,2004:6-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700