用户名: 密码: 验证码:
燃煤电厂可吸入颗粒物排放及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,由于粗放型发展模式及以煤为主的能源结构和低效能源利用方式,使目前我国煤炭生产与消费量均居世界首位,煤烟型大气污染非常严重;另外,产生的量SO_2、NO_x,使81.6%的城市出现酸雨。由于严重的大气污染,个别城市已成为“卫星上看不见的城市”。研究大气污染现状,讨论污染控制和治理方案已经成为迫在眉睫的任务,其中可吸入颗粒物的排放和控制研究是相当重要的一部分。
     本文建立了燃煤锅炉烟气小颗粒等速采样系统和实验流程,使用US EPA method 5对燃煤锅炉实验台混合燃料稳定燃烧排放的烟尘气溶胶进行采样实验;并对循环流化床电厂电除尘器前后烟尘进行采样实验。测试得到烟尘气溶胶的浓度分布和粒径分布以及PM_(10)/PM_(2.5)在除尘前后烟尘所占的比例,并求得电除尘器对PM_(10)、PM_(2.5)、PM_(1.0)的分级除尘效率。
     燃煤排放的可吸入颗粒物通常富集各种重金属元素和PAHs、VOCs等有机污染物。通过实验研究,分析了燃煤锅炉烟道中可吸入颗粒物的重金属含量分布、多环芳烃浓度以及颗粒物的显微结构和微观孔隙特性等方面的物理化学特性,还分析了实验工况的变化对各种痕量污染物的影响,指出污染物在不同粒径颗粒上的富集规律。同时结合实验室研究,分析了常规静电除尘器和高压脉冲放电的复合静电除尘器对这些痕量污染物的脱除能力。
     声波团聚是对载尘气流进行中间预处理过程以提高传统除尘装置除尘效率的一种方法。本文搭建了声波团聚飞灰颗粒实验装置,主要研究声压、声波频率、停留时间、烟气温度、颗粒物浓度等试验参数对煤飞灰微粒声波团聚过程的影响。在激光粒度仪上进行了声波团聚飞灰颗粒的实验,在线测量飞灰颗粒在声波团聚过程中的粒径分布变化规律。
     在高压脉冲放电的条件下,由于比常规直流放电有着更高的放电电压,产生了大量的高能电子,纳米级颗粒的荷电量有了数量级的提升。本文通过实验分析了脉冲放电电压、电极反应器形式对各粒径段颗粒特别是纳米级颗粒的荷电规律,证实了纳米级颗粒的荷电量可以有很大提升。在此基础上,为提高传统除尘器对亚微米级颗粒的脱除效率,本文建立了一种脉冲预荷电直流收尘的复合式除尘系统,采用较低能耗的高压窄脉冲放电对颗粒物预荷电,大大提高了亚微米级颗粒的荷电量,结合传统的直流静电除尘器可以大幅提高对亚微米级颗粒的脱除效率,对小于1μm的颗粒脱除效率可以达到90%以上。主要分析了脉冲荷电的电源形式和电压等因素对脱除效率的影响,为改造传统静电除尘器提供了理论支持。
     NO是燃烧产生的重要气体污染物之一,脉冲放电与直流放电相结合的新型除尘方式在有效提高对PM_(2.5)脱除效率的同时,还具有氧化NO的能力。高压脉冲放电产生的高能电子可以产生强氧化性的自由基,对NO进行氧化,同时还可以直接打断N-O键,游离态的N原子大部分生成了N2分子。线筒式放电结构氧化NO的能力明显优与线板式放电,与除尘能力具有一致性。氧化效率随着电压的升高而升高,由于一定电压下对NO的处理量趋于定值,氧化效率与NO的初始浓度具有重要的关系,同时也受NO_2浓度的影响。在本文讨论的反应器中,当脉冲峰值电压达到50kV,NO初始体积百分比低于10-4时,NO的氧化率可以达到90%以上。氧化产物NO_2可以在湿法脱硫设备中脱除。
     因荷电粉尘凝并过程极为复杂,目前尚无电凝并除尘效率理论计算模型。但在电凝并复合除尘的工作过程中是先荷电然后进行凝并收尘,凝并和收尘在同一电场区域同时进行。于是,电凝并除尘效率实际上是凝并和收尘的综合除尘效率,只不过静电除尘器所收集的粉尘的粒度分布已不同于原来气体中粉尘的粒度分布。根据入口处颗粒的粒径分布和荷电量,可以通过理论计算得出无凝并状态下的收尘效率,将理论值和实际收尘效率对比即可估算带电颗粒在收尘电场中的凝并效率。本文建立了复合除尘系统的理论模型,集合常规除尘器除尘理论和颗粒在能量场中的凝并理论,分析了颗粒在电场中的运动轨迹,得到了半经验的颗粒凝并脱除效率公式,在凝并和脱除同时进行的情况下对两种行为的比重进行了分析。结果显示在高压脉冲荷电直流凝并收尘的复合除尘器中,提高收尘效率的主导因素在于大大提高了纳米级颗粒的带电量,从而提高了常规直流除尘器对于颗粒的收集效率,而颗粒凝并只有不到10%的影响效果。
Coal is the primary energy source in Chinese electrical power industry.Coal combustion is one of the important sources of Inhalable Particulate(PM_(10)) emission to the atmosphere.PM_(10), especially PM_(2.5) has become the most important air pollutant in our country according to the energy construction of China.It has attracted the world attention at present.
