用户名: 密码: 验证码:
基于可调谐激光吸收光谱技术的气体在线检测及二维分布重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国家对于环境保护的日趋重视,以及出于保证工业生产安全高效进行的需要,光学非接触式的气体检测技术发展十分迅速。基于可调谐激光吸收光谱的气体测量技术具有无需预处理,响应快速,数据准确,多参数同时检测等优势,成为了当前气体实时在线检测的代表性技术之一。本文研究的主要目的是利用可调谐激光吸收光谱技术,针对于燃烧领域中具有重要意义的气态物质进行在线检测,并同时对气体温度,以及气体分布的二维重建进行研究。
     本文首先利用工作波长位于1.53μm波段的可调谐激光二极管,针对于利用SCR技术脱除燃烧产生烟气中NOx的工作环境,对其中的NH_3浓度进行了在线测量。实验室内借助于波长位于1527nm的NH_3特征气体吸收谱线,在常温常压下利用直接吸收测量的方法达到10ppm-m的浓度测量下限。在小型燃烧试验台上,通过对燃烧产生的烟气中喷洒NH_3,以模拟现场测量工况,实现对烟气中NH_3的实时在线检测。
     其次,利用工作波长位于1.58μm处的可调谐激光二极管,针对于泛频区内的CO_2与CO气体吸收谱线,分别利用直接吸收测量技术以及波长调制技术对其浓度检测进行了试验研究,在常温下实验室内达到的浓度测量下限分别为0.14%-m与400ppm-m。讨论了环境温度压力等条件变化时线宽对于二次谐波信号的影响,采用二次谐波峰谷比值的方法来对其进行修正,大大提高了利用波长调制方法进行浓度测量的精度。设计加工了适合于现场安装和在线检测使用的测枪,对不同工况下燃油炉燃烧产生烟气中的CO_2进行了连续测量。
     其次,通过利用高精度分子光谱数据库,在1.58μm波段内选择两条CO_2特征吸收谱线,利用其线强比值来实现对于光路中均匀气体温度的测量研究。在373K至773K的温度范围内,温度测量误差均方值为17K。针对于光路中存在明显温度梯度的测量环境,通过扫描多条CO_2气体吸收谱线,借助于离散化的数学模型并利用带约束的最小二乘拟合方法来进行求解。在实验室内对两段温度分布重建进行了相应的数值模拟和试验研究,并讨论了相关影响因素。
     针对于焦炉煤气中O_2的在线检测,在实验室内采用工作波长位于763nm处的可调谐激光二极管在不同的气体组分,温度,压力,激光透射率等工况下对其浓度检测进行了测量试验,验证了浓度测量结果的准确性,以保证在O_2超标时可以及时进行报警从而确保工业生产安全。
     另外,对波长调制过程中颗粒对于二次谐波信号的影响进行了理论分析。分别采用180μm与800μm两种不同粒径的石英沙颗粒,对颗粒存在环境下的气体浓度测量进行试验研究。并结合基于Mie理论上的消光法,进行了颗粒物浓度的测量试验。搭建了小型气固两相流动试验台,利用固定浓度的CO_2气体吹动石英沙颗粒进行流化,实现了对于不同流化位置处的气体浓度与颗粒物浓度的同时在线测量。
     最后,将CT断层重建技术与TDLAS技术相结合,在实验室内搭建了高速CT重建测量系统,以实现对于气体二维分布的重建。通过利用四个高速旋转台进行重建断面的扫描,使得扫描时间控制在100ms。利用数值模拟的方法验证了测量的准确性与精度。借助于NH_3气体吸收谱线,通过采用ART代数重建算法,成功实现了对于气体浓度分布的快速二维重建。并通过采用扫描两条特征谱线的方法,利用变量轮换的最优化策略,对气体浓度与温度场同时重建进行了初步试验研究,为今后针对于燃烧环境中的气体重建工作提供借鉴。
As much more attention has been paid on the environment protection and demand to improve the safety and efficiency of industry, the optical techniques for gas sensing are developing very rapidly. Tunable diode laser absorption spectroscopy (TDLAS) is the one of the representative measurement method, with features of fast response, high precision, and simultaneous measurement of multi-parameter. The purpose of this paper is to develop the method of on-line remote sensing for the gases in the flue, and do research on the gas temperature and distribution reconstruction with computed tomography (CT) for further investigation in combustion.
     NH_3 sensing is carried out with tunable diode laser working at the wavelength of 1.53nm for detection in the process of decreasing NOx by SCR in the flue gas. The concentration can be obtained accurately by scanning the spectral line at 1527nm, with minimum detectable concentration of about 10 ppm-m at normal temperature and pressure. By injecting the gaseous NH_3 into the flue gas after combustion, the real time and on line measurement is completed at the small-scale experimental setup.
