用户名: 密码: 验证码:
西藏驱龙超大型斑岩铜矿床—岩浆作用与矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驱龙超大型矿床产于陆陆碰撞造山带,有别于经典弧环境产出的斑岩铜矿床。本文通过对驱龙铜矿床的精细解剖,查明了矿床岩浆序列,厘定了岩浆演化过程,提出了含矿斑岩的成因模式;约束了岩浆侵位时的地球动力学背景,查明了斑岩侵位过程中的构造控制要素;首次发现了斑岩岩浆出溶时地质记录,约束了初始出溶流体的性质及出溶时的物理化学条件;确定了矿床主要的蚀变及矿化类型,建立了蚀变及矿化分带模式;详细识别了热液演化过程中的地质记录,再塑了成矿流体演化过程,查明了成矿物质沉淀机制;提出了矿床的成矿模式。
     研究表明,驱龙铜矿下部存在大型岩浆房,闪长岩包体可近似代表其物质组分,花岗闪长岩、P斑岩、细晶岩及随后的X斑岩均为该岩浆房同步演化的产物;岩浆活动始于~22 Ma,结束于~17 Ma,岩浆持续近5 Ma。最晚期(~16 Ma)的闪长玢岩则显示出原生岩浆的特点,并不是岩浆房演化的产物。最早闪长岩包体并非埃达克岩,由其演化形成的含矿斑岩则为埃达克岩,角闪石等矿物上地壳尺度的分异结晶是岩石埃达克质特征形成的原因。Sr-Nd-Pb-Hf同位素研究表明,近似代表岩浆房闪长岩包体形成于弱石榴石角闪岩化的新生下地壳的部分熔融,板块断离诱发的软流圈物质上涌不仅提供了热源,还提供了物质。闪长玢岩是冈底斯带首次发现的高Mg~#、高相容元素含量的埃达克岩,岩石为EMⅡ部分熔融产生的玄武质岩浆与新生下地壳物质混合的产物。
     近EW向产出的大面积花岗闪长岩是驱龙铜矿最主要的含矿围岩,容纳驱龙70%以上的矿体,其浅成就位可能受驱龙背斜控制,区内快速抬升与剥蚀是导致含矿斑岩浅成侵位的根本原因。浅成侵位的斑岩及深部岩浆房均发生了流体出溶,显微晶洞构造及单向固结结构是含矿斑岩流体出溶的地质记录,但深部岩浆房的流体出溶,才是引发矿床大规模蚀变与矿化的物质来源。
     矿床蚀变主要有三种类型,分别为早期形成的钾硅酸盐化、青磐岩化蚀变,以及晚期形成的长石分解蚀变。钾硅酸盐又可分早期钾长石化和晚期黑云母化。青磐岩化因产出岩石类型不同,其蚀变矿物组合具有差异性。长石分解蚀变以破坏长石类矿物为特征,蚀变矿物主要为绢云母-绿泥石-粘土等。石英及硬石膏贯穿上述各蚀变阶段。空间上,钾硅酸盐化位于斑岩体及其周围地区,青磐岩化位于钾硅酸岩化外侧。后期形成的长石分解蚀变强烈叠加了早期钾硅酸盐化,介于钾硅酸盐化与青磐岩化之间。与早期钾长石化有关的脉体为不规则石英-钾长石脉等,其形成温度大于440~520℃,压力大于80MPa,与晚期黑云母化有关的脉体为不规则至板状的石英-硬石膏、黑云母脉等。其形成温度大于313~475℃,压力约为80MPa,与青磐岩化有关的脉体主要为板状的绿帘石-石英脉(温度大于330~400℃),与晚期长石分解蚀变有关的脉体主要为板状黄铜矿-黄铁矿及黄铁矿等脉;在早期钾硅酸盐蚀变与晚期长石分解蚀变转换阶段,发育一组板状的石英-硫化物脉,其形成温度大于380~575℃,压力有较大波动。
     驱龙的铜矿化分布较为均一,主体产于花岗闪长岩中;其中,铜矿化主体形成于黑云母化蚀变阶段,转变阶段及长石分解阶段也有大量铜的形成;钼主要形成于转换阶段,长石分解蚀变阶段也有产出。黑云母化阶段铜的沉淀与角闪石黑云母化、斜长石钾长石化过程中Ca~(2+)的大量释放有关,转换阶段铜钼矿化与压力波动有关,晚期铜矿化与长石破化蚀变阶段斜长石绿泥石化、黑云母绿帘石化过程中Ca~(2+)及Fe~(2+)的释放有关。
Porphyry deposits usually form in arc settings,in association with subduction-related calc-alkaline magmas,although some deposits also occur in post-collisional extensional settings and are unrelated to subduction.These deposits remain poorly understood.Here we describe the igneous geology,alteration mineralogy,and mineralization history of Qulong,a newly-discovered porphyry Cu deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Miocene monzogranite-granodiorite intrusions and is hosted partly in Jurassic andesitic-dacitic volcanics.A~19.5 Ma granodiorite pluton with diorite enclaves is the earliest Miocene intrusive unit.It was intruded by a regularly-shaped stock(P porphyry) and then thin dike(X Porphyry) of monzogranite about 17.7 m.y.ago.The main copper-molybdenum mineralization is associated with the P porphyry.A barren diorite porphyry,intruded the P and X porphyries,around 15.7 Ma.Petrologic trends of the intrusions suggest that the Miocene intrusions have similar origin and probably formed by fractionation of a deeper magma chamber. Emplacement of Miocene porphyries,controlled by Qulong anticline,is direct response of the rapid uplift/erosion of Gangdese arc hatholiths in the south Tibet.Miarolitic cavities and unidirectional solidification textures,the key evidence for volatile separation,have been recognized in the P and X porphyries,respectively.
     Early potassic alteration,characterized by quartz-K feldspar(±anhydrite),pervades the P porphyry and granodiorite.Laterally,this alteration grades into quartz-biotite-anhydrite(±K feldspar),which affects all Miocene intrusions except the latest dioritic porphyry.Wall rocks of granodiorite and Jurassic andesitic-dacitic volcanics within 1-1.5 kilometers of the porphyries are dominated by potassic alteration.An outer halo of propylitic alteration(epidote-chlorite±calcite) extends up to 2 km.Feldspar-destructive alteration(sericite-chlorite±clay minerals) has overprinted most of the potassic and part of the propylitic alteration.The alteration is strongly pervasive in the interior of the porphyries and occurs as vein halos away from the porphyries.
     The earliest quartz-K feldspar alteration and veins are barren,whereas approximately 60 percent of the 7 million tons of contained copper are associated with slightly later quartz-biotite-anhydrite alteration.Barren assemblages are related to irregular quartz(-K feldspar±anhydrite) veins,which are truncated by the X porphyry.Cu sulfide-bearing assemblages are associated with discontinuous chalcopyrite(±biotite) and continuous quartz-anhydrite-chalcopyrite(±molybdenum) veins.Deposition of Cu-Mo with abundant anhydrite occurred during or between emplacements of closely related porphyries from high temperature magmatically-derived fluids,and was probably caused by hydrolysis of SO_2.
