用户名: 密码: 验证码:
天山云杉种群与群落特征及其地理变化规律的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天山山脉的森林主要是以天山云杉为优势树种组成的山地森林,天山云杉林随经度位置及相应环境条件的变化而分布在不同的海拔范围内,优势树种天山云杉的生长状况及群落内其他伴生植物的种类和数量也随着不同经度位置海拔高度的变化而呈现出不同的垂直梯度变化规律。本文选择我国新疆境内天山山脉从西到东约12个经度(81°05′-93°41.5′E)范围内5个地点(昭苏、巩留、乌苏、乌鲁木齐和哈密)的天山云杉群落进行垂直样带调查,研究天山云杉种群的结构、动态、分布格局和针叶、球果大小性状的变化,分析了林分因子、物种多样性和生物量等群落特征,初步探讨了天山云杉种群与群落特征随经度和海拔梯度的地理变化规律。主要研究结果如下:
     (1)采用天山云杉各级林木所占的比例、不同径级的株数比例、按径级累计株数百分率的拟合方程等三种方法分析了不同地点的天山云杉种群结构特征。以幼苗幼树和小径木的总计百分率来看,不同地点从多到少的顺序为哈密、乌鲁木齐、巩留、昭苏和乌苏;在昭苏、巩留、乌苏、乌鲁木齐和哈密径级结构呈倒“J”型分布;在昭苏和乌鲁木齐指数曲线相关系数最高,在巩留、乌苏和哈密对数曲线相关系数最高。
     (2)为了探讨天山云杉种群的动态变化规律,采用“空间代替时间”的方法以种群径级结构代替年龄结构,编制了天山云杉静态生命表,绘制了各个地点天山云杉种群的存活曲线、死亡曲线和损失度曲线及危险率函数曲线。天山云杉的存活曲线整体趋于DeeveyⅡ型,也就是说天山云杉种群目前总体上正处于一个稳定状态;不同地点天山云杉死亡率曲线有两个高峰;不同地点的种群其死亡强度和死亡高峰出现的时间格局有明显的差异。
     (3)应用理论分布模型和聚集强度指标对天山云杉进行种群分布格局的分析表明,不同发育阶段和不同海拔高度对其分布格局和聚集强度均有不同程度的影响。随着径级的增大或年龄的增加,天山云杉种群的聚集强度在降低;不同海拔高度天山云杉聚集强度都呈现出在高海拔聚集强度最大的分布趋势。
     (4)采用两种数据处理方法对天山云杉球果大小性状随海拔梯度的变化规律进行了研究。一种是将各调查地点的海拔分别划分为低、中、高三个海拔高度范围,分析天山云杉的球果大小性状随海拔高度的差异性;另一种是采用不同的函数对球果大小性状沿每隔50 m的海拔梯度变化规律进行回归分析。结果表明:在同一地点天山云杉球果大小性状随海拔范围不同而发生相应的变化。天山云杉的球果长和球果长宽比随着海拔高度的增加总体呈现逐渐减小的趋势,而球果宽随海拔梯度变化不显著。天山云杉球果宽较球果长的性状稳定性高。天山云杉球果大小性状随海拔、经度和坡度的变化而发生变异,球果长的变异主要受海拔和坡度的影响,球果宽的变异则主要受经度的影响,而海拔、经度、坡度对球果长宽比都有显著负影响。
     (5)采用回归分析研究了不同海拔高度之间针叶大小性状的变化规律,运用方差分析和变异系数分析了不同地点天山云杉针叶大小性状变异。天山云杉针叶长和针叶长宽比随着海拔高度的增加总体呈现逐渐减小的趋势,针叶宽度随海拔梯度的升高呈增加趋势。天山云杉针叶长性状较针叶宽性状稳定性高。
     (6)天山云杉林分平均胸径和最大胸径随海拔梯度的变化差异不显著,而平均树高、最大树高、平均林分密度、胸高断面积和蓄积量随海拔高度的增加总体上呈现单峰型的变化趋势。尽管不同经度位置天山云杉林分布的海拔上下限范围不同,但各个位置天山云杉林分的平均树高、最大树高、平均林分密度、胸高断面积和蓄积量随海拔梯度的变化都可以用二次曲线方程进行描述;除了林分密度、幼苗幼树密度呈现中东部(乌鲁木齐和哈密)﹥西部(巩留)的分布趋势外,其他各个林分因子包括平均胸径、最大胸径、平均树高、最大树高、胸高断面积、蓄积量、东西冠幅、南北冠幅和平均冠幅都呈现西部(巩留)﹥中东部(乌鲁木齐和哈密)的分布趋势。
     (7)各经度位置的天山云杉群落基本上是以天山云杉为优势树种的纯林,乔木和灌木种类很少,草本植物的丰富度主要是由优势树种天山云杉来控制的。天山云杉在中等海拔范围分布最集中、郁闭度最大、生长最好、蓄积量最高,造成了此范围内草本植物的物种丰富度最低。尽管不同经度位置天山云杉林分布的海拔上下限范围不同,但天山云杉群落草本丰富度随海拔梯度的变化趋势都呈现山谷型曲线,都可以用二次曲线方程进行描述。
     (8)根据群落调查数据,采用回归方程推算了不同地点天山云杉林的生物量。不同地点天山云杉的生物量变化在88.695和436.915 t·hm-2之间,不同地点天山云杉生物量总体呈现西部大于中东部的趋势,天山云杉生物量随海拔高度和林木径级的变化总体上都呈现单峰型的格局。
Main forest in Tianshan Mountains is the montane forest dominated by Picea schrenkiana var. tianschanica, and the altitudinal range of the forest varies with the change of longitude and relevant environmental conditions. The growth status of P. schrenkiana var. tianschanica as well as the species and number of companion plants in the community varies regularly along the vertical gradient in the different longitudes. P. schrenkiana