用户名: 密码: 验证码:
大型爆炸焊接半球消波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸容器广泛应用于工业、国防、科研等领域,随着爆炸技术的进步,爆炸容器已成为爆炸法制备纳米材料、爆炸焊接、爆炸压实和爆炸成型等生产所必须的设备。由于对复合板面积要求日益增大,相应要求爆炸容器的有效空间也越来越大,炸药的爆炸当量也相应增加,爆炸容器的设计和使用也面临越来越多的问题;另一方面,因爆破噪声扰民、房屋损坏而造成的矛盾日显突出。爆炸焊接经常会涉及到结构安全防护问题,如何有效地进行爆炸容器结构设计是该领域重要的研究课题之一。对于大型爆炸容器的设计和使用,采用有限元数值模拟对于结构安全评估和结构参数优化都具有重要的研究意义,但是由于数值模拟方法受到计算条件的限制,在结构加工、单元划分、边界条件确定、参数的选取等方面带有人为的因素,因此对大型爆炸容器的研究应该将数值模拟与模型实验相结合,才能得出一些可靠的结论。本文对大型爆炸焊接半球消波器进行研究,主要遵循以下原则:安全性、经济性、消波效果、生产效率(排烟效率)及耐久性。主要研究内容:结构静力分析、屈曲分析、动态响应分析及排烟效率分析。采用LS-DYNA程序和理论公式对原型爆炸冲击载荷进行计算并用LS-DYNA对模型进行流固耦合分析;用ANSYS程序分析消波器结构在土压条件下的静力强度、稳定性和爆炸冲击载荷下的瞬态应力分布;采用STAR-CD模拟了球壳中爆生气体的流动。主要研究成果有:
     1静载作用下的结构强度
     将上覆土作为结构的荷载,采用有限元方法分析了结构在静载作用下的强度和变形特性。研究表明,无论对于上部开口8m还是15m的结构,结构绝大部分的等效应力小于材料的强度设计值。而等效应力大于材料强度设计值的部位,发生在应力集中部位,例如板与门框和地粱的相会处,在设计中应予重视。
     2静载作用下的稳定性
     根据弹性屈曲理论和有限元模拟方法,对不同结构形式下的屈曲稳定性进行了模拟研究。研究表明,当结构采用24根肋时,结构屈曲稳定性安全系数为2.532:当结构采用48根肋、上部开口为8m时,结构屈曲稳定性安全系数为4.276;当结构采用48根肋、上部开口为15m时,结构屈曲稳定性安全系数为3.629。
     用光学投影条纹法测试了球壳变形量,并进行了过载一倍试验,实验证实球壳稳定性安全系数超过2.52倍;用ANSYS程序分析了消波器在土压条件下的应力场、静压稳定性,计算结果其安全系数为4.276,因此结构安全。
     3动态响应数值模拟分析结果
     通过LS-DYNA数值模拟可以发现,消波器正上方附近为最大压应力区。对炸药质量分别为600kg,800kg,1000kg三种情况进行分析,随炸药质量的增加,反射超压极值逐渐增加,而且极值产生时间提前。计算结果表明,在爆炸冲击荷载作用下模型或原型结构的大部分等效应力小于材料强度的设计值,局部部位由于应力集中的影响,有限元计算的等效应力值会大于材料强度的设计值。由于在爆炸响应计算时,没有考虑结构上大量粱和肋的综合作用,实际的应力会比有限元模拟结果小很多。
     动载应力测试为典型爆炸冲击下应力测试结果。球壳在爆炸冲击作用下第一次冲击应力峰值最大,之后基本以拉压应力状态来回振动,经过1~2个来回后立刻减小到100MPa以下,土的堆压对消除球壳振动起到了较好的作用。因为爆炸冲击波作用时间很短,故在球壳应力校核时只需考虑单次的正压冲击,可以不考虑冲击波在球壳中的复杂反射过程。刚性位移测试表明,5kg炸药爆炸时下底环最大位移仅为4mm(平均2mm)。300余次加强冲击疲劳试验表明,球壳整体结构无破坏,2处局部焊缝开裂,在将振松的土石回填后,裂纹不再扩展。
     4排烟效率分析
     对比理论分析与三维数值模拟得到1/6模型和原型的时间比例常数为2.5。故根据1/6模型测得的CO衰减至50PPM所用的时间,可推算出,当环境处于一级风,且风向符合下进上排时,原型消波器CO浓度衰减至50PPM的时间需要8分钟;当环境处于一级风,且风向符合上进下排时,原型CO浓度衰减至50PPM的时间需要25分钟。根据数值模拟结果可知,在上排气口总面积相同的条件下,单上排气口布置方案明显优于多上排气口布置方案。对于单上排气口布置方案,在相同排气口直径条件下,随排气口高度的增加,CO浓度衰减到标准状态所用的时间增加。
     5在模型上进行了抗爆试验,分别采用炸药量为2kg、3kg、4kg、5kg,按模型率放大到原型,将对应432kg、648kg、864kg和1080kg铵油炸药,分别对应TNT当量为331kg、497kg、663kg、828kg。在该模型上进行了加强多次爆破冲击疲劳试验,进行了300余次爆破实验,采用药量为6kg铵油,折算至原型上为1296kg铵油,994kgTNT当量。
     6消声试验表明,在正对进出口方向冲击波超压消减50%,90°方向消减到90%,消波效果较为明显。
Explosion vessel is widely applied in many fields such as industry,national defense, scientific research and etc.With the advancement of the explosion technique,explosion vessel has been the necessary device for explosion method to produce nanometer material,explosive welding,explosive compaction,explosive forming and so on.As the larger requirement of complex material the wider space is required for the explosion vessel.On the other hand,the contradiction between the blasting noise and residents nearby the plant area or constructions is outstanding day by day.The security protection of the structures was often involved in explosive welding.How to design the structure of the explosion vessel is one of the important research topics in this field.As far as the design and use of large explosion vessel is concerned,finite element method is adopted for structure simulation analysis.It is significant research whether for the structure security estimate prediction or structure parameter optimization.While the numerical simulation method is limited by calculation condition for the artificial factor in structure shop,unit division,boundary condition determination, parameters selection.As for research on large explosion vessel,reliable conclusion can be achieved by combing the numerical simulation and the experiment.Welding wave attenuator in large explosion