引文
Aitchison J C,Zhu B D,Davis A M,et al.,2000.Remnants of a Cretaceous intra-ocenic subduction system within the Yarlung-Zangbo suture(southern Tibet).Earth and Planetary Science Letters,183:231-244.
    Andersen T.2002.Correction of common lead in U-Pb analyses that do not report ~(204)Pb.Chemical Geology,192:59-79.
    Audetat A,Gunther D,Heinrich CA.1998.Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions.Science,279:2091-2094.
    Beane R E and Titley S R.1981.Porphyry copper deposits:Part Ⅱ.Hydrothermal alteration and mineralization.Economic Geology 75th Anniversary Volume,235-263.
    Beck R A,Burbank D W,SercombeW J,Riley GW,Barndt J K,Shafique N A,Lawrence R D,Khan M A.1995.Stratigraphic evidence for an early collision between northwest India and Asia.Nature,373:55-58.
    Besse J,Courtillou V,Possi J P,Westphal M and Zhou X Y.1984.Paleomagnatic estimates of crustal shorting in the Himalayan thrusts and Zangbo suture.Nature,311:621-626.
    Blichert-Toft,J.,Albarede,F.,1997.The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters 148,243-258.
    Blisniuk P M,Hacker B,Glodny J,et al.2001.Normal faulting in central Tibet since at least 13.5Myr ago[J].Nature,412:628-632.
    Bodnar R J.1994.Synthetic fluid inclusions:Ⅻ.The system H2O-NaCl.Experimental determination of the halite and isochors for a 40 wt%NaCl solution.Geochimica et Cosmochimica Acta,58:1053-1063.
    Bornhorst T J and Rose W I.1986.Partitioning of gold in young calc-alkaline volcanic rocks form Guatemala.Journal of Geology,94:412-418.
    Burnham C W and Ohmoto H.1980.Late-stage processes of felsic magmatism.Mining Geol.Spec.Issue,8:1-11.
    Burnham C W.1979.Magmas and hydrothermal fluids.In Barnes H L(ed.) Geochemistry of Hydrothermal Ore Deposits[M].2nd ed.Wiley,New York,71-136.
    Burnham C W.1981.Physicochemical constraints on porphyry mineralization.Arizona Geol.Soc.Digest,14:71-77.
    Burnham C W.1997.Magmas and hydrothermal fluids,in Barnes,H.L.(Ed.),Geochemistry of hydrothermal ore deposits,3th edition.New York,John Wiley and Sons,63-123.
    Camus F and Dilles J H.2001.A special issue devoted to porphyry copper deposits of northern Chile.Econ.Geol.,96:233-237.
    Candela P A and Holland H D.1984.The partitioning of copper and molybdenum between silicate melts and aqueous fluids.Geochimica et Cosmochimica Acta,48:373-380.
    Candela P A.1997.A review of shallow,ore-related granites:Textures,volatiles and ore metals.Journal of Petrolgoy,38:1619-1633.
    Candela P A.,1991.Physics of aqueous phase evolution in plutionic environments.American Mineralogist,76:1081-1091.
    Castillo P R.2006.An overview of adakite petrogenesis.Chinese Science Bulletin,51:257-268.
    Castillo P R,Janney P E,and Solidum R U.1999.Petrology and geochemistry of Camiguin Island,southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134: 33-51.
    Chu M F, Chung S L, Song B, Liu D, O'Reilly S Y, Pearson N J, Ji J and Wen D J. 2006. Zircon U-Pb and Hf isotope constranints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745-748.
    Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31:1021-1024.
    Cline J S. 1995. Genesis of porphyry copper deposits: the behavior of water, chloride, and copper in crystallizing melts, in Pierce, F W and Bolm, J G, eds., Porphyry copper deposits of the American Cordillera. Arizona Geological Society Digest, 20: 69~82.
    Cline J, and Bodnar R J. 1991, Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?. Journal of Geophysical Research, 96: 8113-8126.
    Cloos M. 2001. Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43:285-311.
    Coleman M and Hodges K. 1995, Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension. Nature, 374: 49-52.
    
