用户名: 密码: 验证码:
滑动弧放电等离子体处理挥发性有机化合物基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机废气是一种排放量大、污染面广且对人体和环境都具有严重危害作用的气态污染物。它广泛来源于油漆、涂料、润滑油等化学制品的涂层作业,其主要成分为挥发性有机化合物(Volatile Organic Compounds,VOCs)。当前存在的VOCs处理技术还不能在经济性和技术性方面同时满足工业排放有机废气的治理需求。因此,在完善现有工艺的同时,进一步开发出新型处理工艺具有其必要性和市场价值。基于此背景,本文将滑动弧放电低温等离子体技术应用于环境保护和废气治理领域,通过理论和实验研究建立起可指导工业应用的理论体系,通过装置结构改进使之适合工业应用的要求,并通过示范性工程应用对其工业应用前景作技术经济性分析和评估。本文还针对甲烷这种特殊的VOCs,开展了滑动弧放电等离子体辅助甲烷/二氧化碳重整制取合成气的可行性分析工作。
     论文的第一章是对论文背景及技术关键点相关知识的文献综述。首先,介绍了VOCs的定义、来源、危害和现有处理技术,以及低温等离子体技术的概念、发生方式和在气态污染物治理方面的应用情况。然后,重点介绍了滑动弧放电现象的物理特征、等离子体特性、研究现状,以及和其它低温等离子体发生方式的比较。在此章节中,还包括了对全文系统和框架的介绍。
     论文的第二章是滑动弧放电等离子体物理特性研究。首先,针对实验台规模交流滑动弧放电反应器进行放电电参数检测、放电电弧移动特性检测,以及气体流场模拟计算。然后,通过实验结果和理论热动力平衡计算结果之间的对比,并结合等离子体区域光谱分析的结果,对滑动弧放电过程非平衡特性刺激化学反应的能力进行了分析。在此章节中,还包括了对本论文所采用的主要分析测试仪器和软件的介绍说明。
     论文的第三章是滑动弧放电等离子体处理VOCs的初步研究。首先研究了滑动弧放电在降解过程中对VOCs浓度和流量的适应性。然后以正已烷(n-C_6H_(14))为代表性VOCs,研究了放电过程参数,如放电电压、VOCs初始浓度、背景气体成分、背景气体氧气浓度等,对VOCs降解率的影响。基于上述实验结果,初步分析了滑动弧放电降解VOCs的过程和机理。最后,通过分析电极间距以及电极喉部高度对电弧移动特性和VOCs降解性能的影响,对滑动弧放电反应器的结构开展了研究工作。
     论文的第四章是滑动弧放电等离子体处理VOCs机理研究。首先,以研究背景气体相对湿度和氧气浓度对VOCs降解性能的影响作为切入口,研究了背景气体的氧气浓度和相对湿度对滑动弧放电特性的影响。然后,针对四氯化碳(CCl_4),正已烷(n-C_6H_(14))和甲苯(C_7H_8)三种不同结构的典型VOCs,通过实验研究,分析了背景相对湿度和氧气浓度对VOCs降解产物和降解率的影响。在上述实验结果的基础上,针对不同VOCs化学结构,分析了高能电子和活性基团对VOCs降解过程所起作用的重要性差异,实现探索滑动弧放电低温等离子体降解VOCs机理的目的,对提高降解过程选择性提供理论指导。
     论文的第五章对滑动弧放电处理挥发性有机化合物过程中二氧化氮生成和抑制途径进行了研究.在分析滑动弧放电过程二氧化氮的生成机理的基础上,研究了VOCs化学结构、供给电压、反应器结构等参数对二氧化氮生成的影响。最后,探讨了放电过程二氧化氮生成的抑制途径。
     论文的第六章是滑动弧放电装置结构改进及工业应用设计。首先,通过实验研究和流体数值计算对传统滑动弧放电装置的放大进行了研究和分析。然后,受等离子体区域光谱分析结果的启发,提出了一种改进型滑动弧放电装置,并针对四氯化碳(CCl_4),正已烷(n-C_6H_(14))和甲苯(C_7H_8)三种典型VOCs的降解性能进行研究和分析。通过和多电极滑动弧放电装置处理效果的对比,对该装置做出技术性和经济性评估。基于此改进思路,提出多电极改进型滑动弧放电装置的设计方案。最后,对改进型滑动弧放电反应器及活性炭吸附-滑动弧联合技术的工业应用进行了技术经济性分析。
     论文的第七章是滑动弧放电甲烷/二氧化碳重整(Dry Methane Reforming,DMR)制取合成气的可行性分析。本章主要研究了甲烷/二氧化碳摩尔比对DMR过程的影响,考察对象包括反应物(甲烷和二氧化碳)转化率、合成气成分、主要放电产物的生成率和选择率、反应物单位转化量能耗和生成物单位生成量能耗等。通过实验结果和理论热平衡计算结果的比较,对滑动弧放电刺激DMR过程中的低温等离子体作用进行验证和分析。最后,通过和传统DMR过程以及其他等离子体放电DMR过程的比较,对滑动弧放电DMR过程作经济性评估,并分析其进一步应用的潜力。
     论文的第八章是全文总结及工作展望。主要包括对全文结论的总结归纳,论文创新点的提炼,以及对未来需要进一步加强或开展的研究工作的展望。
Organic waste gas is particularly burdensome for both the natural environment and human health. It is widely emitted from the processes containing the uses of paint, dope, and lube, etc. The main components of this type of gaseous pollutants are so-called the volatile organic compounds (VOCs). Currently, the applications of conventional technologies for VOCs removal process can't simultaneously meet the economic and technical requirements owing to their own disadvantages, so the development of innovative VOCs removal technology is essentially necessary. In this dissertation the gliding arc discharge non-thermal plasma (NTP) is applied into the region of environmental protection: a theoretical system which can be used for the guidance of industrial application is built based on both the theoretical analysis and experimental researches; the device structure is developed to fit for the practical application; and the technical and economic assessments are performed based on the results of a demo project. Furthermore, the explorative work on the methane reforming with carbon dioxide is also carried out.
     Chapter one is the background review, mainly including the definitions of VOCs, the sources of VOCs, the harm of VOCs, the conventional VOCs removal technologies, the concept of NTP, the various styles of NTP sources, and the application of NTP in the gaseous emission control areas, etc. The gliding arc discharge plasma has been paid particular attentions, mainly focusing on the operation phenomenon, the features of plasma region, the state-of-art of current application, as well as the comparison of which with other NTP sources. In this chapter, the framework and the structure of this dissertation are also introduced.