vessel research is studied in this paper,and the following principle shall be obeyed:safety performance,economy,wave dissipation effect,production efficiency(smoke exhaust efficiency),and durability.The main research content is included as follows:static analysis,post-buckling analysis,dynamic response analysis,solid wall overpressure analysis and production efficiency analysis.Authors mainly adopt LS-DYNA program and theoretical formula to determine the prototype explosive impact load and use LS-DYNA program to the simulate fluid-solid coupling analysis;adopt ANSYS program to analyze the structural strength,structural stability under the shock-wave trap shell earth pressure static load condition,and the instant stress distribution under the shock wave load;and adopt STAR-CD to simulate denotation gas flow within the shell.The main research results are:
     1.Structural strength under the action of static load
     The covering earth serves as the load to the structure.This thesis adopts the finite element method to analyze the structural strength and deformation characteristics under the action of static load.The research indicates that most equivalent stresses of the structure of that the upper port is 8m or 15m diameter is smaller than the strength design value.The part that the equivalent stress is bigger than the material strength design value is in the position where the stresses concentrate,for example,the joint between plates,door frame and ground beam. Importance shall be attached to in the design.
     2.Stability of hemispherical shell under the action of static load
     This thesis has simulated and studied the buckling stability under different structure forms on the basis of elastic buckling theory and finite element simulation method.The research indicates that the structural buckling stability safety coefficient is 2.532 when the structure adopts 24 ribs;4.276 when adopts 48 ribs and the upper port is 8m;3.629 when adopts 48 ribs and the upper port is 15m.The test was made by adopting optical projection stripe method to measure the deformation amount of the spherical hell.Further,a test of double overload experiment was made.The results verified that the safety coefficient was more than 2.52 times,while the calculation results achieved by ANSYS program was 4.276 times of the safety coefficient,So the structural is safety.
     3.Result of dynamic response simulation
     It is observed from LS-DYNA numerical simulation that the area over the protection cover is the maximum pressure zone.This thesis has made an analysis on three situations when the explosive dosage is 600kg,800kg and 1000kg respectively.With the increase of explosive dosage,the reflection overpressure extreme value increases gradually,and appears earlier. This thesis adopts LS-DYNA/ANSYS numerical simulation method to calculate and analyze the dynamic response of model and Prototype structure.The result indicates that most structural equivalent stresses under the action of the explosive shock load are smaller than the material strength design value.However,the equivalent stress of some parts calculated by means of finite element method is bigger than the material strength design value due to the effect of stress concentration.Since the synthetic action on most beams and ribs of the structure is not taken into consideration when the explosion response is calculated,the actual stress will be much smaller than the result of finite element simulation.