    Composton W, Williams I S and Mayer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J. Geophys. Res., 89: 525-534.
    Cooke D R, Hollings P, and Walshe J L. 2005. Giant Porphyry Deposits: Characteristics, distribution, and tectonic controls. Econ. Geol., 100: 801-818.
    
    Copeland P, Harrison T M. Kidd W S F, Xu R H, Zhang Y Q. 1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision. Earth and Planetary Science Letters, 86: 240-252.
    Coulon C, Maluski H, Bollinger C, Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamic significance. Earth planet Sci. Lett., 79: 281-302.
    Damon P E. 1986. Batholith-volcano coupling in the metallogeny of porphyry copper deposits, in Friedrich, G H, ed., Geology and metallogeny of copper deposits. Berlin, Springer-verlag, 216-234.
    Davidson, J.P., 1996, Deciphering mantle and crustal signatures in subduction zone magmatism. Geophysical Monograph, 96: 251-262.
    de Hoog, J.C.M., Mason, P.R.D., and van Bergen, M.J., 2001, Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta, 65: 3147-3164.
    Debon F, Le Fort P, Sheppard S M F, and Sonet J. 1986. The four plutonic belts of the trans-Himalaya: A chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section: Journal of Petrology, 27: 219-250.
    Defant M J and Kepezhinskas P. 2002. Reply to comment by Conrey R. [Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs. EOS, Transactions, v. 82, p. 65-69]: EOS, Transactions, 83: 256-257.
    Defant M J, and Drummond M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 34: 662-665.
    Dilles J H and Einaudi M T. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6-km vertical reconstruction. Economic Geology, 87: 1963-2001.
    Dilles J H. 1987. Petrology of the Yerington Batholith, Nevada: Evidence for evolution of porphyry copper ore fluids. Economic Geology, 82: 1750-1789.
    Ding L, Kapp P, Zhong D, Deng W. 2003. Cenozoic volcanism in Tibet: evidence for a a transition frome oceanic to continental subduction. Journal of Petrology, 44: 1833-1865.
    Ding L, Kapp P, Zhong D, Deng W. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asian collision, south central Tibet. Tectonics, 24: 1-18.
    
    Dobosi G, kempton P D, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P. 2003. Lower crust granulite xenolites from the Pannonian basin, Hungary, Part 2: Sr, Nd, Pb, Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contrib. Mineral. Petrol., 144: 671-683.
    
    Eastoe, 1983; Sulfur isotope data and the nature of the hydrothennal systems at the Panguna and Frieda porphyry copper deposits, Papua New Guinea. Econ. Geol., 78: 201-213.
    Einaudi M T, Hedenquist J W and Inan E E, 2003. Sulfidation state of fluids in active and extinct hydrothennal systems: Transitions from porphyry to epithermal environment, in Simmons, S.F. and Graham, I., eds., Volcanic, Geothermal, and ore-forming fluids: Rules and witnesses of process within the Earth. Society of Economic Geologists, Special Publication 10, p. 285-313.
    Faure, K., 2003, 8D values of fluid inclusions water in quartz and calcite ejecta from active geothermal systems: Do values reflect those of original hydrothennal water?. Economic Geology, 98: 657-660.
    Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C, and Hayashi, S., 2002, The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology, 97: 481-498.
    Fielding, E.G., 1996. Tibet uplift and erosion. Tectonophysics 260, 55-84.
    Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J, and Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contribution to Mineral Petrology, 153:105-120.
    Gow, P., and Walshe, J.L., 2005, The role of preexisting geologic architecture in the formation of giant porphyry-related Cu ± Au deposits: Examples from New Guinea and Chile: Econ. Geol., 100:819-833.
    Graham C M and Sheppard S M F. 1980. Experimental hydrogen isotope studies, II. Fractionations in the systems epidote-NaCl-H2O, epidote-CaCl2-H2O and epidote-seawater, and the hydrogen isotope composition of Natural epidotes. Earth and Planetary Science Letters, 49: 237-251.
    Griffin,W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64, 133-147.
    Grove, T.L., and Kinzler, R.J., 1986, Petrogenesis of andesites. Annual Reviews of Earth and Planetary Science, 14: 417-454.
    