     Size distribution of particles emitted from coal fired boiler was performed according to US EPA Method 5.Particulate samples were extracted from flue gas of a pilot scale 0.5MW coal combustor test facility and circulating fluidized boiler(CFB) power plants using cascade impactor. Particle size distribution and segregated particulate concentration was measured on both experiments,the fraction of PM_(10)/PM_(2.5) in flue gas particulates is calculated at upstream and downstream of the electrostatic precipitator or bag house and size-dependent capture efficiencies for PM_(2.5) on ESP were derived in the thesis.
     Particles emitted from coal combustion are usually enriched toxic heavy metals and organic pollutants such as PAHs,VOCs.Several toxic heavy metals including Cd,Pb,Ni,Cu concentration in particulates was analyzed with atomic absorption spectrometer(AAS) and Hg was analyzed with atomic fluorescence spectrometer.The result shows the concentrations of medium volatility Cd and Pb increase with decreasing particle size and tends to enrich in submicron particles.Limestone powder injection in the pilot scale CFB boiler helps to absorb heavy metals gas and reduces heavy concentration in particles and change Hg distribution in combustion products.Both traditional ESP and combined ESP have ability to catch these pollutants.
     Acoustic agglomeration is an aerosol preconditioning procedure to improve the performance of conventional particle removal devices.Acoustic agglomeration experiments were done in traveling wave field with redispersed fly ash,and effect of parameters on agglomeration processes is investigated such as SPL,frequency,temperature,reaction time and dust loading concentration. Particle size distributions were measured on line with laser particle sizer MS-2000.
     PM_(2.5) especially nano-particles can get higher charge amount under high voltage pulse discharge compared with DC discharge.The main component in particle causing this result is SiO_2. To improve traditional electrostatic precipitator(ESP) removal efficiency on particles smaller than lμm,a new type of fine particle removal system is set up by combine traditional ESP and pulse charge pretreatment technology.High voltage narrow pulse discharge increases the charge amount of fine particles and makes particles easier to be caught by traditional ESP.The efficiency to removal particles smaller than lμm can be much higher than traditional ESP.The influence of charge voltage and form are analyzed to give theoretically support to improve traditional ESP.