     The dynamic load stress test results are the typical stress test results under explosive impact.The first impact stress peak value is the maximum on the spherical shell under the explosive impact effect,the other was tension-compression stress.The vibration stress shall be immediately reduced to below 100 Mpa after 1 to 2 circulations.Obviously,the accumulation of soil can eliminate the vibration of spherical hell.We shall only consider of the positive pressure impact in single explosion when the spherical hell stress check is determined,without consideration of the complex reflection process of the explosive impact wave in the spherical hell because the positive pressure characteristic time is very short.The results of rigid displacement test show that the maximum bottom ring at explosive dosage of 5 kg is only 4 mm displacement(the average is 2mm).The strengthen impact fatigue tests for more than 300 times show that there are no destruction of the overall structure in the spherical hell and 2 part local welding crack.The crack didn't extend any more after the loosed soil was refilled.
     4.Analysis of smoke exhaust efficiency
     It is obtained by comparing theoretical analysis and three-dimensional numerical simulation that the time proportionality constant between the 1/6model and the prototype is 2.5.Therefore,it could be calculated based on the measured duration in which CO concentration of the 1/6 model will attenuate to 50PPM that it will take 10min for CO concentration of the prototype explosion cave to attenuate to 50PPM when there is light air and the wind direction conforms to the requirement of "lower entrance and upper discharge"; 25min for CO concentration to attenuate to 50PPM when there is light air and the wind direction conforms to the requirement of "upper entrance and lower discharge".It is know from the numerical simulation result that the single upper exhaust outlet is superior to multi-upper exhaust outlets if total exhaust outlet areas of both the former and the latter are the same.As for the single upper exhaust outlet arrangement scheme,if the diameter of the exhaust outlet is unchangeable,the duration in which CO concentration attenuates to the standard state will increase with the increase of exhaust outlet height.
     5.An anti-blast experiment is made based on this model,explosive dosage is 2 kg,3 kg,4 kg,5 kg is adopted separately,accordingly enlarge the substance to 432 kg,648 kg,864 kg, 1080 kg ANFO explosive,equal to 331 kg,497 kg,663 kg and 828 kg TNT equivalent.We also made strengthen explosive impact fatigue experiment on this model for many times.Up to now,more than 300 times explosion tests with ANFO explosive dosage for 6 kg have made, which was converted to original mode as 1296 kg ANFO and 994 kg TNT equivalent.
     6.Wave dissipation test results show that the impact wave overpressure on the upright direction of the outlet was subtracted to 50%,to 90%in the direction of 90~angle,the dissipation effect was more obvious.
引文
[1]王耀华著.金属板材爆炸焊接研究与实践.北京:国防工业出版社,2007.
    [2]郑津祥,徐平,傅强,胡永乐.爆炸容器研究进展及新结构探讨.第二届全国爆炸力学实验技术交流会.2005年245-250.
    [3]Baker W E,et al.Extensional Vibrations of Elastic Orthotropic Spherical Shells.J.Appl.Mech.,1961,28:229-237
    [4]朱文辉.爆炸容器动力研究进展评述.力学进展.1996:26(1):68-77.
    [5]秦小勇,李晓杰,闫鸿浩,张勇.爆炸焊接半球阻波器内爆炸LS-DYNA数值模拟.阜新:辽宁工程技术大学学报,2008,27(Suppl.1)133-135.
    [6]Fedorenko A.G,Syrunin M.A,Ivanov A.G.Criterion for Selecting Composite Materials for Explosion Containment Structures(Review).Combustion Explosions and Shock Waves.2005,41(5):487-495.
    [7]Mohamed B,Trabia,Brendan J,O'Toole,Jagadeep Thota.Finite Element Modeling of a Lightweight Composite Blast Containment Vessel.J.Pressure Vessel Technol.2008,130(1)
    [8]曹胜光等.5kgTNT当量爆炸容器的研制.压力容器,2004,21(4):33-36
    [9]Li X.J,Qin X.Y,Wang Y,Yan H.H..BEHAVIOR OF HEMISPHERICAL EXPLOSIVE CHAMBER IN CONDITIONS OF SHOCK LOADING.The IX International Symposium on Explosive Production of New Materials:Science,Technology,Business,and Innovations (EPNM-2008),Liss,Netherlands,2008.
    [10]林俊德,封闭空间的化爆荷载与沙墙消波,解放军理工大学学报(自然科学版),2007,8(6):559-566.
    [11]De Malherbe M C,Wing R D,Laderman A J,Oppenheim A K.Response of a Cylindrical She11 to Internal Blast Loading.J.Mech.Eng.Sci.1966
    [12]Ivanov A.G,RyzhanskillV.A,TsypkinV.I,ShitovA.T.Scale Effect in the Strength of a Pressure Vessel under Internal Explosive Loading.Combustion Explosions and Shock Waves.1981,17(3):327-331.
