用户名: 密码: 验证码:
流向狭缝周期吹吸扰动控制壁湍流相干结构的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在壁湍流中引入空间展向周期分布的流向狭缝周期吹吸射流,利用局部周期吹吸扰动对壁湍流相干结构进行控制。用热线风速仪对受扰前后湍流边界层的脉动速度信号进行测量,综合采用概率统计平均、付立叶变换、条件采样、子波和子波包变换等技术对壁湍流速度信号进行分析,研究吹吸扰动对壁湍流相干结构、能谱、间歇性的影响以及壁湍流中基本流场的变化规律。
     提出多尺度关联的子波系数局部极值和子波系数多尺度自相关函数辨识壁湍流相干结构的方法,发现缓冲层相干结构的速度脉动较外区更剧烈,壁湍流相干结构在时空分布中呈多尺度特征;提出采用子波包提取脉动速度信号中扰动成分的方法,结果显示该方法较FFT数字滤波法更准确;运用高阶消失矩子波函数进行子波湍谱分析,可以有效减少湍谱能量泄漏,提高湍流信号谱分析的准确性。
     通过子波变换与VITA条件采样法等多种检测方法的比较,发现施加吹吸扰动使得缓冲层内最大含能尺度的湍流相干结构的强度明显降低,抑制了壁湍流的猝发过程,延长了平均猝发间隔,减少了猝发的数量和强度,使相干结构的条件平均波形和子波重构脉动速度波形的幅值明显降低,说明该方法是控制壁湍流相干结构的一种有效方法。
     通过湍谱分析,发现壁湍流惯性子区的波数范围与法向位置有关。随着法向位置靠近壁面,壁湍流惯性子区的波数范围向高波数区移动,能谱逐渐偏离均匀各向同性湍流的-5/3次幂。从提取的壁湍流相干结构脉动速度波形上看,缓冲层相干结构速度脉动较外区更剧烈。
     通过子波谱和最大熵谱法分析吹吸扰动对湍流能谱的影响,发现施加的低频吹吸扰动改变了壁湍流各尺度湍流相干结构的能量分布,含能最大的相干结构能量损失最多,小尺度湍流结构的能量有所增加。扰动在对数层外区的影响迅速消失,湍流能谱恢复到扰动前的状态。
     对加扰前后壁湍流小尺度结构的间歇性研究发现,惯性子区的标度指数比耗散区的标度指数小。缓冲层的标度指数与线性标度律偏差很大,显示出较强的奇异性,对数层及外区标度指数逐渐接近均匀各向同性湍流的状态。吹吸扰动使缓冲层内小尺度湍流结构的标度指数下降,间歇性进一步增强。
The fluctuating velocity has been measured using hot wire anemometer with and without the local periodic blowing and suction disturbance coming from longitudinal thin slits periodically distributed in transverse direction of wall turbulence. The coherent structures in wall turbulence are controlled by the local sinusoidally oscillating jet flow issuing from the longitudinal thin slits. The fluctuating velocity signals have been analyzed by the comprehensive methods of probability statistics, Fourier transform, conditional sampling, wavelet and wavelet packet transform, etc in order to investigate the effects of disturbance to the coherent structures in wall turbulence. The variations of turbulence energy spectrum, intermittence and the mean flow parameters have been studied before and after blowing and suction disturbance introduced.
     The methods of local maximum of wavelet coefficients across related multi-scales and wavelet auto-correlation function have been put forward to detect and identify the coherent structures in wall turbulence. It is found that coherent structures in buffer layer fluctuates more actively than that in outer region of turbulent boundary layer and behaves temporally and spacially in multi-scales. Wavelet packet transform has been put forward to extract the disturbance component from the turbulent fluctuating velocity, which shows more accurate than the Fourier filter method; the wavelet function of Daubechies20 with high vanishing moments is employed to analyze turbulent spectrum so as to decrease the energy leakage of the signal effectively and improve the precision of turbulence spectrum analysis.
     The coherent structure detection results of wavelet transform are compared with that of VITA conditional sampling method. It is shown that blowing and suction disturbance can not only decrease the intensity of turbulent fluctuation at the most energetic scale in buffer layer and restrains the burst process in wall turbulence, but also prolong the averaged burst alternation and lessens the quantity and intensity of burst events. And then the amplitudes of conditionally averaged velocity as well as the wavelet restructured velocity are apparently decreased with the periodic blowing and suction disturbance. It can come to the conclusion that the periodic blowing and suction oscillating disturbance coming from longitudinal slit jet flow is an effective method of control wall turbulence.