     The VCSEL diode laser at 1580 nm is utilized to measure the gas concentration of CO_2 and CO in the range of over-tone by direct absorption and wavelength modulation strategy separately, yielding to a minimum detectable concentration of 0.14%-m and 400ppm-m. The effect of line width variety on the second-harmonic signal casued by pressure or temperature is discussed, and corresponding correction method by introducing the ratio of peak to valley from the second-harmonic signal is accepted to improve the wavelength modulation measurement. The apparatus designed for convenient installation and continuous running is applied to the oil-burning boiler for CO_2 detection continuously.
     Based on the high-resolution transmission molecular absorption database, two spectral lines of CO_2 near 1.58μm are selected, and the ratio of the linestrengths is utilized to infer the uniform temperature in the optical path. The experiment is carried out during the range from 373K to 773K by direct absorption method, leading to the mean square error of 17K. The light-of-sight gas temperature distribution is also studied to obtain the temperature distribution at non-uniform path. Discretization model is established for the tempmerature reconstruction, and solved by constrained linear least-square fitting method. The simulation and experiement are completed for the two-temperature distribution, and the relative factors are discussed here.
     For the purpose of on-line monitoring of O_2 in the coke oven gas to ensure the industry safety, the diode laser working at 763 nm is utilized in the lab to detect the O_2 concentration and validate the precision in the conditions of different gas components, pressure and temperature.
     Theory analysis about the effect of particles in the gas on the second-harmonic signal is presented, together with the experiment on gas detection in the condition of mixture by gas component and quartz sands with different size. Combined with the extinction methods based on Mie theory, the particles concentration can be also obtained in the TDLAS system. The simultaneous measurement of gas and particle concentration is proved in the small-scale system with gas-solid two-phase flow.
     A multi-source optical computed tomography system for gas distribution based on the tunable diode laser absorption spectroscopy technique is established here, with tomography scanning time about 100ms to cover the region of interest by projections from four fast rotation platforms. The 2D reconstruction image of NH3 concentration distribution is calculated by algebraic reconstruction technique (ART) method using the projections from gas absorption. The pilot research on simultaneous reconstruction of both concentration and temperature distribution with a pair of spectral lines is continued with optimization strategy of cyclic variable method. The research can be useful for the investigation of chemical distribution in the combustion further.
引文
[1].岑可法.中国能源与环境可持续发展的若干问题.中国废钢铁.2006,2:4-13
    