    [13]Batalov V A.Strength of Single Layer and Multilayer Cylindrical Vessels Loaded Internally by Pulses of Various Lengths.J.Appl.Mech.and Tech.Phys.1978,15(4):143-145
    [14]BuzukovA A.Forces Produced by an Explosionin an Air-Filled Explosion Chamber.Combustion Explosions and Shock Waves.1980,16(5):555-559.
    [15]Volkov I A et al.Numerical Analysis of the Process of Deformation and Fracture of Closed Cylindrical Shells Under Internal Blast Loading.Strength of Materials,1997,29(2):79-187
    [16]Baker W E,etal.The Elastic-Plastic response of thin spherical shell to internal blast loading J.A ppl.Mech.1960,27:139-144.
    [17]Baker W E,etal.The Elastic response of thin spherical shells to axisymmetric blast loading J.Appl.Mech.1966,33:800-805.
    [18]秦小勇,李晓杰,闫鸿浩,张勇.半球阻波结构底部约束形式研究.(待发表)
    [19]Duffey T.A,Romero C.Strain growth in spherical explosive chambers subjected to internal blast loading.International Journal of Impact Engineering,2003,28(9):967-983
    [20]Lazari L,Burley S.J et al.Containment of Explosive Blast In A Spherial Vessel With Nozzles.Hazards XI,New Direction in Process Safety Institution of Chemical Engineers,Rugby,UK,Hemisphere Publishing Corporation,1991,135-153.
    [21]秦小勇,李晓杰,闫鸿浩,张勇.爆炸焊接半球阻波器失稳模型律研究.(待发表)
    [22]Hodge P G.The Influence of Blast Characteristics on the Final Deformation of Circular Cylindrical Shell.ASME.Journal of Applied Mechanics.1959,23:617-624
    [23]Benham R A,Duffey T A.Experimental-theoretical Correlation on the Containment of Explosions in Closed Cylindrical Vessels.SLA-73-0508,Sandia National Laboratories,Albuquerque,New Mexico,June 1973
    [24]AdischerV.V,KomevV M.Calculation of the shell of Explosion Chambers.Combustion Explosions and Shock Waves.1979,15(6):780-784.
    [25]KornevV.M,AdishehevV.V,MitrofanovA.N.Experimental Investigation and Analysis of the Vibrations of the shell of an Explosion Chamber.Combustion Explosions and Shock Waves.1979,15(3):345-350.
    [26]徐加初,杨增涛.爆炸冲击下复合材料层合扁球壳的动力屈曲.爆炸与冲击.2007,27(2):116-120.
    [27]胡八一,刘仓理,陈石勇,胡海波.玻璃纤维增强复合材料抗爆容器的研究进展.材料科学与工程学报.2007,25(3):468-470.
    [28]Ethan platt.Distortion Energy Stresses In Explosion Containment Vessels.Research Resport of Lawrence Livermore Laboratory.1981
    [29]Gal' burt V A,Lebedev E F,Chernykh E V.Determination of Radial Strains For Cylindrical Chambers Under the Action of a Load occurring with Axisymmetric Explosion of a Charge.Combustion Explosions and Shock Waves.1985,21(3):57-59
    [30]Belov A.I,Belyaev V.M,Kornilo V.A.Calculation of Wall Loading Dynamics in a Spherical Combustion Chamber.Combustion Explosions and ShockWaves.1985,21(6):132-135
    [31]Karpp R.R,DuffeyT.A,Neal T.R.Response of Containment Vessels to Explosive Blast Loading.LA-8082.Los Alamos Scientific Laboratory.1980,105:23-27
    [32]Zhdan S A.Dynamics Load Action on the Wall of an Explosion Chamber.Combustion Explosions and Shock Waves.1981,17(2):142-146
    [33]Vasilev A A,Zhdan S A.Shock-Wave Parameters on Explosion of Cylindrical charge in air.Combustion Explosions and Shock Waves.1981,17(4):98-102
    [34]Duffey T A,Containment of Explosions in Spherical Vesseis.LA-UR-92-4060(DE93005445)1992
    [35]Lewis B B,Containment Shells Analysis Final Report DE93018279,LS-SUB-93-241,May,1993.
    [36]郑远谋,黄荣光,陈世红.爆炸焊接和金属复合材料.复合材料学报,1999,16(1):14-21.
    [37]钟方平.双层圆柱形爆炸容器弹塑性结构响应的实验和理论研究:(博士学位论文).合肥:中国科学技术大学.1999.