var. tianschanica forest in Zhaosu, Gongliu, Wusu, Urumqi and Hami which covered about 12 longitudes(81°05′-93°41.5′E)along the Tianshan Mountains was investigated using vertical transects to study the structure, dynamics, distribution pattern, and cone & needle size characters of the spruce population, and to analyze characteristics of stands, species diversity and biomass of the communities dominated by the spruce population. A preliminarily analysis was given to the geographical variations of the population & community characteristics along the longitudinal and altitudinal gradients. The main results are as follows:
     (1)In order to explore the population structure of P. schrenkiana var. tianschanica in the different sites, the percentage of trees in the different sizes, the diameter distribution, and the fitted equations for accumulated percentage of P. schrenkiana var.tianschanica were analyzed. From the percentage of seedling & sampling and the small trees, the order is Hami, Urumqi, Gongliu, Zhaosu and Wusu.The structure of diameter class in Zhaosu, Gongliu, Wusu, Urumqi and Hami took on inversed“J”Shape. The index curve correlation coefficient is highest in Zhaosu and Urumqi, while the logarithm curve correlation coefficient is highest in Gongliu, Wusu and Hami.
     (2)Based on the methods of“the space-for-time substitution”and stem size structure in place of age structure, the population static life tables were made, and the population curves of survivorship, mortality rate, killing power value and hazard rate function were drawn in order to explore the population dynamics of P. schrenkiana var. tianschanica in the different sites. The results showed that the survivorship curve of the population generally trended to the type of DeeveyⅡ, suggesting that the population was stable. There were two mortality peaks for each population in the different sites. The mortality rate and the time when mortality peaked were significantly different among different sites.
     (3)The distribution pattern of P. schrenkiana var. tianschanica population was studied on the basis of theoretical distribution model and aggregation intensity indeces. The results are as follows: The population distribution pattern is influenced by the age stages and altitudinal ranges. The clustering intensity increased with the increasing of the DBH or the age stages. The clustering intensity was strongest in the upper altitude.