    [2].“十五”期间我国火电厂脱硫设施建设与运行情况综述.中国环保产业.2006,12
    
    [3].潘荔.中国火电厂在线监测现状及对策.中国电力企业联合会行业发展与环境 保护部.2005,10
    
    [4]. Teichert H, Fernholz T, and Ebert V. Simultaneous in situ measurement of CO, H_2O,and gas temperatures in a full-sized coal-fired power plant by near-infrared diodelasers[J]. Applied Optics. 2003,42(12): 2043-2051
    
    [5]. Webber M.E, Wang J, Sanders S.T, et al. In-itu Combustion measurements of CO,CO_2, H_2O and temperature using diode laser absorption sensors[C]. Proceedings ofthe 28th International Symposium on Combustion
    
    [6].李胜,肖兵.基于TDLAS测量二氧化碳动态浓度与温度.自动化与信息工程. 2006,4:8-11
    
    [7].陈东,刘文清,阚瑞峰等.基于可调谐半导体激光吸收光谱的瓦斯监测方法研究. 光学技术.2006,32(4):598-600
    
    [8].高山虎,刘文清,刘建国等.可调谐半导体激光吸收光谱学测量甲烷的研究.量 子电子学报.2006,23(3):388-392
    
    [9].陈玖英,刘建国,张玉钧等.一种基于TDLAS谐波探测技术的甲烷传感器.大 气与环境光学学报.2007,2(2):146-149
    
    [10].丁天怀,周飞,王鹏.焦炉煤气氧含量本质安全防爆监测系统.清华大学学报. 2007,47(11):1 956-1958
    
    [11].王哲刚,姜捷,凌志浩.对焦炉煤气中氧气含量分析仪采样系统的改进.自动化 仪表.2002,23(5):28-30
    
    [12].范玮,严传俊,张群等.基于可调二极管激光红外吸收的燃烧诊断技术.推进技 术.2003,24(2):186-189
    
    [13]. Sanders S.T, Baldwin J.A, Jenkins T.P, et al. Diode laser sensor for monitoring??multiple combustion parameters in pulse detonation engines[C]. Proceedings of the Combustion Institute. 2000,28: 587-594.
    
    [14].祝玉泉,张永明,张启兴.基于TDLAS的火灾气体探测系统研制.火灾科学.2007, 16(3):128-132.
    
    [15]. Jackson M.A, Robins I. Gas sensing for fire detection: measurement s of CO, CO_2, H_2, O_2 and smoke density in European standard fire tests[J]. Fire Safety J. 1994, 22(2): 181-205
    
    [16]. Hagen B.C, Milke J.A. The use of gaseous fire signatures as a mean to detect fires[J]. Fire Safety J. 2000,34(1): 55-67
    
    [17]. Schlosser H.E, Ebert V, Williams B.A, et al. Nir-diode laser based in-situmeasurement of molecular oxygen in full-scale fire suppression test[C]. Halon Oplions Technical Working Conference 2000, May, 2-4,492-503
    
    [18].中华人民共和国国家标准.氨的测定-纳氏试剂比色法.GB/T 14668-93
    
    [19].中华人民共和国国家标准.氨的测定-离子选择电极法.GB/T 14668-93
    
    [20].刘文清,崔志成,董凤忠.环境污染监测的光学和光谱学技术.光电子技术与信 息.2002,15(5):1-12
    
    [21]. Reid J, Labrie D. Second harmonic detection with tunable diode lasers-Comparisonof experiment and theory[J]. Appl. Phys. B. 1981, 26: 203-210
    
    [22]. Mihalcea R.M, Baer D.S and Hanson R.K. Diode laser sensor for measurements ofCO, CO_2, and CH4 in combustion flows[J]. Applied Optics. 1997,36(33): 8745-8752
    
    [23]. Gianfrani L, Sasso A, Tino GM. Monitoring of O_2 and NO_2 using tunable diodelasers in the near-infrared region[J]. Sensors and Actuators B. 1997,39(1-3): 283-285
    
    [24]. Mihalcea R.M, Baer D.S and Hanson R.K. Advanced diode laser absorption sensorfor in situ combustion measurements of CO_2, H_2O and gas temperature [C].Twenty-Seventh Symposium (International) on Combustion. Pittsburgh,Pennsylvania. 1998,27: 95-101
    
    [25]. Nikkari J.J, Di Iorio J.M, and Thomson M.J. In situ combustion measurements of CO,H_2O, and temperature with a 1.58 urn diode laser and two-tone frequencymodulation[J]. Applied Optics. 2002,41(3): 446-452
    
    [26]. NTT Electronics. A variety of DFB-LDs are available telecom and spectroscopyapplications. 2007, www.nel-world.com
    
    [27]. Weidmann D, Hamdouni A, and Courtois D. CH_4/air/SO_2 premixed flamespectroscopy with a 7.5-μm diode laser[J]. Applied Physics B. 2001, 73: 85-91
    
    [28]. Wang J, Maiorov M, Jeffries J.B, et al. A potential remote sensor of CO in vehicleexhausts using 2.3 μm diode lasers[J]. Measurement Science and Technology. 2000,11:1576-1584
    