    [38]朱文辉.爆炸容器承受内部加载的实验研究.爆炸与冲击.1995,15(4):374-381
    [39]霍宏发.椭球封头圆柱形爆炸容器振动特性研究.机械科学与技术.2000(6):967-969
    [40]胡八一,柏劲松.球形爆炸容器动力响应的强度分析.爆轰波与冲击波.2000(3):104-108
    [41]胡八一珠形爆炸容器水压试验应力测试及分析.实验力学.2001(2):207-212
    [42]段卓平.爆炸载荷下壳体的响应:(博士学位论文).北京:北京理工大学.1993.
    [43]张鹏.轴对称爆炸容器中冲击波与壁面祸合作用的数值研究:(博士学位论文).合肥:中国科学技术大学.2000.
    [44]S.铁摩辛柯等著,汪一麟译.材料力学(高等理论及问题).北京:科学出版社,1979
    [45]杜庆华主编.工程力学手册.北京:高等教育出版社.1994年10月
    [46]吴振强.轴对称压力容器弹塑性与强度分析.红河学院学报,2004,2(2):4-7
    [47]付跃升,张庆明.爆炸荷载作用下弹性薄板的动态响应.北京理工大学学报,2007,27(7):572-575
    [48]彭兴宁,聂武,严波.爆炸载荷作用下舰船防护舱壁的薄膜效应研究.船舶力学,2007,11(5):744-751
    [49]石少卿,张湘冀,尹平.爆炸荷载作用下一种新型防护结构的静力分析.地下空间,2003,23(1):66-68.
    [50]王世来.大型水面舰船防护水舱内爆炸的数值模拟.浙江工业大学学报,2007,35(3):262-266.
    [51]田志敏,钱七虎,吴步旭.大压力爆炸动载作用下地下复合圆形结构研究.特种结构,1997,14(3):40-43.
    [52]陆蓓,刘涛,崔维成.深海载人潜水器耐压球壳极限强度研究.船舶力学,2004,8(1):51-58.
    [53]李良碧.深海载人潜水器耐压球壳的非线性有限元分析,中国造船,2005,46(4):11-18.
    [54]张少雄,曾竞龙,杨永谦.某潜艇耐压壳结构强度和屈曲有限元分析.船海工程,2004,5:13-15
    [55]Timoshenko S,Woinowsky-Krieger S.Theory of Plates and Shells,second edition,McGraw-Hill,1959.
    [56]王勖成,邵敏编著.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [57]赵海峰.ANSYS 8.0工程结构实例分析,中国铁道出版社,2004.
    [58]小飒.最新经典ANSYS及WORKBENCH教程,电子工业出版社,2004.
    [59]张朝晖.ANSYS 8.0结构分析及实例分析,机械工业出版社,2006.
    [60]吴连元编著.板壳稳定性理论.武汉:华中理工大学出版社,1996.
    [61]苗兰森,李天匀,赵耀,张维衡.深潜器大开口球形耐压操纵舱结构模型的力学性能.海洋技术,2005,24(2):20-24.
    [62]周利,黄义.薄壳非线性稳定理论的最新发展.建筑钢结构进展,2006,8(4):23-32.
    [63]秦荣.板壳非线性分析的新理论新方法.工程力学,2004,21(1):9-14.
    [64]刘宗发,李正良,晏致涛.单层球面网壳的优化分析.重庆建筑大学学报,2005,27(1):67-70.
    [65]王红福,张明广.储罐罐顶的失稳分析.油气储运,2002,21(5):49-52.
    [66]王仁华,俞铭华,李良碧,王自力.初始缺陷对深海载人潜水器耐压球壳塑性稳定性影响.海洋工程,2005,23(4):111-115.
    [67]张音翼.球壳的风型荷载屈曲.力学与实践.2000,22(5):48-52
    [68]傅衣铭,王永,杨金花.考虑损伤效应的开孔浅球壳的非线性动力响应与动力屈曲.固体力学学报,2006,27(1):38-45.
    [69]李轶鹤,柳翼,刘朝辉.ANSYS在结构稳定性中的应f}j.湖南工程学院学报(自然科学版),2002,12(2):33-35.
    [70]Pederson P T.Buckling behavior of imperfect spherical shells subjected to different load conditions,Thin-wailed Structures,1995,23:41-55.
    [71]Morris N F.Shell stability:the long road from theory to practice,Engineering Structure,1996,18(1):801-806
    [72]黄克智,徐秉业主编,固体力学及其工程应用,北京:清华大学出版社,1993
    [73]吴义田,张庆明,顾忠明.冲击波载荷作用下结构响应的模型律分析.北京理工大学学报,2006,26(8):664-667.