     Chapter two is on the researches on the physical characteristics of gliding arc discharge plasma. An experimental scale AC gliding arc discharge reactor is used for the discharge parameters detection, the arc movement analysis, and the gas field and velocity field simulation calculation. Then the non-thermal property of gliding arc evolution is analyzed with the comparison between experimental results and thermodynamic equilibrium calculation data, and also based on the plasma region spectral analysis results.
     Chapter three is on the preliminary researches about the VOCs decomposition with gliding arc discharge. Firstly, the VOCs decomposition performances of gliding arc discharge are investigated, with the targets as single compound VOCs, dilute VOCs mixtures, and concentrated VOCs mixtures, respectively. Then the influences of discharge parameters, i.e. supply voltage, VOCs initial concentration, background gas component, and the background oxygen concentration, etc. on the VOCs decomposition performance are investigated, with hexane (n-C_6H_(14)) is chosen as the typical VOCs. Based on the above, the mechanism of gliding arc discharge assisted VOCs decomposition is preliminarily discussed and analyzed. Finally, the gliding arc discharge reactor structure is analyzed based on the researches of the influences of electrodes gap and throat height on the VOCs decomposition efficiency and specific energy consumption, etc.
     Chapter four is on the mechanism of VOCs decomposition in gliding arc discharge plasma atmosphere. The investigation on the influences of background relative humidity and oxygen concentration on VOCs decomposition is chosen as the entry point. Firstly, the influences of background relative humidity and oxygen concentration on the gliding arc discharge characteristics are investigated, and then the researches on the effects of background relative humidity and oxygen concentration on three different types of VOCs, i.e. tetrachloromethane (CCl_4), n-butane (n-C_4H_(10)) and toluene (C_7H_8), are carried out. Based on above experimental results, the dominant decomposition channels and species under gliding arc non-thermal plasma conditions for different VOCs structures are discussed.
     Chapter five is on the nitrogen dioxide formation in the gliding arc discharge assisted VOCs decomposition processes. NO_2 formation in dry air gliding arc discharge is mechanistically discussed based on the thermodynamic equilibrium calculation and plasma region spectra analysis. Then the influences of VOCs chemical structure, supply voltage, background humidity, and reactor geometry on NO_2 formation are experimentally investigated. The pathways of NO_2 formation inhibition are discussed based on the above.
     Chapter six is on the gliding arc discharge device development and the design for industrial application. The scale-up analysis on traditional gliding arc facility is studied based on the laboratory experiments and numerical simulation. An innovative developed gliding arc discharge reactor based on a modified gas feed system is proposed. The performances of developed gliding arc discharge reactor in the decomposition of VOCs with relative high gas flow rate, including the decomposition efficiency, the specific energy consumption, and the decomposition by-products, are investigated, with tetrachloromethane (CCl_4), n-butane (n-C_4H_(10)) and toluene (C_7H_8) are chosen as the typical VOCs. The economic and technical assessments are performed with the comparison with multi-electrode gliding arc discharge device, and the design of multi-electrode developed gliding arc discharge device is proposed. At the end, the economic analysis on the activated carbon-gliding arc technology for the treatment of industrial VOCs emission control is also carried out.
     Chapter seven is on the gliding arc gas discharge assisted dry methane reforming (DMR). The influences of feed gas proportion on the reagents conversion and main by-product distribution are investigated in different supply voltage conditions. Based on the present investigation, the performance of the plasma assisted DMR process of gliding arc discharge facility is assessed by the comparison between experimental result and theoretical thermodynamic equilibrium calculation data. Finally, the economic assessment on the gliding arc assisted DMR process is carried out via the comparison with traditional DMR process and other plasma assisted DMR processes, based on which the potential of the application of gliding arc discharge in the assistance of DMR process is also analyzed.
     Chapter eight mainly includes the conclusions and the innovative point of this dissertation, and the prospect of future work.
引文
[1]. The definition relates to indoor air quality. World health Organisation. (1989)
    [2]. Code of Federal Regulations. United States Government Printing Office. (2007)
    [3]. ASTM D3960-98 Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings. ASTM International. (1998)
    [4]. Directive 2004/42/CE of the European Parliament and of the Council. European Union Publications Office. (2004)
    [5]. ISO 4618/1. International Organization for Standardization. (1998)
    [6]. DIN 55649-2000. Deutsches Institut fur Normung. (2000)
    [7]. Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, D. Tang, Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment. 42 (2008) 6247-6260.
    [8]. Z. Klimont, Emission inventories and projections of NO_x, NH_3, and NMVOC in East Asia. The 4th workshop on the transport of air pollutants in Asia. Oct. 22-23, IIASA, Laxenburg, Austria, (2001).
    [9]. C. Lee, S. Hsieh, Health risk assessment for human exposure to VOCs in a paint manufacturing plant of Taiwan. Epidemiology. 18 (2007) 70-71.
    [10].A. Sunesson, I. Rosen, B. Stenberg, Multivariate evaluation of VOCs in buildings where people with non-specific building-related symptoms perceive health problems and in buildings where they do not. Indoor Air. 16 (2006) 383-391.
    [11].S. Ramstrom, S. Chillrud, P. Kinney, Personal exposures to VOCs in a population of inner-city teenagers in New York City: A preliminary health risk assessment. Epidemiology. 13 (2002) 144-144.
    [12].F. Pitten, J. Bremer, A. Kramer. Air contamination with volatile organic compounds (VOCs) and health complaints. Deutsche Medizinische Wochenschrift. 125 (2000) 545-550.
    [13].M. Yoshimura, C. Tang, Effects of soil environment changes on the behavior of VOCs in unsaturated zone. XXXth International Association-of-Hydrogeolgists Congress on Groundwater: Past Achievements and Futures Challenges. Nov. 26-Dec. 1, Cape Town, South Africa, (2000).
    [14].I.Bene,J.Skorkovsky,J.Lenicek,VOC in the indoor environment-comparison with outdoor concentrations and their relationship to different acitvites.Epidemiology.10(1999)122-122.
    [15].W.Carter,D.Luo,I.Malkina,Investigation of the atmospheric reactions of chloropicrin.Atmospheric Environment.31(1997) 1425-1439.
    [16].N.Yassaa,B.Meldati,E.Brancaleoni,M.Frattoni,P.Ciccioli,Polar and non-polar volatile organic compounds(VOCs) in urban Algiers and saharian sites of Algeria.Atmospheric Environment.35(2001) 787-801.
    [17].Clean Air Act.(1990).
    [18].大气污染法修正案.(2004).
    [19].工业企业设计卫生标准,TJ36.(1979).
    [20].恶臭污染物排放标准,GB14554.(1993).
    [21].大气污染物综合排放标准,GB16297.(1996).
    [22].中华人民共和国大气污染防治法.(2000).