    [29]. Kormann R, Fischer H, Gurk C, Helleis F, et al. Application of a multi-laser tunablediode laser absorption spectrometer for atmospheric trace gas measurements atsub-ppbv levels[J]. Spectrochimica Acta Part A. 2002, 58: 2489-2498
    
    [30]. Hanson R.K, Jeffries J.B, Zhou X, et al. Smart sensors for advanced combustionsystems. GCEP Technical Report, 2005
    
    [31]. Furlong E R., Mihalcea RM, Webber M E, et al. Diode laser sensors for real-timecontrol of pulsed combustion systems[J]. AIAA, 1999, 37: 732-737.
    
    [32]. Ebert V, Teichert H, Strauch P, et al. Sensitive in situ detection of CO and O_2 in arotary kiln-based hazardous waste incinerator using 760nm and new 2.3mm diodelasers[J]. Proc. Combust. Inst, 2005, 30: 1611-1618.
    
    [33].王飞,马增益,卫成业等.根据火焰图像测量煤粉炉截面温度场的研究.中国电 机工程学报.2000,20(7):40-43
    
    [34].黄群星,马增益,严建华等.应用插值滤波反投影快速重建300MW电站锅炉准 三维温度场.中国电机工程学报.2005,25(6):134-138
    
    [35].黄群星,马增益,严建华等.300MWe电厂锅炉炉膛截面温度场中心的实时监测 研究.中国电机工程学报.2003,23(3):156-160
    
    [36].沈国清,安连锁,张波.声学法重建炉内温度场的算法研究.锅炉技术.2005, 36(6):52-55
    
    [37].孙小平,田丰,刘立云.基于声波传感器的炉内温度测量方法研究.仪表技术与传 感器.2005,2:26-28
    
    [38]. Zhou X, Liu X, Jeffries J.B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement??Science and Technology. 2003,14:1459-1468
    
    [39]. Liu J.T.C, Jeffries J.B, Hanson R.K. Wavelength modulation absorption spectroscopy with 2/detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Appl. Phys. B. 2004, 78: 503-511
    
    [40].王健,黄伟,顾海涛等.基于TDLAS的气体温度测量.光电子激光.2006, 17(10):1233-1237
    
    [41]. Sanders S.T, Wang J, Jeffries J.B, et al. Diode-laser absorption sensor for line-of-sight gas temperature distributions[J]. Applied Optics. 2001,40(24): 4404-4415
    
    [42]. Liu X. Line of sight absorption of H_2O vapor: gas temperature sensing in uniform and nonuniform flows[D]. PhD dissertation. Stanford University, 2006
    
    [43].李麦亮,周进,耿辉等.测量火焰中氢氧基分布的激光诱导荧光技术.国防科技 大学学报,2003,25(3):10-13
    
    [44].薛敏霞,盛凯夫.用激光诱导荧光法研究燃烧的最新进展.激光与光电子学进展. 2002,39(6):1-7
    
    [45].王飞,严建华,马增益等.运用激光诱导发光法测量碳黑粒子浓度的模拟计算. 中国电机工程学报.2006,26(7):6-11
    
    [46].徐航.现代热物理测量技术.浙江大学,1997
    
    [47].周光湖.计算机断层摄影原理及应用.成都电讯工程学院出版社,1986
    
    [48]. Wang Y, Peng C, Zhang H.L, et al. Wavelength modulation imaging with tunablemid-infrared semiconductor laser: spectroscopic and geometrical effects[J]. OpticsExpress. 2004,12(21): 5243-5257
    
    [49]. Kane D. J, Siver J. A. Real time quantitative 3-D imaging of diffusion flamespecies[C]. NASA Conference Publication. 1997, 10194: 281-286
    
    [50]. Carey S.J, McCann H, Winterbone D.E and Clough E. Near infra-red absorptiontomography for measurement of chemical species distribution[C]. 1st WorldCongress on Industrial Process Tomography. 1998,480-487
    
    [51]. Deguchi Y, Noda M, Abe M, and Abe M. Improvement of combustion controlthrough real-time measurement of O_2 and CO concentrations in incinerators using??diode laser absorption spectroscopy[J]. Proc. Combust. Inst, 2002, 29: 147-153
    