     Through the investigation of turbulent energy spectrum, it is found that for wall turbulence, the variation of inertial wave number range is related to the vertical measurement position in turbulent boundary layer. When the measurement position is near to the wall, the inertial wave number range in wall turbulence shifts to the higher wavenumber and the spectrum gradually deviates from -5/3 exponent power, which stands for the homogeneous and isotropic turbulence. According to the velocity fluctuating waveform of coherent structures extracted from origin velocity signal, the fluctuation of coherent structure in buffer layer becomes more active than that in outer region.
     According to the effects of blowing and suction on turbulent energy spectrum by wavelet spectrum and maximum entropy spectrum method, it is discovered that the disturbance changes the turbulent kinetic energy distribution across scales in the near wall region, which implies that the coherent structures lose more kinetic energy and the small scale structures obtain more kinetic energy. The effect of disturbance disappears gradually when the measurement position is apart from the near wall region and the turbulent spectrum recovers to the situation without disturbance.
     Through investigating the intermittence of small-scale structures in wall turbulence with or without disturbance, the scaling exponent in inertial wavenumber range is lower than that in dissipative range. The scaling exponent in buffer layer extraordinarily deviates from the linear scaling law which shows intensive anomalous, whereas the scaling exponent in logarithmic region and outer region gradually approaches to the situation of homogeneous and isotropic turbulence. The blowing and suction further reduces the scaling exponent and enhances the intermittence of small scale structures in buffer layer.
引文
[1] 欣茨.湍流.北京,科学出版社,1987 年
    [2] 张兆顺.湍流.北京,国防工业出版社,2002 年
    [3] 是勋刚.湍流.天津,天津大学出版社,1994 年
    [4] 蔡树棠著,湍流理论,上海,上海大学出版社,1993 年
    [5] 奥布霍夫著,庄逢甘译,湍流的微结构,北京,中国科学出版社,1953 年。
    [6] 张兆顺,崔桂香,许春晓, 走近湍流,力学与实践,2002, 24(1):1~8。
    [7] 王振东,湍流研究的进展 [J],物理通报,1992,12(12):1-4。
    [8] Kline S J, Reynolds W C, Schraub F H, Runstadler P W, The structure of turbulent boundary layer [J], Journal of Fluid Mechanics, 1967, 30(4): 741~774.
    [9] Bernal L. Roshko A. 1986. Streamwise vortex structures in plane mixing layers. J. Fluid Mech. 170:499~525
    [10] Liepmann, H. W., Narasimha, R., Turbulence management and relaminarisation, IUTAM symposium, 1987, Bangalore, India.
    [11] MOHAMED GAD-EL-HAK, Flow Control PASSIVE, ACTIVE AND REACTIVE FLOW MANAGEMENT, CAMBRIDGE university press
    [12] John.Kim. Control of turbulent boundary layers. Phys. Fluids, 2003, 15(5):1093~1105
    [13] Stuart A. Jacobson, William C. Reynolds, Active control of streamwise vortices and streaks in boundary layers, J. Fluid Mech (1998), vol. 360, pp. 179~211
    [14] Choi H; Moin P; Kim J (1994) Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech 262:75~110
    [15] 张兆顺,崔桂香,许春晓,黄伟希,壁面展向周期振动的槽道湍流减阻机理的研究,力学学报,2004,36(1):24~30。
    [16] Choi H;Moin P;Kim J(1993)Direct numerical simulation of turbulent flow over riblets. J Fluid Mech,255:503~539
    [17] Jung WJ; Mangiavacci N; Akhavan R (1992) Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A 4:1605~1607
    [18] Park J; Choi H(1999)Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Phys Fluids 11: 3095~3105
    [19] Tardu S (1998) Near wall turbulence control by local time periodical blowing. Exp Thermal Fluid Sci 16:41~53
    [20] Antonia RA; Zhu Y; Sokolov M (1995) Effect of concentrated wall suction on a turbulent boundary layer. Phys Fluids 7: 2465~2474
    [21] R. A. Antonia, L. Fulachier,L. V. Krishnamoorthy. Influence of wall suction on the organized motion in a turbulent boundary layer, J. Fluid Mech.,1998,190:217~240
    [22] 么胜洪,舒玮.壁湍流外层周期扰动对内层脉动特性的影响.中国科学(A辑),1991,23(4):47~54
    [23] Marie Farge, Nicholas Kevlahan, Valerie Perrier. Wavelets and turbulence. Proceedings of the IEEE, 84(4):639~669
    [24] Marie Farge. Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech. 24(1992):395~457
    [25] Charles Meneveau. Analysis of turbulence in the orthonormal wavelet representation. J.Fluid Mech,1991,(232):469~520
    [26] Marie Farge, Kai Schneider, Coherent vortex simulation(CVS),A semi-deterministic turbulence model using wavelet [J], Flow, Turbulence and Combustion, 2001, Vol.66: 393~426.