    [23].周兴求,叶代启,环保设备设计手册--大气污染控制设备,化学工业出版社,(2004)
    [24].Y.Chen,H.Liu,Absorption of VOCs in a rotating packed bed.Industry Engineering Chemical Research.41(2002) 1538-1588.
    [25].M.Keyvani,N.Gardner,Operating characteristics of rotating beds.Chemical Engineering Progress.85(1989) 48-52.
    [26].J.Wijmans.A membrane system for separation and recovery of organic vapors from gas stream.AlChE Symposium Series.New York,(1989) 74-85.
    [27].P.Dwivedi,V.Gaur,A.Sharma,Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber.Separation and Purification Technology.39(2004) 23-37.
    [28].A.Hamad,M.Fayed,Simulation-aided optimization of volatile organic compounds recovery using condensation.Chemical Engineering Research & Design.82(2004)895-906.
    [29].W.Yazbek,A.Delebarre,Modeling of volatile organic compounds condensation in fluidized bed.Chemical Engineering Science.2(2004) 283-297.
    [30]. D. Pezolt, S. Collick, H. Johnson, Pressure swing adsorption for VOC recovery at gasoline terminals. Chemical Engineering Progress. 16 (1997):16-22.
    [31].J. Ruhl. Recover VOC via adsorption on activated carbon. Chemical Engineering Progress. 89 (1993): 37-41.
    [32].M Dtenzel, Remove organics by activated carbon adsorption. Chemical Engineering Progress. 89 (1993): 36-41.
    [33].Y. Li, J. Chen, Y. Sun, Adsorption of multicomponent volatile organic compounds on semi-doke. Carbon. 46 (2008) 858-863.
    [34]. M. Cuervo, E. Asedegbega-Nieto, E. Diaz, Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. 1188 (2008) 264-273.
    [35]. S. Park, Y. Kim, S. Yeo, Vapor adsorption of volatile organic compounds using organically modified clay. Separation Science and Technology. 43 (2008) 1174-1190.
    [36]. G. Yahaya, Separation of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiber membrane-based pervaporation process. Journal Of Membrane Science. 21 (2007) 413-420.
    [37].K. Hou, J. Wang, H. Li, S. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air. Rapid Communications in Mass Spectrometry. 21 (2007) 3554-3560.
    [38].E. Van Hassel, M. Bier, An electrospray membrane probe for the analysis of volatile and semi-volatile organic compounds in water. Rapid Communications in Mass Spectrometry. 21 (2007)3554-3560.
    [39].S. Salvador, J. Commandre, Y. Kara, Thermal recuperative incineration of VOCs: CFD modeling and experimental validation. Applied Thermal Engineering. 26 (2006) 2355-2366.
    [40].H. Alteinkirch, G. Stoltengurg, M. Wagner, Journal of Neurology. 219 (1978) 159.
    [41].M. Akbar, J. A. Barnard, Slow combustion of methyl ethyl ketone, Transactions of the Faraday Society. 64 (1968) 3035-3048.
    [42]. A. Guillemot, J. Mijoin, S. Mignard, Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system. 75 (2007) 249-255.
    [43]. A. Abdullah, M. Abu; S. Bhatia, Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials. 129 (2006) 39-49.
    [44]. J. Lou, Y. Tu, Incinerating volatile organic compounds with ferrospinel catalyst MnFe_2O_4: An example with isopropy alcohol. Journal of the Air & Waste Management Association. 55(2005)1809-1815.
    [45].K. Vidya, V. Kamble, N. Gupta. Vapor-phase photocatalytic oxidation of volatile organic compounds over novel uranyl-anchored MCM-41 heterogeneous catalyst. Nanoporous Materials IV. 156 (2005) 787-794.
    [46]. R. Lopez-Fonseca, J. Gutierrez-Ortiz, M. Gutierrez-Ortiz. Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions. Catalysis Today. 107-108 (2005) 200-207.
    [47].A. Maira, W. Lau, C. Lee, Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds. Chemical Engineering Science. 58 (2003) 959-962.
    [48]. S. Wang, H. Ang. T. Moses, Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International. 33 (2007) 694-705.
    [49]. G. Zuo, Z. Cheng, H. Chen, Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials. 128 (2006) 158-163.
    [50].K. Yu, G. Lee, W. Huang, The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. 56 (2006) 666-674.
    [51].A. Jol, A. Dragt, Biotechnological elimination of volatile organic compounds in waste gases. Bioreactor Downstream Process. 2 (1995) 373-379.
    [52].K. Kiared, L. Bieau, R. Briezinaki, Biological elimination of VOC in bio-filter. Environmental Progress. 15 (1996) 148-152.
    [53].P. Liu, G. Leson, T. Thoads, Engineered bio-filter for removing organic contaminants in air. Journal of Air and Waste Management Association. 48 (1994) 299-305.
    [54].G. Leson, A. Winer. Bio-filtration: an innovative air pollution control technology for VOC emissions. Journal of Air and Waste Management Association. 41 (1991) 1045-1051.
    [55].R. Mcinnes. Cutting toxic organic chemicals. Chemical Engineering. 97 (1990) 108-113. [56].J. Nikiema, P. Dastous, M. Heitz, Elimination of volatile organic compounds by biofiltration: A review. Reviews on Environmental Health. 22 (2007) 273-294.
    [57]. I. Yoon, C. Kim, C. Park, Optimum operating conditions for the removal of volatile organic compounds in a compost-packed biofilter. Korean Journal of Chemical Engineering . 19 (2002) 954-959.
    [58]. D. Xu, Z. Huang, F. Kang, T. Ko, Removal of volatile organic compounds b adsorption and photocatalytic oxidation. Jouranl of Wuhan University of Technology-Materials Science Edition. 22 (2007) 450-452.
    [59]. D. Rankovic, Z. Arsenijevic, N. Radic, B. Grbic, Z. Grbavcic, Removal of volatile organic compounds from activated carbon by thermal desorption and catalytic combustion. Russian Journal of Physical Chemistry A, Focus on Chemistry. 81 (2007) 1388-1391.
    [60]. Z. Bo, J. Yan, X. Li, Y. Chi, K. Cen, Simultaneous removal of ethyl acetate, benzene and toluene with gliding arc gas discharge. Journal of Zhejiang University-Science. 5 (2008) 695-701.
    [61]. I. Langmuir, Osillations in ionized gases. Proceedings of the National Academy of Sciences. 14 (1928) 628.
    [62]. W. Crookes's evening lecture to the Royal Institution on Friday, 30th April 1897.
    [63].D. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications (2005)
    [64].N. A. Krall, A. Trivelpieece, Principles of Plasma Physics, (1973).