    [52].董凤忠,刘文清,刘建国等.机动车尾气的道边在线实时监测(上).测试技术学 报.2005,19(2):119-127
    
    [53].董凤忠,刘文清,刘建国等.机动车尾气的道边在线实时监测(下).测试技术学 报.2005,1 9(3):237-244
    
    [54]. Frish M.B, White M.A, and Allen M.G Handheld laser-based sensor for remote detection of toxic and hazardous gases[C]. SPIE. Paper No. 4199-05
    
    [55].李宁,王飞,严建华等.利用可调谐半导体激光吸收光谱技术对气体浓度的测量. 中国电机工程学报.2005,25(15):121-126
    
    [56].陈东,刘文清,张玉钧等.可调谐半导体激光光谱火灾气体探测系统.中国激光. 2006,33(11):1 552-1556
    
    [57].阚瑞峰,刘文清,张玉钧等.基于可调谐激光吸收光谱的大气甲烷监测仪.光学 学报,2006,26(1):67-70
    
    [58]. Rothmann L. S, Rinsland C. P, Goldman A, et al. The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996edition[J]. Journal of Quantitative Spectroscopy & Radiative Transfer. 1998, 60(5):665-710
    
    [59]. Armstrong B.H. Spectrum line profiles: the Voight function[J]. Journal ofQuantitative Spectroscopy & Radiative Transfer. 1967, 7:61-88
    
    [60]. Drayson S.R. Rapid computation of the Voigt profile[J]. Journal of QuantitativeSpectroscopy & Radiative Transfer. 1976,16:611-614
    
    [61]. Wells R.J. Rapid approximation to the Voigt/Faddeeva function and its derivatives[J].Journal of Quantitative Spectroscopy & Radiative Transfer. 1999, 62: 29-48
    
    [62]. Whiting E .E. An empirical approximation to the Voigt profiles[J]. Journal ofQuantitative Spectroscopy & Radiative Transfer. 1968, 8:1379-1384
    
    [63].董凤忠,阚瑞峰,刘文清等.可调谐二极管激光吸收光谱技术及其在大气质量监 测中的应用.量子电子学报.2005,22(3):315-325
    
    [64]. Kluczynski P, Axner O. Theoretical description based on fourier analysis of wavelength-modulation spectrometry in terms of analytical and background??signals[J]. Applied Optics. 1999,38(27): 5803-5815
    
    [65]. Gharavi M, Lehnasch G, Buckley S.G. Quantification of near-IR tunable diode lasermeasurements in Flames[C]. 2nd Joint Meeting of the U.S. Sections of theCombustion Institute. Oakland, California, March 25-28,2001, Paper: 167
    
    [66]. Southwest Sciences Inc. Gas sensing using diode laser absorption spectroscopy. 2007,http://www.swsciences.com
    
    [67].王思劼,刘俭辉,李世忱.国内外通信用可调谐激光器研究进展.光通信技术, 2003,4:38-43.
    
    [68]. Webber M.E. Diode laser measurement of NH_3 and CO_2 for combustion andbioreactor applications[D]. PhD dissertation. Stanford University, 2001
    
    [69]. Nirvana Auto-Balanced Photoreceivers. New Focus, Inc. Patent No. 5,134,276
    
    [70].吴忠标.大气污染控制技术.北京:化学工业出版社.2002:232-289
    
    [71].白亚楠.烟气NOx污染控制技术及国产化建议.安全与环境工程.2006,13(2): 52-54
    
    [72].苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术.北京:化学工业出版社. 2005:142-187
    
    [73].叶代启.烟气中氮氧化物污染的治理.环境保护科学.1999,26(4):1-4
    
    [74].王智化,周昊,周俊虎等.不同温度下炉内喷射氨水脱除NOx的模拟与试验研 究.燃料化学学报.2004,132(11):48-53
    
    [75]. Webber M.E, Pushkarsky M and Patel C.K.N. Fiber-amplifier-enhancedphotoacoustic spectroscopy with near-infrared tunable diode lasers[J]. Applied Optics.2003,42(12): 2119-2126
    