     (4)Two methods were used to analyze the change of cone size characters along the altitudinal gradient. Three altitudinal ranges (low, middle and high)were divided for each site and the differences of cone size characters within each altitudinal range were analyzed, and the variation of cone size characters along altitudinal gradient at 50 m intervals was explored. The results showed that the cone size characters varied with different range of altitude in each site. The cone length and the ratio of cone length to width decreased along the altitudinal gradient, while the cone width didn’t change significantly along the altitudinal gradient. The variation of cone width was lower than that of cone length. The cone size characters varied with the altitude, slope and longitude. The variation of cone length was mainly influenced by the altitude and slope, the variation of cone width was mainly influenced by the longitude, however, the ratio of cone length to width showed a negative correlation to altitude, slope and longitude.
     (5)Regression analysis was used in studying the variation of needle characters in the different altitudinal gradient. Anova analysis and variation coefficient were used in the needle morphological variation in the different sites. The results showed that the needle length and the ratio of needle length to width decreased with the increasing altitude. The needle width increased with the increasing altitude. The variation coefficients of needle length were smallest in the needle morphological variation.
     (6)Average and maximum DBH showed no significant variation while average and maximum tree height, mean stand density, total basal area and stand volume of the forest generally showed hump-shaped curves with the increasing of the altitude. In spite of the variation of the altitudinal range in the different sites, the changes of average and maximum tree height, mean stand density, total basal area and stand volume along the altitudinal gradient of the forest could be described by the quadratic curve equations;The stand density and the density of seedling & saplings in the mid-east [0]were higher than those in the west, while in other aspects[0] including the average DBH, the maximum DBH, average tree height, maximum tree height, total basal area, stand volume, crown width and the height beneath the branch all took on the general trend is that the west is higher than the mid-east.
     (7)At most longitudinal positions, P. schrenkiana var. tianschanica forest was basically of pure forest, with P. schrenkiana var. tianschanica as the dominant species, very few of other arbor and shrub speices, and the species of herbs being controlled by the growth of P. schrenkiana var. tianschanica. This forest had the widest distribution, highest canopy, best growth, and highest stand volume at middle altitudes, resulting in the lowest species richness of herbs. In spite of the variation of the altitudinal range in the different sites, the herb species richness in P. schrenkiana var. tianschanica forest in Tianshan Mountains showed an inversed hump-shaped variation along the altitude, which could be described by the quadratic equation.