    Guillou-Frottier L and Burov E. 2003, The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth Planet Sci Lett, 214: 341-356.
    Guo Z F,Wilson M,and Liu J Q.2007.Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust.Lithos,96:205-224.
    Gustafson L B and Hunt J P.1975,The porphyry copper deposit at El Salvador,Chile[J].Econ Geol,70:857-912.
    Gustafson L B and Quiroga J.1995,Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador,Chile.Econ Geol,90:2-16.
    Gustafson L B,Orquera W,McWilliams M,Castro M,Olivares O,Rojas G,Maluenda J and Mendez M.2001.Multiple Centers of Mineralization in the Indio Muerto District,El Salvador,Chile.Economic Geology,96:325-350.
    Gutscher M A,Maury R and Eissen J P.2000.Can slab melting be caused by flat subduction?Geology,28:535-538.
    Halter W E,Pettke T,and Heinrich C A.2002.The origin of Cu/Au ratios in porphyry-type ore deposits.Science,296:1844-1846.
    Hamlyn P R,Keays R R,Cameron W E,Crawford A J,and Waldron H M.1985.Precious metals in magnesian low-Ti lavas:implications for metallogenesis and sulfur saturation in primary magmas.Geochimica et Cosmochimica Acta,49:1797-1811.
    Harris A C and Gelding S D.2002.New evidence of magmatic-fluid-related phyllic alteration:Implications for the genesis of porphyry Cu deposits.Geology,30:335-338.
    Harris A C,Gelding S D,and White N C.2005.Bajo de la Alumbrera copper-gold deposit:Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids.Econ.Geol.,100:863-886.
    Harris A C,Kamenetsky V S,White N C,Achterbergh E V,Ryan C G 2003.Melt inclusions in veins:Linking magmas and porphyry Cu deposits.Science,302:2109-2111.
    Harris A C,Kamenetsky V S,White N C,and Steele D A.2004.Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit,NW Argentina.Resource Geology,54:341-356.
    Harris N B W,Inger S,and Xu R.1990.Cretaceous plutonism in Central Tibet:An example of post-collision magmatism?:Journal of Volcanology and Geothermal Research,44:21-32.
    Harrison T M.Copeland P,Kidd W S F,Yin A.,1992.Raising Tibet[J].Science 255:1663-1670.
    Hawkesworth,C.J.,Turner,S.P.,McDermott,F.,Peate,D.W.& van Calsteren,P.1997.U-Th isotopes in arc magmas:implications for element transfer from subducted crust.Science,276,561-555.
    Hedenquist J W and Lowenstern J B.1994,The role of magmas in the formation of hydrothermal of deposits.Nature,370:519-527.
    Hedenquist J W,and Richards J P,1998.The influence of geochemical techniques on the development of genetic models for porphyry copper deposits:Reviews in Economic Geology,10:235-256.
    Hedenquist J W,Arriba A J,Reynolds T J.1998.Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphtyry and epithermal Cu-Au deposits,Philippines.Economic Geology,93:373-404.
    Heiurich C A,Gunther D,Audetat A,Ulrich T and Frischknecht R.1999.Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusions.Geology,27:755-758.
    Heinrich C A.2005.The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study.Mineralium Deposita,39:864-889.
    Hemley J J and Hunt J P.1992.Hydrothermal ore-forming processes in the light of studies in rock-buffered system:Ⅱ.Some general geologic applications.Economic Geology,87:23-43.
    Henley R W and McNabb A.1978.Magmatic vapor plumes and ground-water interatction in porphyry copper emplacement.Econ.Geol.,73:1-20.
    Herzarkhani A,Williams J A,Gammons C.1999,Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit,Iran.Mineralium Deposita,34(8):770-783.
    Hildreth,W.,and Moorbath,S.,1988,Crustal contributions to arc magmatism in the Andes of central Chile:Contributions to Mineralogy and Petrology,98:455-489.
    Hollister V F,Potter R R,and Barker A L.1974.Porphyry-type deposits of the Appalachian orogen.Econ.Geol.,69:618-630.
    Hou,Z.-Q.,Ma,H.-W.,Zaw,K.,Zhang,Y.-Q.,Wang,M.-J.,Wang,Z.,Pan,G.-T.,and Tang,R.-L.,2003,The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in Eastern Tibet.Econ.Geol.,98:125-145.
    Hou Z Q,Gao Y F,Qu X M,Rui Z Y,Mo X X.2004,Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet.Earth and Planetary Science Letters,220:139-155.
    Hou Z Q,White N C,Qu X M,Rui Z Y,Yang Z M,Mo X X,Pan X F.,2008,Post-collisional porphyry Cu deposits:A New class unrelated to subduction?(in review).
    Hou,Z.-Q.,Zeng,P.-S.,Gao,Y.-F.,and Dong,F.-L.,2006,The Himalayan Cu-Mo-Au Mineralization in the eastern Indo-Asian Collision Zone:Constraints from Re-Os Dating of molybdenite.Minerlium Deposita,41:33-45.
    Jugo P J,Luth R W and Richards J P.2001.Experimental determination of sulfur solubility in basaltic melts at sulfide vs.sulfate saturation:Possible implications for ore formation.Eos,Transactions,AGU,82:47(2001 Fall Meeting Supplement,Abstract V32G-05).
    Jugo P J,Luth R W and Richards J P.2003.Generation of sulfur-rich,sulfur-undersaturated basaltic melts in oxidized arc sources.2003 AGU Fall Meeting.
    Kapp P,Yin A,Harrison T M,and Ding L.2005.Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet:Geological Society of America Bulletin,117:865-878.