    [65].H. Matzing, Chemical kinetics model of SO_2/NOx removal by electron beam. Non-Thermal Plasma Techniques For Pollution Control. Part A: Overview, Fundamentalsand Supporting Technologies, 34 (1993) 59-64.
    [66].J.Grochulska, Thermal plasma dynamical interaction between the plasmasphere and the ionosphere at mid-latitudes. A review. Acta Geophysica Polonica. 29 (1981) 251-273.
    [67]. Y. Gott, Ion thermal-conductivity in a tokamak plasma for the nonneoclassical distribution function (review paper). Plasma Physics Reports. 21 (1995) 621-633.
    [68]. J. Hlina, J. Sonsky, Recurrent properties of coherent structures in a thermal plasma jet. 2008 IEEE 35th International Conference on Plasma Science. (2008) 1.
    [69]. M. Frolov, A. Ionin, A. Kotkov, Theoretical studies on kinetics of singlet oxygen in non-thermal plasma. High-Power Laser Ablation. 5448 (2004) 294-306.
    [70].T. Oda, T. Takahashi, K. yamaji, TCE decomposition by the nonthermal plasma process concerning ozone effect. IEEE Transactions on Industry Applications. 40 (2004) 1249-1256.
    [71]. A. Nedospasov, N. Nenova, The conversion of the thermal energy of plasma in the SOL of tokamaks.48(2008)l-3.
    [72].D. Hu, X. Zheng, Y. Nlu. Effect of oxidation behavior on the mechanical and thermal properties of plasma sprayed tungsten coatings. Journal of Thermal Spray Technology. 17 (2008) 377-384.
    [73]. A. Nezu, K. Moro, T. Watanabe, Thermal plasma treatment of waste ion exchange resins by CO_2 injection. Thin Solid Films. 506 (2006) 432-435.
    [74].T. Lirong, R. Reddy. The processing of nanopowders by thermal plasma technology. Journal of Management. 58 (2006) 62-66.
    [75].S. Pekarek, M. Pospisil, J. Krysa, Non-thermal plasma and TiO_2-assisted n-heptane decomposition. Biochemistry. 45 (2006) 308-315.
    [76].H. Tsai, C. Wang, C. Lee, hydrogen production in a thermal plasma hydrogen reforming using ethanol steam reforming. Journal of the Chinese Institute of Engineers. 31 (2008) 417-425.
    [77]. S. Yang, C. Huang, Plasma treatment for enhancing mechanical and thermal properties of biodegradable PVA starch/blend. Journal of Applied Polymer Science. 109 (2008) 2452-2459.
    [78].I. Matveev, S. Matveeva, Non-thermal plasma tools for ignition and flame control. IEEE 35th International Conference on Plasma Science, Germany, (2008).
    [79]. S. Suckewer, Relations for ionization of atoms and ions in nonthermal equilibrium. 9th International Conference on Phenomena in Ionized Gases. (1969).
    [80]. S. Suckewer, Spectroanalysis and populations of excited levels. Spectrochimica Acta Part B-Atomic Spectroscopy. B 26 (1971) 515-530.
    [81].E. Hnatiuc, Precedes electriques de mesure et de traitement des polluants. Tce & Doc, Paris. (2002)
    [82]. P. Robinson, I. Cairns, Stochastic growth of localized plasma waves. Physics of Plasmas. 8 (2001)2394-2400.
    [83]. Y. Qin, M. Hu, Effects of microwave plasma treatment on the field emission properties of pringted carbon nanotubes/Ag nano-particles films. Applied Surface Science. 254 (2008) 1757-1762.
    [84].X. Xu, T. Nishimura, N. Hirosaki, Fabrication of a nano-Si_3N_4/nano-C composite by high-energy ball milling and spark plasma sintering. Journal of the American Ceramic Society. 90 (2007) 1058-1062.
    [85]. J. Boeuf, Plasma display panels: physics, recent developments and key issues. Journal of Physics D: Apply Physics. 36 (2003) 53-79.
    [86]. K. Kawamara. Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam radiation. Radiation Physics and Chemistry. 13 (1979) 5-12.
    [87]. J. Chang, Recent development of plasma pollution control technology: a critical review. Science and Technology of Advanced Materials. 2 (2001) 571-576.
    [88]. V. Auslender, I. Chertok, Extraction of an electron beam through a foil. Instruments and Experimental Techniques. 41 (1998) 836-839.
    [89]. I. Banik, T. Chaki, V. Tikku, Effect of electron beam irradiation on the dielectric properties of fluorocarbon rubber. 263 (1998) 5-13.
    [90].E. Rau, A. Zhukov, E. Yakimov, Application of surface electron beam induced voltage method for the contactless characterization o f semiconductor structure. Solid State Phenomena. 63-64 (1998) 327-332.
    [91].G. Zhou, Y. Li, J. Cao, Particle simulations for electron beam-plasma interactions. 15 (1998) 8985-897.
    [92].K. Urashima, J. Chang, Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Transactions on Dielectrics and Electrical Insulation. 7 (2000) 602-614.
    [93].O. Motret, C. hibert, M. Nikravech, The dependence of ozone generation efficiency on parameter adjustment in a triggered dielectric barrier discharge. Ozone-Science & Engineering. 20 (1998) 51-66.
    [94]. M. Jani, K. Takaki, T. Fujiwara, Low-voltage operation of a plasma reactor for exhaust gas treatment by dielectric barrier discharge. Review of Scientific Instruments. 69 (1998) 1847-1849.
    [95]. A. Bill, B. Eliasson, U. Kogelshatz, Comparison of CO_2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge.Advances in Chemical Conversions for Mitigating Carbon Dioxide.114(1998) 541-544.
    [96].H.Nishiyama,H.Takana,S.Niikura,Characteristics of ozone jet generated by dielectric-barrier discharge.IEEE transactions on Plasma Science.36(2008) 1328-1329.
    [97].X.Duan,F.He,J.Ouyang,Various plasma patterns in planar dielectric-barrier discharge IEEE transactions on Plasma Science.36(2008) 1332-1333.
    [98].J.Pons,L.Oukacine,E.Moreau,Observation of dielectric degradation after surface dielectric barrier discharge operation in air at atmospheric pressure.IEEE transactions on Plasma Science.36(2008) 1342-1343.
    [99].H.Itoh,K.Teranishi,Y.Hashimoto,Self-organized patterns of dielectric-barrier discharge generated by piezoelectric transformer.IEEE Transactions on Plasma Science.36(2008)1348-1349.
    [100].M.Akaki,T.Fujiwara,Removal of nitric oxide in flue gases by multipoint to plane dielectric barrier discharge.IEEE Transactions on Plasma Science.27(1999) 1137-1145.