     NO is one of the most important pollutants during combustion.The combined electrostatic precipitator(ESP) has a character of de-NOx with the increasing efficiency of catching PM_(2.5). During pulse corona discharge,the formation of ozone and free radical has important effect on NO oxidation.Electron with high energy can also break N-O directly and the dissociative N can form N2.Accordant with dust catch efficiency,line-cylinder chamber is better than line-plate chamber. With the increase of voltage,the de-NOx efficiency becomes higher.Under a certen voltage,the efficiency of de-NOx is strongly influenced by the initial concentration of NO and NO_2.In the reactor developed by this paper,the oxygenation efficiency can be higher than 90%when the voltage is 50kV and the initial NO volume percentage is less than 10~(-4).The oxidation outcome NO_2 can be absorbed by wet gas desulphuration(WGD) technology.
     In the combined ESP,particles are charged first in the pulse electric field and then go to the DC field.Agglomeration and collection work at the same time in DC field.The total efficiency of combined ESP is influenced by these two processes.According to traditional agglomeration theory and ESP theory,a new combined ESP efficiency model is set up.The proportion of this two processes is analyzed by this model.According to the model,the main influence on collection efficiency is the charge ability of high voltage pulse power.The influcen of agglomeration is below 10%.
引文
[1]国家统计局,中国能源战略研究[M].北京:中国电力出版社,2001:
    [2]W.Gene Tucker.An overview of PM_(2.5) sources and control strategies Fuel processing technology[J].2000,65-66:379-392
    [3]USEPA,Air Quality Criteria for Particulate Matter,EPA-600rP-95-001BF_NTIS PB96-168240.,April 1996
    [4]Moisio,M.,Combustion aerosol size distribution measurements using Electrical Low Pressure Impactor.Licentiatum Thesis[R],Tampere University of Technology,Department of Electrical Engineering(Physics),Tampere,Finland,1997:181.
    [5]M.H.Keating et al.,Mercury Study Report to Congress,Volume Ⅰ:Executive Summary,EPA-452rR-97-003,December 1997
    [6]R.Meij,Trace element behavior in coal-fired power plants[J].Fuel Processing Technology,1994,39:199-217
    [7]R.D.Smith,The trace element chemistry of coal during combustion and the emissions from coal-fired power plants[J].Prog.Energy Combust.Sci.1980,6:53-119.
    [8]Constance L.Senior,Development of a mechanistic model for prediction of emission of trace elements from coal-fired power plants[J].Fuel Processing Technology 2000,63:75-77
    [9]Constance L,Senior,Lawrence E,et al.Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J].Fuel Processing Technology 2000,63:149-165
    [10]Howrt J.C.,J.D.Robertson,G.A.Thomas,et al.Characterization of fly ash from Kentucky power plants[J].Fuel,1996,75(4):403-411
    [11]赵承美,孙俊民,邓寅声等.燃煤飞灰中细颗粒物PM_(2.5)的物理化学特性[J].环境科学研究,2004,7,(2):71-73
    [12]刘桂建,杨萍月,余明高等.燃煤过程有害微量元素挥发与其赋存状态及燃烧温度的关系[J].燃料科学与技术,2003,9(1):6-10
    [13]郭欣,郑楚光,贾小红.煤飞灰中砷的形态特性[J].燃烧科学与技术,2004,10(4):299-302
    [14]Milton L.Lee et al.Analytical chemistry ofpolycyclic aromatic compounds[M].New York,London,Toronto:Academic Press,1981:25-43
    [15]李红,邵龙义等,气溶胶中有机物的研究进展和前景,中国环境监测,2001,17(3):62-67
    [16]崔文烜,姚渭溪,徐晓白.燃煤污染源多环芳烃的排放规律及其分布特征. 环境科学学报,1993,13(3):317-324
    [17]Roy L.Bennett et al.Polycyclic Aromatic Hydro car bons,3rd International Symposium on PAH[C].Michigan:Ann Arbor Sci Pub Inc,1979:419-428
    [18]郭静,阮宜纶,大气污染控制工程,化学工业出版社,2001年5月。
    [19]林治卿,袭著革,杨丹凤,PM 2.5的污染特征及其生物效应研究进展,解放军预防医学杂志,2005(4),PP:150-152。
    [20]A.Laitinen,J.Hautanen,J.Keskinen,Bipolar charged aerosol agglomeration with alternation electric field in laminar gas flow,Journal of Electrostatics 38(1996)303-315
    [21]M.W.McElroy,R.C.Carr,D.S.Ensor and G.R.Markowsky,Size distribution of fine coal combustion.AAAS.Sci,215(4528)(1982) 13-19.