    [74]杨振声.工程爆破的模型试验与模型律.工程爆破,1995,1(2):1-10.
    [75]马建军,熊祖钊.工程爆破模拟试验的相似律.武汉科技大学学报(自然科学版),2001,24(2):170-173.
    [76]南华,周英.相似模拟材料容重对强度的影响.矿业研究与开发,2007。27(3):12-13.
    [77]张月蓉,乌建中.高耸结构振动控制模型相似律.同济大学学报(自然科学版),2001,29(12):1395-1398.
    [78]林皋,林蓓.结构动力模型试验的相似技巧.大连理工大学学报,2000,40(1):1-8.
    [79]迟世春,林少书.结构动力模型试验相似理论及其验证.世界地震工程,2004,20(4):11-20.
    [80]陈星烨,马晓燕,宋建中.大型结构试验模型相似理论分析与推导.长沙交通学院学报,2004,20(1):11-14.
    [81]陈波,吕西林.ANSYS模拟结构-地基动力相互作用振动台试验的建模方法.地震工程与工程振动,2003,22(1):126-131.
    [82]赵海霞,胡双启.钻地弹侵彻混凝土缩尺模型的研究.弹箭与制导学报,2006,26(4):163-165.
    [83]唐蜜,柏劲松,李平,姜洋,张展冀.爆炸成型弹丸侵彻相似律的数值模拟研究.火工品,2006,2:1-4.
    [84]束伟农,徐海翔,王永焕,陈增元,林松涛,张心斌.先进核电厂安全壳结构模型试验研究.工业建筑,2001,31(9):33-35.
    [85]徐挺,相似方法与应用,北京:机械工业出版社,1995.
    [86]李之光,相似与模拟,北京:国防工业出版社,1982.
    [87]李德葆编著,振动模态分析及其应用,北京:宇航出版社,1989.
    [88]周美立著,相似性科学,北京:科学出版社,2004.
    [89]杨福俊.光测条纹统计处理与卷积形貌检测方法和光弹性的应用研究:(博士学位论文).大连:大连理工大学,2001.
    [90]徐建强.基于投影栅形貌测量的扫描相移法和仿真技术的基础应用研究:(博士学位论文).大连:大连理工大学,2003.
    [91]云海.形貌影栅云纹法和相移干涉全息光弹性法的数字仿真研究:(博士学位论文).大连:大连理工大学,2006.
    [92]Rogers G L.Dynamics of framed structures.New York::John Wiley & Sons Inc.1959.
    [93]Kinny G F,Graham H J.Explosive shocks in air.New York::Springer-Verlag,1985.
    [94]赵士达.爆炸容器[J].爆炸与冲击,1989,9(1):85-96.
    [95]Giglio M.Spherical vessel subjected to explosive detonation loading.Int.J.Pres.Ves.&Piping,1997,74:83-88.
    [96]Structure to resist the effects of accidental explosions,TM5-1300.Department of the Army,Narvy,and Air Foce.Washington.D.C.1990.
    [97]杨桂通.塑性动力学[M].北京:高等教育出版社,2000.
    [98]李国豪.工程结构抗爆动力学.上海:上海科学技术出版社,1989.
    [99]Baker W E.The Response ofelastiv spherical shell to internal blast loading,BRL-113,1958
    [100]Duffey T A,etal.Containment of explosion in cylintricai shells.SC-DR-72-0197,1972
    [101]Duffey T A,etal.Bolt preload selection for pulsed-loaded vessel closures.LA-UR-95-0047,1995
    [102]胡八一,刘大敏,柏劲松,张明.脉冲载荷下球形爆炸容器的弹性响应.振动与冲击,1998,17(3):19-23.
    [103]Baker W E.Explosions in air.Austin:University of Texas,Press,1973.
    [104]Brode E L.Numerical solution of spherical blast waves.LApp Phys.,1955,26:766-775.
    [105]Biggs J M.Introduction to structural dynamics.New York:McGraw-Hill,1964.
    [106]盛利,郭玉荣,肖岩.爆炸空气冲击波荷载效应.湖南城市学院学报(自然科学版),2006,15(2):1-3.
    [107]Baker W E,Cox P A,Westine P S,et al.Explosions hazards and evalution.Amsterdam Netherlands:Elsevier Scientific Publishing Company,1983.
    [108]Smith P D,Hetherington J G.Blast and ballistic loading of structures.London:Butterworth-Heinemann Ltd.,1994.