     (8)The biomass of P. schrenkiana var. tianschanica was estimated with the regression equation based on the date of community investigation. The results showed that the biomass in the different sites ranged from 88.695 to 436.915 t·hm-2. The western biomass was higher than the mid-east; Variation of biomass along the altitudinal gradient and in the different DBH class all took on the unimodal pattern.
引文
[1]新疆森林编辑委员会.新疆森林.乌鲁木齐:新疆人民出版社北京:中国林业出版社, 1989
    [2]姜汉侨,段昌群,杨树化等.植物生态学.北京:高等教育出版社, 2004
    [3]王仁忠,刘晓强,马克平.中国植物生态学研究进展Ⅰ.近十年来中国植物种群生态学研究.植物学报, 2003, 45 (增刊): 64-69
    [4]周纪伦,郑师章,杨持.植物生态学.北京:高等教育出版社, 1992
    [5] Harper, J.L. Population biology of plants. London: Academic Press, 1977
    [6]孙儒泳.动物生态学原理.北京:北京师范大学出版社, 2001
    [7] Wu, X.P.,Zheng, Y.,Ma, K.P. Population distribution and dynamics of Quercus liaotungensis,Fraxinus rhynchophylla and Acer mono in Dongling Mountain,Beijing. Acta Botanica Sinica, 2002, 44 (2): 212-223
    [8]杨一川,庄平,黎系荣.峨眉山峨眉栲、华木荷群落研究.植物生态学报, 1994, 18 (2): 105-120
    [9] Holeksa, J.,Saniga, M.,Szwagrzyk, J., et al. Altitudinal variability of stand structure and regeneration in the subalpine spruce forests of the Pol’ana biosphere reserve, Central Slovakia. European Journal of Forest Research, 2007, 126 (2): 303-313
    [10]王德祥,刘建军,陈海滨.秦岭林区华山松种群结构与动态研究. 1999, 14 (1): 48-53
    [11]祝宁,臧润国.刺五加种群生态学的研究.Ⅰ.刺五加的种群结构.应用生态学报, 1993, 4 (2): 113-119
    [12]张文辉.裂叶沙参种群生态学研究.哈尔滨:东北林业大学出版社, 1998
    [13]江洪.云杉种群生态学.北京:中国林业出版社, 1992
    [14]张金屯.植被数量生态学方法.北京:中国科学技术出版社, 1995
    [15] Dale, M.R.T. Spatial pattern analysis in plant ecology. www.books.google.com, 1999
    [16]吴承祯,洪伟,谢金寿等.珍稀濒危植物长苞铁杉种群生命表分析.应用生态学报, 2000, 11 (3): 333-336
    [17]李明辉,何风华,刘云等.林分空间格局的研究方法.生态科学, 2003, 22 (1): 77-81
    [18] Dale, M.R.T.,Blundon, D.J. Quadrat covariance analysis and the scales of interspecific association during primary succession. Journal of Vegetation Science, 1991, 2 (1): 103-112
    [19] Diggle, P.J. Statistical analysis of spatial point patterns. New York: Academic Press, 1983
    [20]张金屯.植物种群空间分布点格局分析.植物生态学报, 1998, 22 (4): 344-349
    [21]张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析.生态学报, 2004, 24 (1): 35-40
    [22]马克明,张喜军,陈继红等.东北羊草草原群落格局分析数值理论研究分形理论及其应用.北京:中国科技大学出版社, 1993
    [23] Gittins, R. Canonical analysis, a review with applications in ecology. Berlin: Sprinter Verlag, 1985
    [24]张金屯.草地群落主要种群的小格局分析.草业学报, 1994, 3 (4): 7-11
    [25]彭少麟.南亚热带森林群落动态学.北京:科学出版社, 1996
    [26]兰国玉,雷瑞德.植物种群空间分布格局研究方法概述.西北林学院学报, 2003, 18 (2): 17-21
    [27]马克平.试论生物多样性的概念.生物多样性, 1993, 1 (1): 20-22