    [101].G.Yu,Q.yu,Y.Jiang,K.Zeng,Characteristics of NO reduction with non-thermal plasma.Journal of Environmental Sciences.17(2005) 627-630.
    [102].C.Yi,Y.Lee,D.Kim,G.Yeom,Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching.Surface and Coating Technology.163-64(2003) 723-727.
    [103].G.Sankin,V.Teslenko,Study of an electric discharge in the air with capillary electrolytic electrodes.Pisma V Zhurnal Tekhnicheskoi Fiziki.22(1996) 49-53.
    [104].H.Bender,J.Rocca,W.Silfvast,Capillary discharge soft x-ray amplifier for use in amplifying harmonic radiation.X-Ray Lasers.151(1996) 84-186.
    [105].K.Sekimoto,M.Takayama,Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air.International Journal of Mass Spectrometry.261(2007) 38-44.
    [106].A.Yehia,Calculation of ozone generation by positive dc corona discharge in coaxial wire-cylinder reactors.Journal of Applied Physics.101(2007) 306-310.
    [107].J.Koller,L.Aubrecht,Pulse properties of negative corona discharge.Acta Physica Slovaca.53(2003)391-395.
    [108]. R. Ono, T. Oda, Formation and structure of primary and secondary streamers in positive pulsed corona discharge - effect of oxygen concentration and applied voltage. Journal of Physics D-Applied Physics. 36 (2003) 1952-1958.
    [109]. R. Benocci, A. Galassi, L. Mauri, Experimental pressure dependence of positive corona discharge in N_2. European Physical Journal D. 25 (2003) 157-160.
    [110]. D. Kim, Y. Choi, K. Kim, Effects of process variables on NOx conversion by pulsed corona discharge process. Plasma Chemistry and Plasma Processing. 21 (2001) 625-650.
    [111]. S. Osawa, T. Yokoyama, M. Hanada, Control of degradation rate of biodegradable polymers by corona discharge treatment. Kobunshi Ronbunshu. 58 (2001) 581-587.
    [112]. H. Kim. Nonthermal plasma processing for air-pollution control: a historical review, Current Issues, and Future Prospects. Plasma Processes and Polymers. 1 (2004) 91-110.
    [113]. M. Jasinski, J. Mizeraczyk, M. Dors, Microwave discharge generator oprated at high gas flow rate. Przeglad Elektrotechniczny. 84 (2008) 77-79.
    [114]. A. Rousseau, A. Dantier, L. Gatilova, On NOx production and volatile organic compound removal in a pulsed microwave discharge in air. Plasma Sources Science & Technology. 14 (2005) 70-75.
    [115]. B. Penetrante, Electron Beam and Pulsed Corona Processing of Volatile Organic Compounds Gas Stream. Pure & Applied Chemistry. 68 (1996) 1083-1087.
    [116]. B. Penetrante, Removal of NOx from diesel generator exhaust by pulsed electron beams. 11th IEEE International Pulsed Power Conference. Baltimore. (1997).
    [117]. S. Masuda, Control of NOx by positive and negative pulsed corona discharge. Annual Conference of the IEEE Industrial Electronics Society. Denver. (1986).
    [118]. A. Mizuno. A method for the removal of sulfer dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Transaction on Industrial Application. 22 (1986)516-522.
    [119]. T. Yamamoto, Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Transaction on Industrial Application. 28 (1992) 528-533.
    [120]. T. Ohdubo, J. S. Chang, Time dependence of NO_x removal rate by a corona radical shower system. IEEE Industry Application Society. 30 (1994) 856-891.
    [121]. M. Chang, C. Chang, Destruction and removal of toluene and methyl ethyl ketone from gas streams with silent discharge plasmas. American Institute of Chemical Enginering. 43 (1997) 1325-1330.
    [122]. K. Youngsam, Y. Ko, G. Yang, P. Chang, M. Kennedy, Microwave plasma conversion of volatile organic compounds. Journal of Air & Waste Management Association. 53 (2003) 580-585
    [123]. T. Yamamoto, K. Ramanathan, Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Transaction on Industrial Application. 29 (1992) 528-534.
    [124]. V. Kalpathi, Destruction of volatile organic compounds in a dielectric barrier discharge plasma reactor. Oklahoma State University, Master thesis. (2005).
    [125]. A. Fridman, S. Nester, L. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge. Progress in Energy and Combustion Science. 25 (1999) 211-231.
    [126]. H. Lesueur, A. Czernichowski, J. Chapelle, Device for generating low-temperature plasmas by formation of sliding electric discharges. French Patent. No. 2639172. (1988).
    [127]. O. Mutaf-Yardimci, A. Saveliev, A. Fridman, L. Kennedy, Thermal and nonthermal regimes of gliding arc discharge in air flow. Journal of Applied Physics. 87 (2000) 1632-1641.
    [128]. Gangoli S, Gutsol A, Fridman A, Rotating non-equilibrium gliding arc plasma disc for enhancement in ignition and combustion of hydrocarbon fuels. ISPC-17. Toronto, Canada. 7-12 August. (2005).
    [129]. Kalra C, Gutsol A, Fridman A, Gliding arc discharge as a source of intermediate plasma for methane partial oxidation. IEEE Transactions on Plasma Science. 33(1) 2005: 32-41.
    [130]. G. Komarzyniec, H. D. Stryczewska, J. Diatczyk, Power systems of gliding arc reactors for industrial applications. XXCIIth ICPIG. Eindhoven, Netherlands. 18-22 July. (2005).
    [131]. A. Czenichovski A., P. Czenichovski, Pyrolysis of natural gas in the gliding arc reactor. Hydrogen Energy Progress XI. 1 (1996): 661-669.
    [132]. M. Pospisil, I. Viden, M. Simek, S. Pekarek, Application of plasma techniques for exhaust aftertreatment. International Journal of Vehicle Design. 27 (2001): 217-227.
    [133]. S. Pellerin, O. Martinie, J. Cormier, J. Chapelle, P. Lefaucheux, Back-breakdown phenomenon in low current discharge at atmospheric pressure in transversal flow. High Temperature Material Processes. 3 (1999) 167-180.
    [134]. F. Richard, J. Cormier, S. Pellerin, J. Chapelle, Physical study of a gliding arc discharge. Journal of Applied Physics. 79 (1996) 2245-2250.
    [135]. A. Bagautdinov, V. Jivotov, J. Eremenko, I. Kalachev, S. Musinov, B. Potapkin, A. Pampushka, V. Rusanov, M. Strelkova, A. Fridman, V. Zoller, Editions de physique. Journal of High Temperature Chemical Processes. 2 (1993) 47-52.
    [136]. F. Richard, J. Cormier, S. Pellerin, J. Chapelle, Gliding arc fluctuations and arc root displacement. High Temperature Material Processes. 1 (1997) 239-248.