    [100]Newmark N M.External blast//Proccedings of Int.of Conf.On the Planning and design of tall building.Lehigh University,1972:656-661
    [110]成伟,张明,柏劲松,胡八一.球形爆炸容器动力响应的强度分析.工程力学,2001,18(4):136-139.
    [111]饶国宁,陈网桦,王立峰,肖秋平,彭金华.内部爆炸载荷作用下容器动力响应的数值模拟.中国安全科学学报,2007,17(2):129-133.
    [112]宋延泽,李志强,赵隆茂.爆炸载荷下扁平绕带式高压容器动力响应的数值模拟.太原理工大学学报,2006,36(2):242-245.
    [113]马峰,王树山,李金柱.内部爆炸载荷作用下建筑物动态响应的三维数值模拟.弹箭与制导学报,2004,24(2):37-39.
    [114]徐定海,王善,杨世全.板壳结构接触爆炸数值仿真分析.哈尔滨工程大学学报,2006,27(1):53-56.
    [115]秦小勇,赵铮,Dik.voerman,李晓杰.爆炸载荷下油罐钢板破损的数值模拟.水运工程,2007,407(9):23-26.
    [116]吴德义.爆炸波相互作用的数值模拟.中国公共安全(学术版),2005,4(1):72-74.
    [117]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟.解放军理工大学学报(自然科学版),2007,8(5):413-418.
    [118]侯海量,朱锡,古美邦.爆炸载荷作用下加筋板的失效模式分析及结构优化设计.爆炸与冲击,2007,27(1):26-33.
    [119]梁德山.复合炸药爆炸输出特性与爆炸容器动力学响应研究:(硕士学位论文).南京:南京理工大学.2006.
    [120]李庆扬,关治,白峰杉编著.数值计算原理。北京:清华大学出版社,2001.
    [121]亨利奇J.爆炸动力学及其应用.北京:科学出版社,1987.
    [122]周听清编著,爆炸动力学及其应用.合肥:中国科学技术大学出版社,2001
    [123]李冀祺,马素贞著.爆炸力学.北京:科学出版社,1992
    [124]北京工业学院八系《爆炸及其作用》编写组编著.爆炸及其作用.第1版.北京:国工防工业出版社,1979.
    [125]白金泽编著.LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005.
    [126]李裕春,时党勇,赵远编著.ANSYS 10.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社,2006.
    [127]时党勇,李裕春,张胜民编著.基于ANSYS/LS-DYNA 8.1进行显式动力分析.北京:清华大学出版社,2005.
    [128]尚小江,苏建宇等编著.ANSYS/LS-DYNA动力分析方法与工程实例.北京:中国水利水电出版社,2006.
    [129]Qin X Y,Luan M T,Yang Qing,Li X J,Dik.voerman,Xu Tao,Qu L J,Zhao Zheng.NUMERICAL SIMULATION OF DYNAMIC COMPACTION USING LS-DYNA.The 2nd International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation(GEDMAR08)
    [130]Lewis B B.Correlation of new vessel data with finite element resuits[R].LA-SUB-94-146,1999
    [131]Steven R.R,etal.Confinement vessel dynamic analysis[R].LA-13268-MS,1999
    [132]秦小勇,李晓杰,闫鸿浩,于盛发.半球消波器在覆土作用下的应力研究.(待发表)
    [133]Newmark N M.An engineering approach to blast resistance.Proccedings of ASCE,1953.
    [134]Bogosian D D.Blast analysis of complex structure using physics-based fast-running models,Computers and Structures,1999,72,81-92
    [135]杨科之,王年桥.内爆荷载作用下结构等效静载计算方法.解放军理工大学学报:自然科学版,2002,3(4):31-33
    [136]张锦华,艾春安,杨宏.高压壳体静态塑性有限元数值分析.化工装备技术,2004,25(6):33-36.
    [137]R.W.克拉夫,J.彭津著.结构动力学.王光远等泽.北京:科学出版社,1981
    [138]Duffey T A,etal.Containment of explosion in spherical vessels.in Proceedings of PVP Conf.Denver,Colorado,USA,A SME,1993,263:85-90
    [139]Platt E.Distortion energy stresses in explosion-containment vessel[R].UCID-19204,1981
    [140]孙一坚主编.简明通风设计手册.北京:中国建筑工业出版社,1997.
    [141]GBZ 1-2002.工业企业设计卫生标准[S].北京:法律出版社,2002.
    [142]陈中,张良焊.地铁区间隧道火灾自然排烟模式的研究与应用.现代隧道技术,2006,43(3):62-66.
    [143]徐薇,谢水波,李仕友,吕继成.公路隧道通风临界风速模拟研究.科技资讯导报,2007,6:130-131.