    [76]. Weidmann D, Kosterev A. A, and Tittel F.K. Application of a widely electricallytunable diode laser to chemical gas sensing with quartz-enhanced photoacousticspectroscopy[J]. Optics Letter. 2004,29(16): 1837-1839
    
    [77].刘勇,袁宏永,乔利锋等.基于光声原理的早期火灾探测系统的研究.火灾科学. 2006,15(1):49-54
    
    [78]. Verhage A.J.L, Rooth R.R.A, and Wouters L.W. Measurement of traces of ammonia in flue gases with laser Stark spectrometry[C]. SPIE. 1992,1716: 86-96
    
    [79]. Webber M.E, Claps R, Florian F.V, et al. Measurements of NH_3 and CO_2 withdistributed-feedback diode lasers near 2.0 μm in bioreactor vent gases[J]. AppliedOptics. 2001,40(24): 4395-4403
    
    [80]. Lundsberg-Nielsen L, Hegelund F, and Nicolaisen F. M. Analysis of thehigh-resolution spectrum of ammonia (~(14)NH_3) in the near-infrared region, 6400-6900cm~(-1)[J]. J. Mol. Spectres. 1993,162: 230-245
    
    [81]. Webber M. E, Baer D. S, and Hanson R.K. Ammonia monitoring near 1.5 mm withdiode-laser absorption sensors[J]. Applied Optics. 2001,40(12): 2031-2042
    
    [82]. Besson J.P, Schilt S, Rochat E, et al. Ammonia trace measurements at ppb level basedon near-IR photoacoustic spectroscopy[J]. Applied Physics B. 2006, 85: 323-328
    
    [83]. Claps R, Englich F.V, Leleux D.P, et al. Ammonia detection by use of near-infrareddiode-laser-based overtone spectroscopy[J]. Applied Optics. 2001,40(24): 4387-4394
    
    [84].杜建华,张认成,黄湘莹等.CO和CO_2气体红外光谱技术在火灾早期探测中的 应用研究.光谱学与光谱分析.2007,27(15):899-903
    
    [85].程蓓.电厂烟气一氧化碳检测技术及应用.安徽电气工程职业技术学院学报刊. 2005,10(3):54-57
    
    [86]. Ebert V, Fernholz T, Giesemann C, et al. Simultaneous diode-laser-basedIn-situ-detection of multiple species and temperature in a gas-firedpower-plant[C]. 28th Int. Symposium on Combustion. University of Edinburgh,Edinburgh, Scotland, July 30- August 4,2000, Paper: 2DO4
    
    [87]. Faber A.J and Koch R. High temperature in-situ IR laser absorption CO-sensor forcombustion control [C]. Proceeding ICG Annual Meeting. Amsterdam, May 15-17,2000
    
    [88]. Baldacchini G, Amato F. D, Rosa M. D, et al. Measurement of atmospheric COconcentration with tunable diode lasers[J]. Infrared Physics and Technology. 1996,37(1): 1-5
    
    [89].陈涛,苏国锋,袁宏永.光声和气体滤波技术相结合的CO探测方法.传感技术 学报.2004,2:292-294
    
    [90].毛会琼,任子晖,牛光东等.基于MSP430的便携式一氧化碳检测仪的设计.工??矿自动化.2007,2:72-73
    
    [91].王海棠,黄琦兰,刘尚.基于ND IR法汽车尾气分析仪的设计与实现.天津工业 大学学报.2006,25(6):48-53
    
    [92].陈晓宁,刘建国,司福祺等.非分散红外CO气体检测系统研究.大气与环境光 学学报.2007,2(3):207-210
    
    [93].纪新明,吴飞蝶,王建业等.用于火灾探测的非色散红外吸收气体传感器.2006, 1 9(3):602-605
    
    [94].李振新.基于电调制NDIR技术的瓦斯探测系统.煤矿安全.2007,6:46-48
    
    [95]. Webber M. E, Kim S, Sanders S. T, et al. In situ combustion measurements of CO_2 byuse of a distributed-feedback diode-laser sensor near 2.0 μm[J]. Applied Optics. 2001,40(6): 821-828
    