    [137]. Y.P.Raizer, Gas Discharge Physics. (1997).
    [138]. I. Kuznetsov, N. Kalashnikov, A.Gutsol, A.Fridman, L. Kennedy, Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge. Journal of Applied Physics. 2 (2002) 4231-4237.
    [139]. O. Mutaf-Yardimci, L. Kennedy, S. Nester, A.Saveliev, A. Fridman, Plasma Exhaust Aftertreatment, SAE SP-1395. (1998).
    [140]. A. Fridman, A. Petrousov, J. Chapelle, J. Cormier, A. Czernichowski, H. Lesueur, J. Atevefelt. J.Phys.1114. (1994) 1449-1465.
    [141]. A. Cezernichowski, A. Ranaivosoloarimanana, Zapping VOCs with a discontinuous electric arc. Chemtech .26 (1996) 45-49.
    [142]. V. Liventsov, B. Potapkin, V. Raddatis, V. Rusanov, A. Sevalnikov, A. Fridman, Discharge scaling in plasma chemistry. High Temperature Thermophys. 27 (1989) 220-225.
    [143]. A. Czernichowski, H. Lesueur, G. Fillon, Proc Workshop on Plasma Destruction of Wastes. France. (1990).
    [144]. A. Czernichowski, H. Lesueur, 10th International Symposium on Plasma Chemistry. Germany. (1991).
    [145]. A. Czernichowski, P. Labbe, F. laval, H. Lesueur, Plasma-assisted cleaning of flue gas from sooting combustion. Emerging Technologies in Hazardous Waste Management ACS Symposium Series. USA. (1995).
    [146]. A. Czernichowski, Gliding arc applications to engineering and environment control, Pure & Applied Chemistry. 6 (1994) 1301-1310.
    [147]. S. Saniuk, S. Kingsep, V. Rusanov, A. Czernichowski, Proc ISPC11. UK. (1993).
    [148]. N. Rueangjitt, C. Akarawitoo, T. Sreethawong, S. Chavadej, Reforming of CO_2-containing natural gas using an ac gliding arc system: effect of gas components in natural gas. Plasma Chemistry and Plasma Process. 27 (2007) 559-76.
    [149]. I. Rusu, J. Cormier. On a possible mechanism of the methane steam reforming in a gliding arc reactor. Chemical Engineering Journal. 91 (2003) 23-31.
    [150]. T. Sreethawong, P. Thakonpatthanakun, S. Chavadej. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. International Journal of Hydrogen Energy. 32 (2007) 1067-1079.
    [151]. A. Indarto, D. Yang, J. Choi, H. Lee, H. Song, Gliding arc plasma processing of CO_2 conversion. Journal of Hazardous Materials. 146 (2007) 309-315.
    [152]. K. Krawczyk, B. Ulejczyk, Decomposition of Chloromethanes in Gliding Discharges, Plasma Chemistry and Plasma Processing. 23 (2003).
    [153]. K. Krawczyk, B. Ulejczyk, Influence of water vapour on CCl_4 and CHCl_3 conversion in gliding discharge, Plasma chemistry and plasma processing. 24 (2004).
    [154]. B. Benstaali, P. Boubert, B. Cheron, A. Addou, J. Brisset., Density and rotational temperature measurements of the OH° and NO° radicals produced by a gliding arc in humid air. Plasma Chemistry and Plasma Processing. 22 (2002) 553-571.
    [155]. T. Paulmier, L. Fulcheri, Use of non-thermal plasma for hydrogen reforming. Chemical Engineering Journal. 106 (2005) 59-71.
    [156]. V. Dalaine, J. Cormier, S. Pellerin, S V. Dalaine tudy and modeling of a 50 Hz gliding discharge. Optimization of Electrical and Electronic Equipments, 1998, OPTIM'98, Proceedings of the 6th international conference on. 1 (1998) 161-166.
    [157]. S. Pellerin, F. Richard, J. Chapelle, J. Cormier, K. Musiol, Heat string model of bi-dimensional dc glidarc. Journal of Physics D: Applied Physics. 33 (2000) 2407-2419.
    [158]. L. Delair, J. Brisset, B. Cheron, Spectral electrical and dynamical analysis of a 50Hz air gliding arc. Journal of High Temperature Material Processes. 5(2001) 381-402.
    [159]. S. Pellerin, J. Cormier, F. Richard, K. Musiol, J. Chapelle, Determination of the electrical parameters of a bi-dimensional d.c. glidarc. J. Phys. D: Appl. Phys. 32 (1999) 891-897.
    [160]. A. Czernichowski, H. Nassar, A. Ranaivosoloarimanan, A. Fridman, Spectral and electrical diagnostics of gliding arc. Acta Phyysica Polonica A. 89 (1996) 595-603.
    [161]. A. Fridman, Model of a sliding arc: application in plasma chemistry. ISCP 11 (1993) Loughborough England, 257-263.
    [162]. V. Rusanov, V. Livensxov, B. Potapkin, A. Fridman, A. Czernichowski, J. Chapelle. Ionization instability of a transit regime of the arc discharge. Physics-Doklady, 40 (1995) 623-626.
    [163]. J. Janca, C. Tesar, Spectral diagnostics of glid-arc up to 1.1 Mpa. XXIII ICPIG (1997) Toulouse France. IV 98-99.
    [164]. P. Balzhiser, M. Samuels, J. Eliassen. Chemical Engineering Thermodynamics, (1972).
    [165]. A. Indarto, D. R. Yang, C. H. Azhari, W. H. W. Mohtar, J. Choi, H. Lee, H. K. Song, Advanced VOCs decomposition method by gliding arc plasma. Chem. Eng. J. 131 (2007) 337-341.
    [166]. H. Lesueur, A. Czernichowski, J. Chapelle, Dispositif de generation de plasmas basse temperature par formation de decharges electriques glissantes. French Patent No. 88.14932 (2639172).
    [167]. H. Kohno, A. Berezin, J. Chang, M. Tamura, T. Yamamoto, A. Shibuya, S. Honda, Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor, IEEE transactions on industry applications, 34(1998) 953-965.
    [168]. S. Futamura, A. Zhang, T. Yamamoto, The dependence of nonthermal plasma behavior of VOCs on their chemical structures.Journal of Electrostatics. 42(1997) 51-62.
    [169]. R. Yamashita, T. Takahashi, T. Oda, Humidity effect on non-thermal plasma processing for VOCs decomposition. Conference Record of the 1996 IEEE, California, U.S.A, 1996, 1826-1829.
    [170]. A. Ogata, N. Shintani, K. Yamanouchi, K. Mizuno, S. Kushiyam, T. Yamamoto, Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor. Plasma chemistry and plasma processing. 20(2000) 453-467.