    [22]林尤文.我国电除尘产业的进展、存在问题及对策.中国环保产业 199912.
    [23]赵琴霞,蒋春跃.静电除尘技术的发展趋势及其对策.机电工程 2002年第19卷 第4期.
    [24]Ye Zhuang,Yong Jin Kim,Tai Gyu Lee,Pratim Biswas.Journal of Electrostatics.2000 Vol.48 P245-260.
    [25]嵇敬文,陈安琪.国外锅炉应用脉冲袋式除尘器现状.全国袋式过滤技术研讨会论文集.1992-1999 P241-244.
    [26]王安琪.燃煤锅炉烟气除尘.全国袋式过滤技术研讨会论文集.2000-2001 第十期 P133-142.
    [27]刘建民,王荣毅,脉冲放电粒子机理的研究,环境科学学报,1999(3),113-119。
    [28]刘金祥,国君杰,用电介质极化理论分析粒子的场荷电问题,热能与动力工程,1999(5),23-234。
    [29]唐敏康,电除尘器中亚微粒子凝并机理的研究,工业安全与防尘,1995(6):1-5;
    [30]唐敏康,龚健保,呼吸性粉尘电极化产生凝并行为的机理,南方冶金学院学报,1997(4):92-96;
    [31]Chang Ramsay,COHPAC compacts equipment into smaller,denser unit[J],Power Engineering,1996,100.
    [32]Ye Zhuang,Stanlcy.J.Miller,Advance Hybrid Particulate Collector final topic report for phaseⅢ[R].2001.
    [33]白晓清,张江微,声能环保应用的最新研究进展,节能,2001(8)44-45。
    [34]魏风,张军营,王春梅,煤燃烧超细颗粒物团聚促进技术的研究进展,煤炭转化 2003(7),PP:27-32。
    [35]王连泽,席葆树,声场对流场影响的研究,工程力学,2000,Vol:17,(5),79-87。
    [36]S·卡尔弗特,H·M·英格伦,大气污染控制技术手册,海洋出版社,1987
    [37]Hinds W.C.Aerosol Technology:Properties,Behavior,and Measurement of Airborne Particles[M].Wiley Inter-Science,1982
    [38]李奇勇,转炉除尘污水污泥处理利用技术实践与探讨,能源与环境,2004(1)35-37。
    [39]Masuda S,et al.Control of NOx by positive and negative pulsed corona discharge.IEEE/IAS Annu.Conf.,1986:1173-1182
    [40]Song Y H,et al,An industrial experiment of pulse corona process for removal SO2 and NOx from combustion flue gas.J.Adv.Oxid.Technol.,1997,2(2):268
    [41]Tokunaga,O,Suzuki,N.Radiation chemical reactions in NOx and SO2removals from flue gas.Radiat.Phys.Chem.,1990,24(1):145-165
    [42]Yamamoto T,et al.Control of volatile organic compounds by an Ac energized ferroelectrics Pellet reactor and a pulsed corona reactor,IEEE Trans.on Ind.Appl.,1992,28(3):528-533
    [43]Amirov R H,et al.Nanosecond corona discharge for decomposition of gas phase formaldehyde.The second international conference on applied electrostatics,Beijing,1993:139-143
    [44]晏乃强,吴祖成.电晕.催化技术治理甲苯废气的实验研究.环境科学,1999,20(1):11-14
    [45]黄立维等.高压脉冲电晕法治理有机废气的实验研究.环境污染与防治,1998,20(1):4-7
    [46]Mizuno A,et al.,A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization.IEEE Trans.On Ind.Appl.,1986,22(3):512-522
    [47]Chang J S,Lawless P A,Yamamoto T.Corona discharge processes,IEEE Transactions on plasma science,1991,19(6):1152-1161
    [48]Yamamoto T,et al.Triangle-shaped DC corona Discharge device for molecular decomposition.IEEE Trans.on Ind.Appl.,1982,25(4):743-749