    Kay R W.1978.Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust.J Volcanol Geotherm Res,4:117-132.
    Kay,S.M.,and Mpodozis,C.,2001,Central Andean ore deposits linked to evolved shallow subduction systems and thickening crust.GSA Today,11:4-9.
    Kelemen,P.B.,Hangh(?)j,K.,and Greene,A.R.,2003,One view of the geochemistry of subduction-related magmatic arcs,with an emphasis on primitive andesite and lower crust.Treatise on Geochemistry,3:593-659.
    Kerrich,R.,Goldfarb,R.,Groves,D.,and Garwin,S.,2000,The geodynamics of world-class gold deposits:Characteristics,space-time distributions,and origins:Reviews in Economic Geology,13:501-551.
    Kesler S E.1973,Copper,molybdenum and gold abundances in porphyry copper deposits.Econ.Geol.,68:106-112.
    Kilinc I A and Burnham C W.1972.Partioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars.Econ.Geol.,67:231-235.
    Kirkham R V and Sinclair W D.Comb quartz layers in felsic intrusions and their relationship to porphyry deposit.In Taylor R P and Strong D F(ed.) Recent Advances in the Geolgoy of Granite-related Mineral Deposits.Cana.Inst.Mining Metal.Spee.,1988,39:50-71.
    Klootwijk,C.T.,Gee,J.S.,Peirce,J.W.,Smith,G.M.,and McFadden,P.L.,1992,An early India-Asia contact:paleomagnetie constraints from Nineyeast Ridge,ODP Leg 121:Geology,20:395-398.
    Kohn M J and Parkinson C D,2002.Petrologic case for Eocene slab break-off during the Indo-Asian collision.Geology,30:591-594.
    Leech M,Singh S,Jain A K,Klemperer S L,Maniekavasagam R M.2005.The onset of India-Asia continental collision:early,steep subduction required by the timing of UHP metamorphism in the western Himalaya.Earth Planet.Sci.Lett.,234:83-97.
    Liang H Y,Campbell I H,Allen C,et al.2006.Zircon Ce~(4+)/Ce~(3+) ratios and ages for Yulong ore-bearing porphyries in eastern Tibet.Mineralium Deposita,41:152-159.
    Liegeois J P.1998.Some words on the post-collisional magmatism.Lithos,45:ⅸ~ⅹⅱ.
    Lowell J D and Guilbert J M.1970.Lateral and vertical alteration-mineralization zoning in porphyry ore deposits.Economic Geology,65:373-408.
    Lowenstern J B and Sinclair W D.1996.Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit,Yukon Territory,Canada[J].Trans.Royal Soc.Edinburgh:Earth Sci.,87:291-303.
    Lowenstern J B,Mahood G A,Rivers M I,and Sutton S R.1991.Evidence for extreme partitioning of copper into a magmatic vapor phase.Science,252:1405-1409.
    Ludwig K R.2003.Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publeation No.4,1-70.
    Martin,H.,1999,Adakitic magmas:Modern analogues of Archaean granitoids.Lithos,46:411-429.
    Masterman,G.,Berry,R.Cooke,D.R.,and Walshe,J.L.,2005,Fluid chemistry,structural setting,and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epitherrnal veins,Collahuasi district,northern Chile:Econ.Geol.,100:835-862.
    Matsuhisa Y,Goldsmith J R,and Clayton R N.1979.Oxygen isotope fractionation in the system quartz-albite-anorthite-water.Geochimica et Cosmochimica Acta,43:1131-1140.
    McClay,K.,Skarmeta,J.,and Bertens,A.,2002,Structural controls on porphyry copper deposits in northern Chile:New models and implications for Cu-Mo mineralization in subduction orogens[abs.]:Australian Institute of Geosciences Bulletin 36,p.127.
    McDermid I R C,Aitehisoin J C and Davis A M,et al.,2002.The Zedong terrane:A late Jurassic intra-oceanic magmatie arc within the Yarlung-Tsangpo suture zone,southeastern Tibet.Chemical Geology,187:267-277.
    Menzies,M.A.,Long,A.,Ingeram,G.,Talnfl,M.& Janfcky,D.1993.MORB periodotite-sea water interaction:experimental constrains on the behavior of trace elements,~(87)Sr/~(86)Sr and ~(143)Nd/~(144)Nd ratios.In:Prichard,H.M.,Alabaster,T.,Harris,N.B.W.& Neary,C.R.(eds)Magmatic Processes and Plate Tectonics.Geological Society,London,Special Publications 76,309-322.
    Miller C,Schuster R,Klotzli U,Frank W,Purtscher F.1999.Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. petrol., 40: 1399-1424.
    Misra K C. 2000. Understanding mineral deposits. Kluwer Academic Publishers, 353~413.
    Mitchell A H G. 1973. Metallogenic belts and angle of dip of Benioff zones. Nature, 245:49-52.
    Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D, Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225-242.
    Mo X X, Hou Z Q, Gao Y F, Dong G C, Yang Z M, et al. 2008, Syn-collisonal magmatism in the Gangdese and implications for the crust/mantle interaction during the India -Asia Collisional Process. American Journal of Science (in press).
    Nagaseki H and Hayashi K. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36: 27-30.
    Patriat, P. and Achache, J., 1984, India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates: Nature, 311: 615-621.
    Peacock, S.M., Rusher, T., and Thompson, A.B., 1994, Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett., 121: 224-227.
    Pitzer K S and Pabalan R T. 1986. Thermodynamics of NaCl in steam. Geochimica et Cosmochimica Acta, 50: 1445-1454.
    Proffett J M. 2003. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98: 1535-1574.
    