    [96]. Mihalcea R.M, Baer D.S, and Hanson R.K. Diode-laser absorption measurements ofCO_2 near 2.0 μm at elevated temperatures [J]. Applied Optics. 1998 37(36):8341-8347
    
    [97]. Wang J, Maiorov M, Baer D.S, Garbuzo D.Z, et al. In situ combustion measurementsof CO with diode-laser absorption near 2.3 μm[J]. Applied Optics. 2000, 39(6):5579-5589
    
    [98]. Silver J.A, Kane D.J. Diode laser measurement of concentration and temperature inmicrogravity combusition [J]. Meas Sci Technol. 1999,10 (10): 845-852
    
    [99]. Baer D. S, Hanson R. K, Newfield M. E, and Gopaul N. Multiplexed diode-lasersensor system for simultaneous H_2O, O_2, and temperature measurements[J]. Optics.Letter. 1994,19: 1900-1902
    
    [100]. Arroyo M. P and Hanson R. K. Absorption-measurements of water-vaporconcentration, temperature, and line-shape parameters using a tunable InGaAsP diodelaser[J]. Applied Optics. 1993, 32: 6104-6116
    
    [101]. Arroyo M.P, Langlois S, Hanson R.K. Diode laser absorption technique forsimultaneous measurement of multiple gas dynamic parameters in high speed flowscontaining water vapor[J]. Applied Optics. 1994, 33(15): 3296-3307
    
    [102]. Zhou X, Sanders S.T, Jenkins T.P, Jeffries J.B and Hanson R.K. Combustion??temperature and H_2O concentration sensor using a single diode laser[C]. AIAA 40th Aerospace Sciences Conf. 2002: 2002-0395
    
    [103].王健,黄伟,顾海涛等.可调谐二极管激光吸收光谱法测量气体温度[J].光学学 报.2007,27(9):1 639-1 642
    
    [104]. Philippe L.C and Hanson R.K. Laser diode wavelength-modulation spectroscopy forsimultaneous measurement of temperature, pressure and velocity in shock-heatedoxygen flows[J]. Applied Optics. 1993, 32: 6090-6103
    
    [105]. Benedetti R, Giulietti K, and Rosa-Clot M. Line shape analysis of O_2 in air as a wayto measure temperature using a DFB-diode-laser at 761 nm[J]. Opt. Commun. 1998,154: 47-53
    
    [106]. Awtry A.R, Fleming J.W. Simultaneous diode-laser-based in situ measurement ofliquid water content and oxygen mole fraction in dense water mist environments[J].Optics Letters. 2006, 31(7): 900-902
    
    [107].王志国,王鹏,李成丁等.冶金煤气中氧气含量无线监测系统设计.微计算机信 息.2007,23(1-1):109-110
    
    [108].路顺,林健,陈江翠.化锆氧传感器的研究进展.仪表技术与传感器.2007,3:1-3
    
    [109].任海燕,杨秀敏,刘禹林.氧化锆测氧技术的应用.东北电力技术.1996,12: 41-46
    
    [110]. Zappe H. P, Hess M, Moser M, et al. Narrow-linewidth verticalcavitysurface-emitting lasers for oxygen detection[J]. Applied Optics. 2000, 39: 2475-2479
    
    [111]. Wang J, Sanders S. T, Jeffries J. B, and Hanson R. K. Oxygen measurements at high pressures using vertical cavity surface-emitting lasers[J]. Appl. Phys. B. 2001, 72: 865-872
    
    [112].郑刚,孙浩,黄廷磊,虞先煌.颗粒浓度在线监测的双波长消光法.仪器仪表学 报.2000,2 1(5):533-535
    
    [113].郑刚,李孟超,黄廷磊等,多波长消光测粒技术的一种改进方法.光学仪器. 2000,22(1):3-6
    
    [114].殷勇辉,严新平, 萧汉梁,王成焘.光散射法测量粒径分布的数值模拟方法研 究.武汉理工大学学报.2003,27(5):643-645
    
    [115]. Bohren C.F and Huffman D.R. Absorption and scattering of light by small particles. John Wiley&Sons Inc. 1983
    