    [171]. A. Zhang, S. Futamura, G. Prieto, T. Yamamoto, Roles of oxygen sources in plasma chemical decomposition of butane. Proc. Work shop on Non-thermal plasma processing, Tokyo, Japan, (1996), 37-46.
    [172]. Y. I, Y. Liu and K. Han, Construction of a low-pressure microwave plasma reactor and its application in the treatment of volatile organic compounds. Environment Science and Technology. 38(2004) 3785-3791.
    [173]. J. Chen, P. Wang, Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Transactions on plasma science. 33(2005) 808-812.
    [174]. H. Nichipor, E. Dashouk, A. Chmielewski, Z. Zimek, S. Bulka, A theoretical study on decomposition of carbon tetrachloride, trichloroethylene and ethyl chloride in dry air under the influence of an electron beam. Radiation Physics and Chemistry. 57(2000) 519-525.
    [175]. R. Atkinson, D. Baulch, R. Cox, J. Crowley, R. Hampson. R. Hynes, M. Jenkin, J. Kerr, M. Rossi and J. Troe. Summary of evaluated kinetic and photochemical data for atmospheric chemistry. (2005, March). Available: http://www.iupac-kinetic.ch.cam.ac.uk/
    [176]. J. Herron, R. Huie, Rate constants for the reactions of atomic oxygen with organic compounds in the gas phase. Journal of Physical Chemistry Reference Data. 2(1973) 467-518.
    [177]. G. Bravo-Perez, J. Alvarez-Idaboy, A. Jimenez, A. Cruz-Torres, Quantum chemical and conventional TST calculations of rate constants for the OH + Alkane Reaction. Chemistry Physics. 310(2005) 213-223.
    [178]. C. Schubert, R. Pease, The oxidation of lower paraffin hydrocarbons room temperature reaction of methane, propane, n-butane and isobutane with ozonized oxygen. Journal of America Chemistry Society. 78(1956) 2044-2048.
    [179]. D. Baulch, C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, R. Walker, J. Warnatz, Evaluated kinetic data for combustion modelling, supplement I. Journal of Physical Chemistry Reference Data. 23(1994) 847-1033.
    [180]. M. Fanmoe, Interactions plasma d'arc glissant/solution aqueuse: application a la decomposition de composes organiques. PhD Dissertation. (2005).
    [181]. Y. Mok, I. Nam, Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide. Chemical Engineering Journal. 85(2002) 87-97.
    [182]. V. Dalaine, J. M. Cormier, S. Pellerin, P. Lefaucheux, H_2S destruction in 50 Hz and 25 kHz gliding arc reactors. Journal of Applied Physics. 84 (1998) 1215-1221.
    [183]. D. Moussa, J. Brisset, Disposal of spent tributylphosphate by gliding arc plasma. Journal of Hazardous Materials. 102 (2003) 189-200.
    [184]. R. Burlica, M. Kirkpatrick, B. Locke, Formation of reactive species in gliding arc discharges with liquid water. Journal of Electrostatics. 64 (2002) 35-43.
    [185]. Z. Bo, J. Yan, X. Li, Y. Chi, K. Cen, Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy. Published online 10.1016/j.ijhydene.2008.05.101
    [186]. J. Yan, Z. Bo, X. Li, C. Du, K. Cen, B. Cheron, Study of mechanism for hexane decomposition with gliding arc gas discharge. Plasma Chemistry and Plasma Processing. 24(2004)155-167.
    [187]. Z. Bo, J. Yan, X. Li, Y. Chi, K. Cen, Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition. Journal of Hazardous Materials. 151(2008)494-501
    [188]. J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalyst B. 74 (2007) 161-169.
    [189]. Z. Ye, Y. Zhang, P. Li, L. Yang, R. Zhang H. Hou, Feasibility of destruction of gaseous benzene with dielectric barrier discharge. Journal of Hazardous Materials. 156 (2008) 356-364.
    [190]. Z. Bo, J. Yan, X. Li, Y. Chi, K. Cen, The dependence of gliding arc gas discharge characteristics on reactor geometrical configuration. Plasma Chemistry and Plasma Processing. 27 (2007) 691-700.
    
    [191]. A. Czernichowski, P. Czernichowski, Z. Ferenc, B. Hnatiuc, P. Pastva, GlidArc-I assisted destruction of toluene vapors from effluvia. 14th Int. Symp. On Plasma Chemistry. Prague, Czech Republic. 2-6 August. (1999).
    
    [192]. G. Komarzyniec, H. D. Stryczewska, J. Diatczyk, Power systems of gliding arc reactors for industrial applications. XXCIIth ICPIG. Eindhoven, Netherlands. 18-22 July. (2005).
    
    [193]. A. Czernichowski. Destruction of waste or toxic gases and vapours in gliding arc reactor. IEEE Colloquium on Destruction of Waste and Toxic Materials Using Electric Discharges.London, Britain, 1992.
    
    [194]. B. Benstaali, D. Moussa, A. Addou, J. L. Brisset, Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. Journal of European Physics. 4 (1998) 171-179.
    
    [195]. Z. Bo, J. Yan, X. Li, Y. Chi, K. Cen, B. Cheron. Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge. Plasma Chemistry and Plasma Processing. 27 (2007) 546-558.
    
    [196]. H. Bohn, Consider biofiltration for decontaminating gases. Chemical Engineering Progress. 88(1992)34-40.
    
    [197]. F. Fischer, H. Tropsch, Process for the production of paraffin-hydrocarbons with more than one carbon atom. US patent no. 1746464, applied 1926, published 1930.
    [198]. B. Pawelec, S. Damyanova, Arishtirova, J. Fierro, L. Petrov, Structural and surface features of PtNi catalysts for reforming of methane with CO_2. Applied Catalysis A: General 323(2007)188-201.
    [199]. W. Nimwattanakul, A. Luengnaruemitchai, S. Jitkarnka, Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane. International Journal of Hydrogen Energy. 31 (2006) 93-100.
    [200]. X. Tao, F. Qi, Y. Yin, X. Dai, CO_2 reforming of CH_4 by combination of thermal plasma and catalyst, International Journal of Hydrogen Energy. 20 (2008)1262-1265.
    [201]. A. Topalidis, D. Petrakis, A. Ladavos, L. Loukatzikou, P. Pomonis, A kinetic study of methane and carbon dioxide interconversion over 0.5%Pt/SrTiO3 catalysts. Catalysis Today. (2007) published online 10.1016/j.cattod.2007.04.015.
    [202]. A. Kaengsilalai, A. Luengnaruemitchai, S. Jitkarnka, S. Wongkasemjit, Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane. Journal of Power Sources. 165 (2007) 347-352.