    Qu X M, Hou Z Q, Khin Zaw, Li Y G 2007. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geology Review, 31: 205-223.
    Qu X M, Hou Z Q, Li Y G 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148.
    Ratschbacher L, Frisch W, Liu G, et al. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J. Geophys. Res., 99: 19817-19945.
    Redmond P B, Einaudi M T, Inan E E, Landtwing M R, and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 217-230.
    Reynolds T J, and Beane R E. 1985, Evolution of hydrothermal characteristics at the Santa Rita,
    New Mexico, porphyry copper deposit. Economic Geology, 80: 1328-1347.
    Richards J P and Kerrich R. 2007. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geolgoy, 102: 537-576.
    Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515-1533.
    Richards, J.P., 1995, Alkalic-type epithermal gold deposits—a review. Mineralogical Association of Canada Short Course Series, 23: 367-400.
    
    Richards, J.P., 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits: In Porter T.M. (ed.). Super-Porphyry Copper & Gold Deposits: A Global Perspective, PGC Publishng, Adelaide, pp.7~25
    Richards, J.P., Boyce, A.J., and Pringle, M.S., 2001, Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry Cu mineralization. Econ.Geol.,96:271-306.
    Richards,J.P.,McCulloch,M.T.,Chappell,B.W.,and Kerrich,R.,1991,Sources of metals in the Porgera gold deposit,Papua New Guinea:Evidence from alteration,isotope,and noble metal geochemistry:Geochimica et Cosmochimica Acta,55:565-580.
    Ringwood,A.E.,1977,Petrogenesis in island arc systems,in Talwani,M.,and Pitman,W.C.,eds.,Island arcs,deep sea troches,and back arc basins.American Geophysical Union[Maurice Ewing Series I],311-324.
    Rowley D B.1996.Age of initiation of collision between India and Asia:a review of stratigraphic data.Earth Planet.Sci.Lett.,145:1-13.
    Rusk B G,Reed M H,Dilles J H,Klemm L M and Heinrich C A.2004.Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusion from the porphyry copper-molybdenum deposit at Butte,MT.Chemical Geology,210:173-199.
    Sajona,F.G.,Manry,R.C.,Bellon,H.,Cotten,J.,Defant,M.J.,and Pubellier,M.,1993,Initiation of subduction and the generation of slab melts in western and eastern Mindanao,Philippines.Geology,21:1007-1010.
    Seedorff E and Einudi M T.2004a.Henderson porphyry molybdenum system,Colorado:I.Sequence and abundance of hydrothermal mineral assemblages,flow paths of evolving fluids,and evolutionary style.Econ.Geol.,99:3-37.
    Seedorff E and Einudi M T.2004b.Henderson porphyry molybdenum system,Colorado:Ⅱ.Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids.Econ.Geol.,99:39-72.
    Shannon J R,Walker B M,Carten R B,and Geraghty E P.1982.Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson mine,Colorado.Geology,10:293-297.
    Sheppard S M F and Gustafson L B.1976.Oxygen and hydrogen isotopes in the porphyry copper deposit at E1 Salvador,Chile.Economic Geology,71:1549-1559.
    Shinohara H and Hedenquist J W.1997.Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit,Philippines.38:1741-1752.
    Shinohara H,Kazahaya K and Lowenstern J B.1995.Volatile transport in a convecting magma column:Implication for porphyry Mo mineralization.Geology,23:1091-1094.
    Sillitoe R H.1972.A plate tectonic model for the origin of porphyry copper deposits.Econ.Geol.67:184-197.
    Sillitoe R H.1973.Geology of the Los Pelambres porphyry copper deposit,Chile.Econ.Geol.,68:1-10.
    Sillitoe R H.1985.Ore-related breccias in volcanoplutonic arcs.Economic Geology,80:1467-1514.
    Sillitoe R H.1998.Major regional factors favoring large size,high hypogene grade,elevated gold content and supergene oxidation and enrichment of porphyry copper deposits,in Porter,T.M.,ed.,Porphyry and hydrothermal copper and gold deposits:A Global Perspective,Perth,1998,Conference Proceedings:Glenside,South Australia,Australian Mineral Foundation,21-34.
    Sillitoe R H.,1997.Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region.Australian Journal of Earth Sciences,44:373-388.
    Singer D A,Berger V I,Menzie W D,Berger B R.2005.Porphyry copper deposit density.Econ. Geol., 100:491-514.
    Skarmeta, J., McClay, K., and Bertens, A., 2003, Structural controls on porphyry copper deposits in northern Chile: New models and implications for Cu-Mo mineralization in subduction orogens [abs.]: Decimo Congreso Geologico Chileno, Concepci6n, 2003, Conference Proceedings: Departamento Ciencias de la Tierra, Universidad de Concepci6n, p. 109-110.
    