    [49]Michael J.Pilat,Tracey W.Steig.Size districbution of particulate emissions from a pressurized fluidized bed coal combustion facility[J].Atmospheric Environment,1983,17(12):2429-2433
    [50]Minghou Xu,Rong Yan,Chuguang Zheng et al.Status of Trace Element Emission in a Coal Combustion Process:a Review[J].Fuel Processing Technology,2003,85:215-237
    [51]孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性的影响[J].煤炭学报,2000,25(5):546-550
    [52]煤灰中部分重金属元素含量与燃料工况的关系模型.环境化学.1998, 17(4):346-348
    [53]Rong Yan,Daniel Gauthier.Volatility and chemistry of trace elements in a coal combustor[J].Fuel,2001,80:2217-2226
    [54]岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M].浙江:中国电力出版社,1998,改236-247
    [55]J J Helble.A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J].Fuel Processing Technology 2000,63:125-147
    [56]Wayne S Seames,Jost O L Wendt.Partitioning of arsenic,selenium,and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor[J].Fuel Processing Technology,2000,63:179-196
    [57]Mednikov E P.Acoustic coagulation and precipitation of aerosols[M].Translated from Russian,Consultants Bureau,1965
    [58]Tiwary R.,Reethof G.,McDaniel,O.H.Acoustically generated turbulence and its effect on acoustical agglomeration[J].Journal of the Acoustic Society of America,1984,76(3):841-849
    [59]Tiwary R.,and Reethof G.Hydrodynamic Interaction of Spherical Aerosol Particles in a High Intensity Acoustic Field[J].Journal Sound and Vibration,1986,108(1):33-49
    [60]Shaw D.T.and Rajendran,N.Nuclear Science and Engineering,1979,70:127
    [61]Shaw,D.T.and Tu,K.W.,J.Aerosol Sci.,1979,10:317
    [62]Scott,D.S.,J.Sound and Vib.,43,p.607(1975)
    [63]Davidson,G.A.and Scott,D.S.,J.Aerosol,Soc.Am.,1974,5:55
    [64]Davidson,G.A.and Scott,D.S.,J.Acoust,Soc.Am.,1973,53,1717
    [65]Kildeso,J.,Bhatia,V.K.,Lind,L.,et al.Journal of Aerosol Science,1995,23:603
    [66]Volk M Jr,Moroz W J.Sonic agglomeration of aerosol particles[J].Water,Air and Soil Pollution,1976,5:319-336
    [67]Volk,M.Jr.Sonic agglomeration of submicron particles,Ph.D.Dissertation,The Pennsylvania State University,1977
    [68]Volk,M.Jr.,Aerosol agglomeration in an acoustic field.Master's Thesis,The Pennsylvania State University,1974
    [69]Tiwary R,Reethof G.Numerical simulation of acoustic agglomeration and experiment verification[J].Transaction of the ASME,1987,109:185-191
    [70]George,W.,Reethof,G.,"On the fragility of Acoustically Agglomerated Submicron Fly Ash Particles.ASME Journal of Vibration,Acoustics,Stress and Reliability in Design,108,322-328,July(1986)