    [27] 舒玮,姜楠,湍流中涡的尺度分析.空气动力学学报,2000,18,增刊:89~95
    [28] Landau, L.D & E.M. Lifschitz, Fluid Mechanics, Pergamon Press, New York, 1959.
    [29] Kolmogorov A N, Dissipation of energy in the locally isotropic turbulence [J]. Dokl Akad Nauk SSSR, 1941, Vol.32, No.1:19~21.
    [30] Kolmogorov A N, A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number [J]. J Fluid Mech., 1962, 13(1): 82~85.
    [31] She Z-S, Leveque E. Universal scaling laws in fully developed turbulence, Phys Rev Lett, 1994,72(3):336~339
    [32] Corino E R, Brodkey R S, A visual investigation of the wall region in turbulent flow [J], J Fluid Mech., 1969, 37: 1~30.
    [33] H. T. Kim, S. J. Kline, W. C. Reynolds, The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech. (1971), vol. 50, part1, pp. 133~160
    [34] G. R. Offen, S. J. Kline, Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer, J. Fluid Mech (1974), vol. 62, part2, pp. 223~239
    [35] Smith C R, Metzler S P, The characteristics of low speed streaks in the near wall region of a turbulent boundary layer [J], J. Fluid Mech., 1983, 129: 27~54
    [36] Blackwelder R F, Kaplan, R E. On the bursting frequency in turbulent boundary layers. J Fluid Mech, 1976,76:89~112
    [37] T.S.Luchik, W.G.Tiederman. Timescale and structure of ejections and bursts in turbulent channel flows. J.Fluid Mech,1987,(174):529~552
    [38] D.G.Bogard, W.G.Tiederman. Burst detection with signle-point velocity measurement J.Fluid Mech, 1986,(162):389~413
    [39] 张强,周济福,李家春.基于槽道流 LES 数据库的湍流猝发检测,中国科学 G辑,2005,35(3):292~307
    [40] 孙葵花,舒玮,湍流猝发的检测方法,力学学报,1994,26(4):488~493
    [41] 汪健生,张金钟,舒玮,提取壁湍流相干结构的数字滤波法,力学学报,1995,27(4):398~405
    [42] 张贤达.现代信号处理.北京,清华大学出版社,2001 年
    [43] 程正兴.小波分析算法与应用.西安,西安交通大学出版社,2000 年
    [44] 彭玉华.小波变换与工程应用.北京,科学出版社,2000 年
    [45] Jiang Nan, Zhang Jin. Detecting multi-scale coherent eddy structures and intermittency in turbulent boundary layer by wavelet analysis. Chinese Physics Letter, 2005, 22(8): 1968~1971
    [46] Miguel Onorato,Roberto Camussi, Gaetano Iuso. Small scale intermittency and bursting in a turbulent channel flow. Phys. Rev.E 2000,61:1447~1454
    [47] 姜楠,柴雅彬,用子波系数概率密度函数研究湍流多尺度结构的间歇性,航空动力学报,2005 年,20 卷 5 期:718~724。
    [48] 周济福,张强,李家春.近壁湍流脉动的概率分布函数.应用数学和力学,2005,26(10):1135~1142
    [49] Jiang Nan, Shu Wei, Wang Zhen-dong, Burst event detection in wall turbulence by WVITA method, ACTA MECHANICA SINICA, 2000,16(1): 29-34
    [50] 姜楠,舒玮,王振东,用能量最大准则确定 VITA 法的平均周期,力学学报,2000,32(5):547~551
    [51] Blackwelder RF,Haritonidis JH. Scaling of the bursting frequency in turbulent boundary layers. J Fluid Mech,(183):87~103
    [52] Stephane Mallt, Wen Liang Hwang. Singularity detection and processing with wavelets, IEEE Transactions on Information Theory, 1992, 38(2): 617~643
    [53] 姜楠,王振东,舒玮.子波分析辨识壁湍流猝发事件的能量最大准则.力学学报,1997,29(4):406~412
    [54] H.Tennekes,J.L. Lumley. A first course in turbulence, Cambridge, Massachusetts, and London, England. the MIT press
    [55] Hui li, Tsutomu NOZAKI. Wavelet auto-correlation analysis applied to flow structure in a bounded jet, Proceedings of the 1999 Joint ASME/JSME fluids engineering conference,1999
    [56] 夏振炎,姜楠,王振东,舒玮.湍流边界层多尺度相干结构的子波自相关辨识.天津大学学报,2005,38(11):970~974
    [57] Shuya Yoshioka,Jens H. M. Fransson. Free stream turbulence induced disturbances in boundary layers with wall suction, Phys. Of Fluids, 2004,16(10):3530~3539