    Smith R E and Smith S E, 1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Na in classification of basaltic magmas. Earth and Planetary Science Letter, 32:114-120.
    Soderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311-324.
    Solomon, M., 1990, Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 18: 630-633.
    Sourirajan S and Kennedy G C. 1962. The system H_2O-NaCl at elevated temperatures and pressures. American Journal of Science, 260: 115-141.
    
    Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S X, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622-624.
    Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. Geological Society of London Special Publication, 42: 313-345.
    Suzuki T and Epstein S. 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta, 40: 1229-1240.
    Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan-Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431-437.
    Tatsumi, Y., Hamilton, D.L., and Nesbitt, R.W., 1986, Chemical characteristics of fluid phase released from a subducted lithosphere and the origin of arc magmas: Evidence from high pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293-309.
    Taylor B E. 1986. Magmatic volatiles: Isotopic variation of C, H, and S. Reviews in Mineralogy, 16:185-225.
    
    Taylor H P, 1997, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits (third edition). New York, John Wiley, p. 229-302.
    Titley S R and Beane R E. 1981. Porphyry copper deposit: Part I. Geologic settings, petrology, and tectnogenesis. Economic Geology 75th Anniversary Volume, 214-234.
    Turner S, Hawkesworth G, Liu J, Rogers N, Hawkesworth G J, Harris N, Kelley S, van Calsteren P V, Deng W. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54.
    Ulrich, T., and Heinrich, C.A., 2001, Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Econ. Geol., 96: 1719-1742.
    Ulrich, T., Gunther, D., and Heinrich, C.A., 1999, Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399: 676-679.
    
    Ulrich, T., Gunthur, D., and Heinrich, C.A., 2001, The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina: Econ. Geol., 96:1743-1774.
    Van der Voo R., Spakman W., Bijwaard H. 1999, Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171: 7-20.
    
    Wang, E., Buechfiel, B.C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis, Int. Geol. Rev. 39:191-219.
    Wang, J.H., Yin, A., Harrison, T.M., Grove, M., Zhang, Y.Q., Xie, G.H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet. Sci. Lett. 88:123-133.
    Whitney J A. 1975. Vapor Generation in a quartz monzonite magma, a synthetic model with application to porphyry ore deposits. Econ. Geol., 70: 346-358.
    
    Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension ans It's relationship to post-collisional volcanism. Geology, 29,339-342.
    Williams I S. 1992. Some observations on the use of zircon U-Pb geochronology in the study of granite rocks. Trans. R. Soc. Edinburgh-Earth Sci., 83:447-458.
    
    Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. In: Mckibben M A, Shanks W C and Ridley W L (eds). Applications of microanalytical techniques to understanding mineralizing proesses. Review in Economic Geology, 7: 1-35.
    Williams-Jones A E, Migdisov A A, Archibald S M, Xiao Z F. 2002. Vapor-transport of ore metals. In: Hellmann R, Wood S A (eds) Water-rock interaction: a tribute to David A Crerar. The Geochemical Society, Special Publication, 279-305.
    Xu J F, Shinjo J, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?. Geolgy, 30: 1111-1114.
    Xu R H, Scharer U, Allegre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J. Geol. 93:41-57.
    Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28: 211-280.
    
    Yogodzinski G M, Kay R W, Volynets O N, et al. 1995. Magnesian ande-site in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull, 107: 505-519.
    Yogodzinski G M, Kelemen P B. 1998. Slab melting in the Aleutians: Implication of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet Sci Lett, 158: 53-65.
    Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Woeerner, G., and Volynets, O.N., 2001, Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges: Nature, 409: 500-504.
    Yuan H L, Gao S, Liu X M, Li H M, Gunther D, Wu F Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostandard and Geoanalytical Research, 28: 353-370.
    Zheng Y F. 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 121:247-263.
    