    [203]. A. Nandini, K. Pant, S. Dhingra, Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO_2-Al_2O_3 catalyst. Applied Catalysis A: General. 308(2006)119-127.
    [204]. Istadi, N. Amin, Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO-MnO/CeO_2 catalyst using response surface methodology. Fuel Processing Technology. 87 (2006) 449-459.
    [205]. X. Verykios, Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. International Journal of Hydrogen Energy. 38 (2003) 1045-1063.
    [206]. L. Chen, Q. Hong, J. Lin, F. Dautzenberg, Hydrogen production by coupled catalytic partial oxidation and steam methane reforming at elevated pressure and temperature. Journal of Power Sources. 164 (2007) 803-808.
    [207]. J. Nielsen, I. Dibkjaer, L. Christiansen. NATO ASI chemical reactor trchnology for environmentaly safe reactors and products. Kluwer: Dordrecht. (1992).
    [208]. D. Cheng, X. Zhu, Y. Ben, F. He, L. Cui, C. Liu, Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catalysis Today. 115 (2006) 205-210.
    [209]. B. Eliasson, C. Liu, U. Kogelschatz, Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Industrial and Engineering Chemistry Research. 39 (2000) 1221-1227.
    [210]. H. Song, J. Choi, S. Yue, H. Lee, B. Na. Synthesis gas production via dielectric barrier discharge over Ni/-Al2O3 catalyst. Catalysis Today. 89 (2004) 27-33.
    [211]. C. Liu, B. Xue, B. Eliasson, F. He, Y. Li, G. Xu, Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas. Plasma Chemistry and plasma Processing. 21 (2001) 301-310.
    [212]. M. Li, G. Xu, Y. Tian, L. Chen, H. Fu, Carbon dioxide reforming of methane using DC Corona Discharge Plasma Reaction. Journal of Physic Chemistry A. 108 (2004) 1687-1693.
    [213]. M. Malik, X. Jiang. The CO_2 reforming of natural gas in a pulsed corona discharge reactor, Plasma chemistry and plasma process. 19 (1999) 505-512.
    [214]. L. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy Fuels. 12 (1998) 1191-1199.
    [215]. S. Savinov, H. Lee, H. Song, B. Na, Decomposition of methane and carbon dioxide in a radio- frequency discharge. Industrial Engineering Chemistry Research. 38 (1999) 2540-2547.
    [216]. A. Ghorbanzadeh, S. Norouzi, T. Mohammadi, High energy efficiency in syngas and hydrocarbon production from dissociation of CH_4-CO_2 mixture in a non-equilibrium pulsed plasma. Journal of Physics D: Applied Physics. 38 (2005) 3804-3811.
    [217]. B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science. 19 (1991) 1063-1077.
    [218]. Istadi, N. Amin. Co-generation of synthesis gas and C~(2+) hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review. Fuel. 85 (2006) 577-592.
    [219]. Y. Li, C. Liu, B. Eliasson, Y. Wang, Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution. Energy and Fuels. 16 (2002) 864-870.
    [220]. H. Song, H. Lee, J. Choi, B. Na. Effect of electrical pulse forms on the CO_2 reforming of methane using atmospheric dielectric barrier discharge. 24 (2004) 57-72.
    [221]. Y. Zhang, Y. Li, Y. Wang, C. Liu, B. Eliasson, Plasma Methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel processing Technology. 83 (2003) 101-109.
    [222]. C. Liu, Y. Li, Y. Zhang, Y. Wang, J. Zou, B. Eliasson, Production of acetic acid directly from methane and carbon dioxide using dielectric-barrier discharge. Chemical Letter 30 (2001) 1304-1305.
    [223]. K. Zhang, U. Kogelschatz, B. Eliasson. Conversion of greenhouse gases to synthesis gas and higher hydrobarbons. Energy Fuels. 15 (2001) 395-402.
    [224]. C. Liu, R. Mallinson, L. Lobban, Comparative investigation on plasma catalytic methane conversion to higher hydrocarbons over zeolites. Applied Catalyst A 178 (1999) 17-27.
    [225]. Q. Chen, W. Dai, X. Tao, H. Yu, X. Dai, Y. Yin, CO_2 reforming of CH_4 by atmospheric pressure abnormal glow plasma. Plasma Science and Technology. 8 (2006) 8-11.
    [226]. J. Yan, C. Du, X. Li, B. Cheron, M. Ni, K. Cen, Degradation of phenol in aqueous solutions by gas-liquid gliding arc discharge. Plasma Chemistry and Plasma Process. 26 (2006)31-41.
    [227]. J. Yan, C. Du, X. Li, X. Sun, M. Ni, K. Cen, B. Cheron, Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge. Plasma Sources Science Technology. 14(2005)637-644.
    [228]. N. Rueangjitt, T. Sreethawong, S. Chavadej, Reforming of CO_2-containing natural gas using an ac gliding arc system: effect of operational parameters and oxygen addition in feed. Plasma Chemistry and Plasma Process. 28 (2008) 49-67.
    [229]. I. Rusu, J. Cormier, Study of a rotarc plasma reactor stability by means of electric discharge frequency analysis. International Journal of Hydrogen Energy. 30 (2003) 1483-1490.
    [230]. O. Dobis, S. Benson, Analysis of flow dynamics in a new, very low-pressure reactors. Application to the reaction Cl+CH_4=HCl+CH_3. International Journal of Chemistry Kinetic. 19(1987)691-707.
    [231]. D. Darwent, Bond Dissocation Energies in Simple Molecules. NBSDS-NBS, 31 Washington, DC. (1970)
    [232]. S. Yao, M. Okumoto, A. Nakayama, E. Suzuki, Plasma reforming and coupling of methane with carbon dioxide. Energy and Fuels. 15 (2001) 1295-1299.
    [233]. J. Berkowitz, Themodynamics of the electron and the proton. Journal of Physic Chemistry.98(1994) 6420-6424.
    [234].D.Mordaunt,M.Ashfold.Near-ultraviolet photolysis of C_2H_2.A precise determination of D(HCC-H).Journal of Chemical Physics.101(1994) 2630-2631.
    [235].X.Li,A.Zhu,K.Wang,Y.Xu,Z.Song,Methane conversion to C_2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques.Catalysis Today.98(2004) 617-624.
    [236].李明伟,刘昌俊,许慧根,冷等离子体作用下CH_4-CO_2转化制合成气.应用化学.17(2000)593-597.
    [237].张军旗,杨永进,张劲松,刘强,常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究.化学学报.60(2002)1973-1980.
    [238].http://stocks-reports.blog.hexun.com/3208835_d.html
    [239].http://www.topcj.com/html/2/KHGG/20060720/37284.shtml

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700