    [28]陈灵芝.生物多样性保护现状及其对策生物多样性研究的原理与方法.北京:中国科学技术出版社, 1994: 13-35
    [29] Aiba, S.,Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology, 1999, 140: 139-157
    [30] Fosaa, A.M. Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands. Diversity and Distributions, 2004, 10 (3): 217-223
    [31] Austrheim, G. Plant diversity pattern in semi-natural grasslands along an elevation gradient on southern Norway. Plant Ecology, 2002, 161: 193-205
    [32] Vázqueg, J.A.,Givnish, T.J. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology, 1998, 86: 999-1020
    [33] Kazakis, G.,Ghosn, D.,Vogiatzakis, I., et al. Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodiversity and Conservation, 2007, 16 (6): 1603-1615
    [34]郝占庆,于德永,杨晓明等.长白山北坡植物群落α多样性及其随海拔梯度的变化.应用生态学报, 2002, 13 (7): 785-789
    [35]陈廷贵,张金屯.山西关帝山神尾沟植物群落物种多样性与环境关系的研究I.丰富度、均匀度和物种多样性指数.应用与环境生物学报, 2000, 6 (5): 406-411
    [36]马克平,黄建辉,于顺利.北京东灵山地区植物群落生物多样性的研究.Ⅱ.丰富度、均匀度和物种多样性指数.生态学报, 1995, 15 (3): 268-277
    [37]余世孝,臧润国,蒋有绪.海南岛霸王岭垂直带热带植被物种多样性的空间分析.生态学报, 2001, 21 (9): 1438-1443
    [38]唐志尧,方精云,张玲.秦岭太白山木本植物物种多样性的梯度格局及环境解释.生物多样性, 2004, 12 (1): 115-122
    [39] Stevens, G.C. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. American Naturalist, 1992, 140: 893-911
    [40]唐志尧,方精云.植物物种多样性的垂直分布格局.生物多样性, 2004, 12 (1): 20-28
    [41] Glenn-Lewin, D.C. Species diversity in the North American temperate forest. Vegetatio, 1977, 33: 153-162
    [42] O'Brien, E.M. Climatic gradients in woody plant species richness: towards an explanation based on an analysis of Southern Africa's woody flora. Journal of Biogeography, 1993, 20 (2): 181-198
    [43]丁惠萍,冯秀绒,钱克红等.火地塘林区森林群落生物多样性的熵值分析.西北林学院学报, 2006, 21 (6): 35-37
    [44] Grytnes, J.A.,Heegaard, E.,Ihlen, P.G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica, 2006, 29 (3): 241-246
    [45] Sánchez-González, A.,López-Mata, L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distributions, 2005, 11 (6): 567-575
    [46] Tang, C.Q.,Ohsawa, M. Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan,China. Plant Ecology, 1997, 133 (1): 63-78
    [47] Grytnes, J.A.,Beaman, J.H. Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of Biogeography, 2006, 33 (10): 1838-1849
    [48] Kitayama, K. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio, 1992, 102: 149-171
    [49] Wang, G.H.,Zhou, G.S.,Yang, L.M., et al. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 2002, 165: 169-181
    [50]沈泽昊,胡会峰,周宇等.神农架南坡植物群落多样性的海拔梯度格局.生物多样性, 2004, 12 (1): 99-107
    [51]王志恒,陈安平,朴世龙等.高黎贡山种子植物物种丰富度沿海拔梯度的变化.生物多样性, 2004, 12 (1): 82-88
    [52]黄金燕,周世强,谭迎春等.卧龙自然保护区大熊猫栖息地植物群落多样性研究:丰富度、物种多样性指数和均匀度.林业科学, 2007, 43 (3): 73-78
    [53]茹文明,张金屯,张峰等.历山森林群落物种多样性与群落结构研究.应用生态学报, 2006, 17 (4): 561-566
    [54] Bachman, S.,Baker, W.J.,Brummitt, N., et al. Elevational gradients,area and tropical island diversity: an example from the palms of New Guinea. Ecography, 2004, 27: 299-310