    [116].郑刚,蔡小舒,卫敬明等.消光法测量微粒尺寸的测量下限的研究.仪器仪表学 报.1998,19(5):1-5
    
    [117].李毅,潘功配,周遵宁.碳黑消光性能的影响因素.火工品.2004,4:7-9
    
    [118]. Choi Y, Mulholland GW, and Hamins A, et al. Comparisons of the soot volumefraction using gravimetric and light extinction techniques[J]. Combustion and Flame.1995,102:1-169
    
    [119]. Axelsson B, Collin R and Bengtsson P. E. Laser-induced incandescence for sootparticle size and volume fraction measurements using on-line extinctioncalibration[J]. Applied Physics B: Lasera and Optics. 2001,72: 367-372
    
    [120]. Zhou Z.Q, Ahmed T. U and Choi M.Y. Measurement of dimensionless soot extinctionconstant using a gravimetric sampling technique[J]. Experimental Thermal and FluidScience. 1998,18:27-32
    
    [121]. Zhu J.Y, Choi M.Y, Mulholland GW, et al. Measurement of soot optical properties inthe near-infrared spectrum[J]. International Journal of Heat and Mass Transfer. 2000,43: 3299-3303
    
    [122].刘铁英,郑刚,虞先煌,王乃宁.三波长消光法测定微粒的粒径及其分布.仪器 仪表学报.2000,21(2):208-210
    
    [123].郑刚,李孟超,刘铁英,王乃宁.颗粒粒度在线测量的多对波长消光法.仪器仪 表学报.2000,21(5):434-436
    
    [124].唐刚,单平.煤矿粉尘双波长消光法测量研究.环境技术.1997,6:19-21
    
    [125]. Gianinoni I, Golinelli E, Melzi G, et al. Optical particle sizers for on-line applications in industrial plants[J]. Optics and Laser in Engineering. 2003, 39: 141-154
    
    [126].王乃宁等.颗粒粒径的光学测量技术及应用.北京:原子能出版社,2000
    
    [127]. Kerker M. The scattering of light and other electromagnetic radiation [M]. New York:Academic Press, 1969
    
    [128]. Seizman J.M, Palmer J.L, Antonio A.L, et al. Instantaneous planar thermometer ofshock-heated flows using PLIF of OH[C]. AIAA. 93-0802
    
    [129]. Bryant R.A, Ratner A, Driscoll J.F. Using PLIF Determined Flame Structure to Analyze Supersonic Combustion Efficiencies[C]. AIAA. 99-0445.
    
    [130]. Palma P.C, Danehy P.M, Houwing A.F.P. PLIF thermometry of a free piston shock tunnel nozzle flow[C]. AIAA. 98-2703
    
    [131].赵建荣,陈立红,俞刚等.平面激光诱导荧光显示火焰中OH的分布图像.第四届 全国流动显示会议.2000
    
    [132].蒋瑾,付凯.双源CT的临床应用.实用医院临床.2006,3(5):89-90
    
    [133].石明国,张振荣,尤志军等.CT成像技术的发展.中国医学装备.2007,4(4): 56-60
    
    [134]. Krstaji'c N and Doran S.J. Fast laser scanning optical-CT apparatus for 3D radiationdosimetry[J]. Phys. Med. Biol. 2007, 52: 257-263
    
    [135]. Conklin J, Deshpande R, Battista J J and Jordan K J. Fast laser optical CT scannerwith rotating mirror and Fresnel lenses[C]. 4th Int. Conf. Radiotherapy GelDosimetry (Sherbrooke). 2006,135-7
    
    [136].庄天戈.CT原理与算法.上海交通大学出版社.1992
    
    [137].高欣.新型迭代图像重建算法的理论研究与实现[博士论文].浙江:浙江大学. 2004
    
    [138].张顺利.ART算法几种重建模型的研究和比较.航空计算技术.2005,35(2):39-41
    
    [139].丛鹏,李志鹏,邬海峰.射线源的定位精度对工业CT图像质量的影响.原子能科 学技术.2004,38:244-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700