    [58] S.Mallat. A wavelet tour of signal processing, San Diego: Academic
    [59] M. Misiti, Y. Misiti, G. Oppenheim, M. Poggi,J. Wavelet Toolbox users guide:for use with MATLAB,The MathWorks, Inc.,1996
    [60] Valerie Perrier, Thierry Philipovitch, Claude Basdevant. Wavelet spectra compared to fourier spectra. J. Math. Phys.,36(3):1506~1519
    [61] Y.W.Jung, S.O.Park. Application of the autoregressive method to the spectral analysis of a flow signal. Experiment in fluid, 2001, 31: 608~614
    [62] J.P.Burg .Maximum entropy spectral analysis. In: D.G. Childers. Morden spectrum analysis. IEEE press, New York 1978,34~41
    [63] Lang SW, McClellan JH. Frequency estimation with maximum entropy spectral estimators. IEEE trans acoust speech signal process, 1980, 28: 716~724
    [64] M. Pavageau, , C. Rey, J.-C. Elicer-Cortes. Potential benefit from the application of autoregressive spectral estimators in the analysis of homogeneous and isotropic turbulence. Experiments in Fluids, 2004, 36: 847~859
    [65] REN-CHIEH LIEN, ERIC A. D’ASARO, GEOFFREY T. DAIRIKI. Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence. J. Fluid Mech.,1998, 362,177~198
    [66] 王 立 坤 , 舒 玮 . 人 工 扰 动 信 号 在 湍 流 边 界 层 中 的 衰 减 . 实 验 力学,1999,14(4):432~436
    [67] 王昕,姜楠,舒玮.周期性扰动在湍流边界层中沿法向的衰减.实验力学,2001,16(3):270~275
    [68] R. Benzi , S. Cilibert , R. Tripiccione. Extended self-similarity in turbulent flows,Phys Rev E, 1993, 48(1): 29~32
    [69] G.Ruiz-Chavarria,S.Ciliberto,C.Baudet,E.Leveque.Scaling properties of the streamwise component of velocity in a turbulent boundary layer. Physica D, 2000,141:183~198
    [70] 姜楠,王玉春,黄章峰.壁湍流标度律的实验研究,空气动力学报, 2001, 19(2):241~246
    [71] 姜楠,王玉春,舒玮等.壁面加热湍流标度律的实验研究,空气动力学报,2001,19(3):354~363
    [72] 姜 楠 , 王 玉 春 , 壁 湍 流 扩 展 的 自 相 似 标 度 律 的 实 验 研 究 , 实 验 力学,2002,17(1):28~34
    [73] 姜楠,王玉春,王振东等.壁面加热边界条件对湍流扩展的自相似性的影响,实验力学,2001,16(3):256~263
    [74] G.Stolovitzky ,K. R. Sreenivasan. Scaling of structure function, Phys Rev E, 1993, 48(1):33~36
    [75] Gabriel Katul,Brani Vidakovic,John Albertson. Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Physics of Fluids,13(1):241~250
    [76] F.Toschi, G.Amati, S.Succi. Intermittency and structure functions in channel flow turbulence, Phys.Rev.Lett., 1999,82:5044~35047
    [77] Gabriel G. Katul,Marc B. Priange, Chia R. Chu. Intermittency, local isotropy, and non-gaussian statistics in atmospheric surface layer turbulence, Phys. Fluids, 1994,6(7):2480~2492
    [78] F. Toschi,E. Leveque,G. Ruiz Chavarria. Shear effects in non-homogeneous turbulence, Phys Rev Lett, 2000,85(7):1436~1439
    [79] C.Simand, F.Chilla, J.F.Pinton. Inhomogeneous turbulence in the vicinity of a large-scale coherent vortex. Europhys. Lett.,2000, 49(3):336~342
    [80] Liu Wei, Jiang Nan, Three Kinds of Velocity Structure Function in Turbulent Flows, Chinese Physics Letters,2004,Vol21,No10: 1989~1992
    [81] Liu Jian-hua, Jiang Nan, Wang Zhen-dong, Shu Wei, Multi-scale Coherent Structures in Turbulent Boundary Layer Detected by Locally Averaged Velocity Structure Functions, Applied Mathematics and Mechanics,2005,Vol 26, No 4: 456~464.
    [82] 蒋剑波,邱翔,卢志明,刘宇陆.完全发展的非对称槽道湍流的标度指数研究,应用数学和力学,2005,26(3):267~272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700