    [55]王志恒,陈安平,方精云.湖南省种子植物物种丰富度与地形的关系.地理学报, 2004, 59 (6): 889-894
    [56]冯建孟,王襄平,李晶等.面积和中间膨胀效应对丽江地区种子植物物种丰富度垂直分布格局的影响.生物多样性, 2006, 14 (2): 107-113
    [57] Rahbek, C. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 1997, 149: 875-902
    [58] Sanders, N.J. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 2002, 25: 25-32
    [59] Colwell, R.K.,Lees, D.C. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 2000, 15 (2): 70-76
    [60] Kluge, J.,Kessler, M.R.,Dunn, R. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography, 2006, 15: 358-371
    [61]冯建孟,王襄平,徐成东等.玉龙雪山植物物种多样性和群落结构沿海拔梯度的分布格局.山地学报, 2006, 24 (1): 110-116
    [62] McCain, C. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 2007, 16: 1-13
    [63] Heaney, L.R. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography, 2001, 10: 15-39
    [64] Peet, R.K. Forest vegetation of the Colorado, Front Range: pattern of species diversity. Vegetatio, 1978, 37: 65-78
    [65]岳明,张林静,党高弟等.佛坪自然保护区植物群落物种多样性与海拔梯度的关系.地理科学, 2002, 22 (3): 349-354
    [66]史作民,程瑞梅,刘世荣等.宝天曼植物群落物种多样性研究.林业科学, 2002, 38 (6): 17-23
    [67]郭正刚,刘慧霞,孙学刚.白龙江上游地区森林植物群落物种多样性的研究.植物生态学报, 2003, 27 (3): 388-395
    [68] Itow, S. Species turnover and diversity patterns along an evergreen broad-leaved forest coenocline. Journal of Vegetation Science, 1991, 2 (4): 477-484
    [69] Wilson, J.B.,Sykes, M.T. Some tests for niche limitation by examination of species diversity in the Dunedin area. New Zealand Journal of Botany, 1988, 26: 237-244
    [70] Ohlemuller, R.,Wilson, J.B. Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecology Letters, 2000, 3 (4): 262-266
    [71] Dole?al, J.,?rutek, M. Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology, 2002, 158 (2): 201-221
    [72]黄建辉,高贤明,马克平等.地带性森林群落物种多样性的比较研究.生态学报, 1997, 17 (6): 611-618
    [73]张峰,张金屯,上官铁梁.历山自然保护区猪尾沟森林群落植物多样性研究.植物生态学报, 2002, 26 (增刊): 46-51
    [74] Lagercrantz, U.,Ryman, N. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution, 1990, 44 (1): 38-53
    [75] Donahue, J.K.,Upton, J.L. Geographic variation in leaf, cone and seed morphology of Pinus greggii in navite forests. Forest Ecology and Management, 1996, 82 : 145-157
    [76] Dangasuk, O.G.,Panetsos, K.P. Altitudinal and longitudinal variations in Pinus brutia (Ten.) of Crete Island, Greece: some needle, cone and seed traits under natural habitats. New Forests, 2004, 27 (3): 269-284
    [77] Gil, L.,Climent, J.,Nanos, N., et al. Cone morphology variation in Pinus canariensis Sm. Plant Systematics and Evolution, 2002, 235 (1): 35-51
    [78] Cordell, S.,Goldstein, G.,Mueller-Dombois, D., et al. Physiological and morphological variation in Metrosideros polymorpha,a dominant Hawaiian tree species, along an altitudinal gradient:the role of phenotypic plasticity. Oecologia, 1998, 113: 188-196