    [71]Hoffmann T L,Koopmann et al.Experimental and numerical analysis of bimodal acoustic agglomeration[J].Transaction of the ASME,1993,115:232-240
    [72]Gallego,J.A.,Riera,E.,Rodriguez,G.,et al.A Pilot scale acoustic system for fine particles removal from coal combustion fumes[C].Berlin:World Congress on Ultrasonics,1995
    [73]Riera,E.,GALLEGO,J.A.,Rodriguez,G.,et al.Acoustic agglomeration of submicron particles in diesel exhausts:First results of the influence of humidity at two acoustic frequencies[J].Journal of aerosol Science,2000,31:S827-828
    [74]E.Riera,L.Elvira,I.Gonzalez.Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J].Ultrasonics,2003,41:277 281
    [75]Ph.Caperan,J.Somers,K.Richter et al.Acoustic agglomeration of a glycol fog aerosol:Influence of particle concentration and intensity of the sound field at two frequencies.Journal of Aerosol Science,1995,26(4):595-612
    [76]黄虹宾,田志鸿,时铭显.声波团聚微粒技术的进展与分析[J].石油大学学报,1995,19(6):126-131
    [77]Song,L.M.Modeling of acoustic agglomeration of fine aerosol particles[D].Ph.D.Dissertation,The Pennsylvania State University,1990
    [78]LIU Shu-yan,HUANG Hong-bin,YAN Wei-ge.Experimental research on enhanced cyclone separation of acoustic agglomerated particles[J].2000,9(1):61-65
    [79]袁竹林,李伟力,魏星等.细微颗粒在行波和驻波声场中运动特性数值实验[J].东南大学学报(自然科学版),2005,35(1):140-144
    [80]郑世琴,黄虹宾,刘淑艳等.声波团聚煤飞灰微粒的新数学模型[J].北京理工大学学报,1999,19(6):686-690
    [81]徐鸿,燃煤锅炉排放可吸入颗粒物物理化学特性及声波团聚排放控制机理研究[D],浙江大学,博士学位论文,2006,103-104
    [82]S.Oglesby.Electrostatic Precipitation[M].NewYork Marcel Dekker,INC.1978.52-53
    [83]解广润,陈慈萱.高压静电除尘[M].武汉:水利电力出版社,1993.28
    [84]H.Rohmann.Physics[Z],17,253-265(1923)
    [85]M.Pauthenier,M.Moreau-Hanot.Physics Radium[J].73,590-615(1932)
    [86]H.J.White.Industrial Electrostatic Precipitation[M].Addison-Wesley,Reading.Mass,1963
    [87]P.Arendt,H.Kallman.Physics[Z],35,421-441(1926)
    [88]B.Y.H.Liu,H.C.Yeh.Appl.Physics[J].39,1396-1402(1968)
    [89]A.T.Murphy,F.T.Adler,G.W.Penney,Trans Amer.Inst.Elec.Eng[J].178,318-325(1959)
    [90]W.B.Smith,J.R.McDonald.Air Pollut Contr.Assoc[J].25,168-172(1975)
    [91]G.W.Hewitt.Trans.Amer.Inst.Elec.Eng[J],176,300-306(1957)
    [92]赵金先,姜雨泽.脉冲电除尘粒子荷电机制[J].金属矿山.5,52-53(2003)
    [93]宁智,路勇.柴油机排气微粒脉冲荷电的研究[J].北方交通大学学报.1,71-75(2000)
    [94]赵志斌,吕晶.脉冲放电粒子荷电机理的研究[J].东北电力技术.3,1-6(1999)
    [95]曹国雄等.新型静电高压脉冲预荷电装置的研究[J].西北纺织工学院学报.2,177-179(1998)
    [96]Tsuneo Watanabea,Fumiyoshi Tochikuboa,Yoshihisa Koizumia,Submicron particle agglomeration by an electrostatic agglomerator,Journal of Electrostatics.