    Zhou, J. X. 1999. Geochemistry and petrogenesis of igneous rocks containing amphibole and mica: A case study of plate collision involving Scotland and Himalayas. New York and Beijing: Science Press,41-72.
    侯增谦,曲晓明,黄卫,高永丰.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,28(10):27-30.
    侯增谦,莫宣学,高永丰,曲晓明,孟祥金.2003a.埃达克岩:斑岩铜矿的重要含矿母岩—以西藏和智利斑岩铜矿为例.矿床地质,21:1-12.
    侯增谦,曲晓明,王淑贤,高永丰,杜安道,黄卫.2003b,西藏冈底斯斑岩铜矿带辉钼矿Re-Os 年龄:成矿作用时限与动力学背景应用.中国科学,33:609-618.
    侯增谦,高永丰,孟祥金,曲晓明,黄卫.2004,西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20:239-248.
    侯增谦,孟祥金,曲晓明,高永丰.2005,西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质,24:108-121.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,33:348-359.
    侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,李光明,赵志丹,江思宏,孟祥金,李振清,秦克章,杨志明.2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质,25:337-358.
    侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清.2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质,25:521-543.
    侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰,江思宏,李光明.2006d.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25:629-651.
    侯增谦,赵志丹,高永丰,杨志明,江万.2006e.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报,22:761-774.
    侯增谦,潘小菲,杨志明,曲晓明.2007.初论大陆环境斑岩铜矿.现代地质,21:332-351.
    刘增乾,李兴振,叶庆同,等.1993.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社.1-246.
    刘振声,王洁明.1994.青藏高原南部花岗岩地质地球化学特征.成都:四川科技出版社,65-71.
    叶培盛.2004.拉萨地块中部蛇绿岩与逆冲推覆构造(博士学位论文).北京:中国地质科学院.1-124.
    周肃,Mahoney J J.2001.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报,46:1387-1390.
    孟祥金,侯增谦,高永丰,等.2004.碰撞造山型斑岩铜矿蚀变分带模式——以西藏冈底斯斑岩铜矿带为例.地学前缘(中国地质大学,北京),11(1):201-214.
    孟祥金,侯增谦,李振清.2006.西藏驱龙铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示.地质学报,80(4):554-560.
    孟祥金,侯增谦,高永丰,等.2003.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及其成矿意义.地质论评,49(6):660-666.
    宋彪,张玉海,万渝生,简平.2002.锆石Shrimp样品制靶、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    岳雅惠,丁林.2006.西藏林周基性岩脉的~(40)Ar-~(39)Ar年代学、地球化学及其成因.岩石学报.22:855-866.
    张绮玲,曲晓明,徐文艺,等.西藏南木斑岩铜铜矿床的流体包裹体研究.岩石学报,2003,19(2):251-259.
    曲晓明,侯增谦,国连杰,徐文艺.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、sr、Pb、O同位素约束.地质学报,78:814-821.
    曲晓明,侯增谦,莫宣学,董国臣,徐文艺,辛洪波.2006,冈底斯斑岩铜矿与南部青藏高原隆升之关系——来自含矿斑岩中多阶段锆石的证据.矿床地质.25:388-400.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏的第二条玉龙铜矿带?.矿床地质,20:355-366.
    李光明,芮宗瑶,王高明,林方成,刘波,佘宏全,丰成友,屈文俊.2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质,24:481-489.
    李皓扬,钟孙霖,王彦斌,朱弟成,杨进辉,宋彪,刘敦一,吴福元.2007.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报。23:494-500.
    杨志明,谢玉玲,李光明,徐九华.2005a.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化.地质与勘探.41:21-26.
    杨志明,谢玉玲,李光明,徐九华.2005b,西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究.矿床地质,24:584-594.
    杨志明,谢玉玲,李光明,徐九华.2006,西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例.矿床地质,25:147-154.
    杨志明,侯增谦,夏代祥,宋玉财,李政.2008,西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质。27:28-36.
    江万,莫宣学,赵崇贺,郭铁鹰,张双全.1999.青藏高原冈底斯带中段花岗岩类及其中铁镁质微粒包体地球化学特征.岩石学报。15:89-97.
    潘桂棠,王立全,朱弟成.2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报,23:12-19.
    王亮亮,莫宣学,李冰,董国臣,赵志丹.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,22:1001-1008.
    王成善,李祥辉,胡修棉.2003.再论印度—亚洲大陆碰撞的启动时间.地质学报,77:16-24.
    耿全如,潘桂棠,王立全,朱弟成,廖忠礼.2006。西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质,26:1-7.
    芮宗瑶,侯增谦,李光明,刘波,张立生,王龙生.2006,冈底斯斑岩铜矿成矿模式.地质论评,52:459-466.
    芮宗瑶,曲晓明,侯增谦,张立生,王龙生,刘玉琳.2003,冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,21:217-225.
    芮宗瑶,李光明,张立生,王龙生.2004,西藏斑岩铜矿对重大地质事件的响应.地学前缘,11(1):145-152.
    莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程与火山作用响应.地学前缘,10:135-148.
    董彦辉,许继峰,曾庆高,王强,毛国政,李杰.2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录吗?.岩石学报,22:661-668.
    董方浏,侯增谦,高永丰,曾普胜,蒋成兴.2006.滇西腾冲新生代花岗岩:成因类型与构造应用.岩石学报,22:927-937.
    谢玉玲,衣龙升,徐九华,李光明,杨志明,尹淑苹.冈底斯斑岩铜矿带冲江铜矿含矿流体的形成和演化:来自流体包裹体的证据.岩石学报,22:1023-1030.
    赵志丹,莫宣学,Nomade S,Renne P R,周肃,董国臣,王亮亮,朱弟成,廖忠礼.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,22:787-794.
    郑有业,薛迎喜,程力军,樊子珲,高顺宝.2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学——中国地质大学学报,29:103-108.
    高永丰,侯增谦,魏瑞华,孟祥金,胡华彬.2006.冈底斯基性次火山岩地球化学和Sr-Nd-Pb 同位素:碰撞后火山作用亏损地幔源区的约束.岩石学报,22:547-557.
    高顺宝,郑有业.2006.西藏驱龙超大型斑岩铜矿床成矿作用的地球化学控制.地质科技情报,25:41-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700