    [144]Demouge F,Lacroix D.CFD simulation of fire smoke behaviour with transverseventilation-comparison with model tests,Fire Safety Science 2000,3:310-324.
    [145]Levy S S,Sandzimier J R.Smoke contralfor the Ted Williams Tunnel-acomparative of extraction rate.10th International symposium'on the Aerodynamics&ventilation of Vehicle Tunnels,2000
    [146]Rudin C.Fires in long railway tunnels-the ventilation concepts adopted in the Aip Transit projects.10~(th) International symposium on the Aerodynamics&ventilation or vehicleTunnels,2000
    [147]Hunt G R,Linden P F.The fluid mechanics of natural ventilation displacement ventilation by buoyancy-driven flows assisted by wind.Building and Environment,1999(34):707-720.
    [148]Jimmy Yam,Yuguo Li,Zuohuan Zheng.Nonlinear coupling between thermal mass and natural ventilation in buildings.International Journal of Heat and Mass Transfer,2003(46):1251-1264.
    [149]Yuguo Li,Angelo Delsante,Je.Symons.Prediction of natural ventilation in buildings with large openings.Building and Environment,2000(35):191-206.
    [150]冯炼,刘应清.地铁阻塞通风的数值模拟.中国铁道科学,2002,23(3):120-123.
    [151]冯炼,刘应清.地铁火灾烟气控制的数值模拟.地下空间,2002,22(1):61-64.
    [152]张发勇,冯炼.终南山特长公路隧道火灾通风数值模拟分析.地下空间,2004,24(4):506-509.
    [153]李亮,李晓锋,朱颖心.地铁隧道火灾自然排烟模式数值模拟研究.暖通空调。2005,35(12):6-9.
    [154]郑志敏,赵相相,周孝清,高会峰.地铁车站火灾烟控模式的数值模拟.暖通空调,2006,36(5):72-74.
    [155]赵相相,周孝清,张燕,郑志敏.地铁隧道火灾烟气特性与临界风速的数值模拟分析.暖通空调,2005,35(12):68-72.
    [156]张进华,杨高尚,彭立敏,欧阳心和.隧道火灾烟气流动的数值模拟.中南公路工程,2006,31(1):4-8.
    [157]王婉娣,冯炼.公路隧道火灾三维数值模拟.制冷与空调,2004,1:20-23.
    [158]谢宁,冯炼,王婉娣,张发勇.隧道火灾三维数值模拟的瞬态分析.中国铁道科学,2005,26(6):89-92.
    [159]卢平,丛北华,廖光煊,范维澄,厉培德.纵向通风水平隧道火灾烟气流动特性研究.中国工程科学,2004,6(10):59-64.
    [160]周延.纵向通风水平隧道火区阻力特性.中国矿业大学学报,2006,35(6):703-707.
    [161]傅培舫,周怀春,俞启香,蒋时才,叶汝陵.巷道火灾燃烧过程热动力与热阻力特性的研究.中国矿业大学学报,2004,33(4):443-447.
    [162]于丽,王明年,郭春.秦岭特长公路隧道火灾温度场的数值模拟.土木工程学报,2007,40(6):64-68.
    [163]柯尊友,赵加宁.昆明市某展厅建筑自然通风的可行性研究.建筑科学,2007,23(10):18-22.
    [164]吕继组,白敏丽,李晓杰,秦小勇等.爆炸加工洞内自然通风三维数值模拟和模型实验研究,计算力学(已刊用)
    [165]吕继组,白敏丽,李晓杰,秦小勇等.爆炸加工阻波器自然通风的三维数值模拟研究及结构优化.中国工程热物理学会第十三届学术年会,热机气动热力学,绍兴,2007.
    [166]任翔,许华东,朱汉蓉,赵蓉.工程爆破公害及控制.采矿技术,2005,5(3):61-62.
    [167]黄忆龙.工程爆破中的灾害及其控制.西部探矿工程,2002,75(2):90-91.
    [168]刘益勇,吴新霞.向家坝水电站爆破噪声控制标准研究.长江科学院院报,2005,22(6):41-43
    [169]纪冲,龙源,刘建青.爆破冲击性低频噪声特性及其控制研究.爆破,2005,22(1):92-95
    [170]雷鸣,张柏华,王宏亮,田宙.沙墙吸能作用对爆炸冲击波影响的数值分析.解放军理工大学学报(自然科学版),2007,8(5):434-438.
    [171]唐德高,王昆明,贺虎成,吴红晓,曲霞.泡沫混凝土回填层在坑道中的耗能作用.解放军理工大学学报(自然科学版),2006,7(4):365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700