    [97]J.Hautanen,T.Watanabe,T.Tsuchida,Brownian agglomeration of bipolarly charged aerosol particles,J.Aerosol Sci.vol26,pp:21-22.
    [98]T.Watanabe,J,Institute of Electric discharge of Japan,19(1991) 133(in Japanese).
    [99]Y.Koizumi,F.Tochikubo,T.Watanabe,Bipolar-charged submicron particle agglomeration,Journal of Electrostatics 35(1995)55-60.
    [100]Kyo-Seon Kim,Dong-Joo Kim,Jong-Hwan Yoon,The charges in particle charge distribution during rapid growth of particles in the plasma reactor,Journal of Colloid and Interface Science 2003(257),159-207.
    [101]Kauppinen,Jorma Jokiniemi,Kari Lehtinen,Agglomeration of bipolarly charged aerosol particles in alternating electric field,J.Aerosol Sci.(1995)vol:26,pp:739-740.
    [102]Yoji Nakajima,Takashi Sato,Electrostatic collection of submicron particles with the aid of electrostatic agglomeration promoted by particle vibration,powder Technology,135-136(2003)266-284.
    [103]Jun-Ho Ji,Jungho Hwang,Gwi-Nam Bae,Particle charging and agglomeration in DC and AC electric fields,Journal of Electrostatics 61(2004)57-68.
    [104]Srinivas Vemury,Christian Janzen,Sotiris E.Pratsinis,Coagulation of symmetric and asymmetric bipolar aerosols,J.Aerosol Sci.1997(4)pp:599-611.
    [105]向晓东,陈旺生,幸福堂,交变电场中电凝并收尘理论与实验研究,环境科学学报,2000(3),187-191。
    [106]陈旺生,向晓东,幸福堂,交变电场中偶极荷电粒子电凝并的理论研究,工业安全与防尘,2004(2),3-5。
    [107]陈旺生,向晓东,幸福堂,交变电场频率对电凝并影响的理论及实验研究,武汉冶金科技大学学报(自然科学版),1999(12),342-344。
    [108]向晓东,陈宝智,张国权,荷电粉尘在交变电场中的凝并与收集,东北大学学报,1999(12),615-618。
    [109]向晓东,陈旺生,幸福堂,烟尘在交变电场中电凝并收集的实验研究,建筑热能通风空调,9-11。
    [110]向晓东,陈旺生,幸福堂,烟尘在交变电场中的电凝并收集,武汉冶金科技大学学报(自然科学版),1999(9),252-255。
    [111]王连泽,贺美陆,孟亚力,双极荷电粉尘颗粒凝聚的初步研究,环境工程,2002(3):31-34。
    [112]Masaharu Nifuku.1997.A study on the decomposition of volatile organic compounds by pulse corona[J].Journal of Electrostatics 40,687-692
    [113]Elayyan H S B.2002.Theoretical and experimental investigation of a pulsed ESP[J].Journal of Electrostatics,56:219-234
    [114]Jiang Y Z,Zhao J X.2003.Process of narrow pulse discharge[J].Shandong Elect Technology,4:8-10(in Chinese)
    [115]Kanazawa.1993.submicron particle agglomeration and precipitation by using a bipolar charging method[J].Journal of Electrostatics,27,193-209
    [116]Cen K F,Ni M J,Luo Z Y,et al.1999.Theory and Technology of separation between gas and solid fluid[M].Hangzhou:Publishing company of Zhejiang University,1999,530-554(in Chinese)
    [117]Mizuno.1995,Gas cleaning utilitzing non-thermal plasma[J].Proc.Inst.1995.Electrostatics.Japan,19,289-290
    [118]Oda T.1995,Environmental improvement technology by using discharge processing[J].Proc.Inst.Electrostatics.Japan,19,283-286
    [119]Stairmand G J.1965.Removal of Grit Dust and Fume from Exhaust Gases from Chemical Engineering Processes[J].The Chemical Engineer,27(21):113-117
    [120]Teply J,Dressier M.1995.Plasma Chemistry and Plasma Processing[M].Kluwer Academic/Plenum Publishers,Minneapolis USA.15,465-466
    [121]Xiang X D.2002.Charged Particle Agglomeration Collecting Theory and Its Application Technique[D].Shenyang:Doctor's degree paper of DongBei University,1-2(in Chinese)
    [122]Masuda S,Control of NOx by Positive and Negative Pulsed Corona Discharge[J].IEEE/IAS Annul,Conf.,1986:1173-1182
    [123]Mizuno A,A dDevice for Removal of Sulfur Dioxide Exhaust Gas by Pulsed Exercitation of Free Electrons.[C].Proc.Of IEEE/IAS 1984 Annual Conf.,1984:1025-1182
    [124]Tokunaga O,Radiation chemical reaction in NOx and SO2 removals from flue gas[J].Radiat Phys.Chem.,1990,24(1):145-165
    [125]Senichi Masuda,Control of NOx by positive and negative pulsed corona discharges[J].IEEE Transaction on Industry Applications,1990,26(2):373-383
    [126]Keping Yan,Corona induced non-thermal plasmas fundamental study and industrial applications[J].Journal of Electrostatics,1998,44:17-39
    [127]李谦,李劲,脉冲电晕烟气脱硫脱硝的化学动力学分析[J].环境科学学报,1998,18(3):11-17
    [128]Dors M,et al.Removal of NOx by DC and pulsed corona discharges in a wet electrostatic precipitator model[J].Journal of electrostatics,1998 {45} 25-36
    [129]Chen-Lu Yang,et al.Oxidation of nitric oxide in two-stage chemical scrubber using dc corona discharge[J].Journal of Hazardous Materials,2000,B80:135-146
    [130]Futamura S,Zhang A,Yamamoto T.Behavior of N2 and nitrogen oxides in non-thermal plasma chemical processing of hazardous air pollutants.IEEE Trans Ind Appl,2000,36(6):150721514
    [131]Pontiga F,Sofia C,Castellanos A.Ozone generation in coaxial corona discharge using different material electrodes.In:IEEE annual conference report on electrical and dielectric phenomena,2004:5682571
    [132]向晓东,张国权.静电除尘器收尘效率理论的现状与展望.通风除尘,1988,7(1):1-6
    [133]Soo S L.A critical review on electrostatic precipitators[J],New York,AIchE Symp.Ser.,1972,68(126):185-193
    [134]Cooperman P.Efficiency theory and practice in electrostatic precipitation[M],Proceeding of fourth international clean air congress,Tokyo,1977,835-838
    [135]Feldman P L,Kumer S K,Cooperman G D.Turbulent diffusion in electrostatic precipitators[J].AlchE.Symp.Serirs,1977,73(165):120-130
    [136]Leonard G,Mitchner M.and SelfS.A.Particle transport in electrostatic precipitators[J],Atmos.Environ.,1980,14(7):1289-1299
    [137]赵志斌.静电除尘器优化研究[D],沈阳,东北大学,1985
    [138]陈洁,姚若河,空间电荷分布产生电场的数值模拟[J],汕头大学学报,1001-421 7(2002)03-0042-06
    [139]向晓东.电凝聚除尘理论与应用技术研究[D],沈阳,东北大学博士学位论文,2002
    [140]刘后启等编著.电收尘器[M],中国建筑工业出版社,1987
    [141]Williams M M R,Loyalka S K.Aerosol Science Theory and Practice[M],Pergamon Press,New York,154-215(1991).
    [142]刘景良.大气污染控制工程[M].北京:中国轻工业出版社,2002:112-117
    [143]G.Douglas Meegan,Chris Peterson,Timothy Hawkins et.al Application of acoustic flue gas conditioning to enhance mercury and particulate removal[J],Electric Utilities Environmental Conference,Tucson,AZ,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700