    [79] Klimko, M.,Boratynska, K.,Montserrat, J.M., et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora - Morphology, Distribution, Functional Ecology of Plants, 2007, 202 (2): 133-147
    [80]徐化成.油松地理变异和种源选择.北京:中国林业出版社, 1992
    [81]罗建勋,顾万春.云杉天然群体表型多样性研究.林业科学, 2005, 41 (2): 66-73
    [82]乌弘奇.东北云杉的地理变异规律研究.东北林业大学学报, 1989, 17 (2): 27-33
    [83]郑元润,徐文铎,齐淑艳.沙地云杉种群性状变异的研究.沙地云杉生态系统研究.北京:中国林业出版社, 1998: 88-92
    [84]孙玉玲,李庆梅,杨敬元等.秦岭冷杉球果与种子的形态变异.生态学报, 2005, 25 (1): 176-181
    [85]王小平,刘晶岚,王九龄等.白皮松种子及球果形态特征的地理变异.北京林业大学学报, 1998, 20 (3): 25-31
    [86]张恒庆,安利佳,祖元刚.天然红松种群形态特征地理变异的研究.生态学报, 1999, 19 (6): 932-938
    [87]石福臣,聂江城,王志西.中国东北落叶松属植物分类学特征的分析Ⅱ:——种鳞及针叶的地理变异.植物研究, 1998, 18 (4): 468-471
    [88]石福臣,聂江城,赵勃等.中国东北落叶松属植物分类学特征的分析I——球果形态的地理变异.植物研究, 1998, 18 (2): 173-176
    [89]韦淑英,陆卫林,段喜华等.红皮云杉亲代特征群体的多样性.东北林业大学学报, 2001, 29 (5): 5-10
    [90]张瑛山,王学兰,周林生.雪岭云杉林生物量测定的初步研究.新疆八一农学院学报, 1980, (3): 19-25
    [91]孙继坤.天山林区山地灰褐土的林分生产力与林型分布的规律性.干旱区研究, 1994, 11 (1): 1-6
    [92]罗天祥.中国主要森林类型生物生产力格局及其数学模型.中国科学院自然资源综合考察委员会博士学位论文, 1996
    [93]王燕,赵士洞.天山云杉林生物量和生产力的研究.应用生态学报, 1999, 10 (4): 389-391
    [94]王燕,赵士洞.天山云杉林生物生产力的地理分布.植物生态学报, 2000, 24 (2): 186-190
    [95]丛者福.天山云杉种群水平空间分析.八一农学院学报, 1995, 18 (2): 41-44
    [96]李建贵,潘存德,梁瀛.天山云杉天然成熟林种群分布格局.福建林学院学报, 2001, 21 (1): 53-56
    [97]李建贵.天山云杉幼林死亡木的大小结构与空间分布格局.新疆农业大学学报, 2003, 26 (1): 5-9
    [98]李明辉,何风华,刘云等.天山云杉种群空间格局与动态.生态学报, 2005, 25 (5): 1000-1006
    [99]张新时,张瑛山.乌苏林区天山云杉天然更新的初步研究.新疆农业科学, 1963, (1): 8-12
    [100]陈迪马,潘存德,刘翠玲等.影响天山云杉天然更新与幼苗存活的微生境变量分析.新疆农业大学学报, 2005, 28 (3): 35-39
    [101]张志华,吴祥定.利用树轮资料重建新疆东天山300多年来干旱日数的变化.应用气象学报, 1996, 7 (1): 53-60
    [102]张志华,李骥.用树轮密度及宽度资料重建新疆吉木萨尔县的季节降水和最高温度.气象学报, 1998, 56 (1): 77-86
    [103]袁玉江,李江风.天山西部云杉林年轮气候生长量与气候的关系.新疆大学学报, 1994, 11 (4): 93-98
    [104]袁玉江,叶玮,董光荣.天山西部伊犁地区314 a降水的重建与分析.冰川冻土, 2000, 22 (2): 121-127
    [105]袁玉江,李江风,胡汝骥等.用树木年轮重建天山中部近350 a来的降水量.冰川冻土, 2001, 23 (1): 34-40
    [106]彭剑峰,勾晓华,陈发虎等.天山云杉和西伯利亚落叶松的树轮气候记录.生态环境, 2005, 14 (4): 460-465
    [107] Wang, T.,Ren, H.,Ma, K. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees - Structure and Function, 2005, 19 (6): 736-742
    [108]王云霞,陆兆华,苏宏新.天山云杉树木年轮宽度对气候因子变化的响应.中国矿业大学学报, 2007, 36 (2): 251-256
    [109]李叙勇,孙继坤,常直海等.天山森林凋落物和枯枝落叶层的研究.土壤学报, 1997, 34 (4): 406-417
    [110]刘云,潘存德,李明辉.天山云杉林林冠空隙特征的研究.北京林业大学学报, 2004, 26 (2): 37-42
    [111]刘云,侯世全,李明辉等.天山云杉林林冠干扰前后植物多样性及其与环境的关系.林业科学研究, 2005, 18 (4): 430-435
    [112]刘翠玲,潘存德,师瑞峰.鳞毛蕨天山云杉林林冠空隙特征.干旱区地理, 2007, 30 (2): 209-216
    [113]刘翠玲,潘存德,梁瀛,等.鳞毛蕨(Dryopteris filix-mas)天山云杉林种群结构分析.干旱区研究, 2006, 23 (1): 60-65
    [114]罗侠,潘存德,黄闽敏等.天山云杉凋落物提取液对种子萌发和幼苗生长的自毒作用.新疆农业科学, 2006, 43 (1): 1-5
    [115]汪莉,潘存德,刘翠玲.种子年后天山云杉林土壤种子库储量及其垂直空间分布.新疆农业科学, 2007, 44 (2): 111-114
    [116]罗明,庞峻峰,李叙勇.新疆天山云杉林区森林土壤微生物学特性及酶活性.生态学杂志, 1997, 16 (1): 26-30
    [117]高新和,姜志林,张金池等.天山山地森林调节河川径流作用的探讨.南京林业大学学报, 2000, 24 (4): 49-54
    [118]高新和,潘存德,李建贵.天山北坡山地森林与河川径流关系的探讨.新疆农业大学学报, 2000, 23 (1): 25-29
    [119]高新和,姜志林,张金池等.天山山地森林对河川枯水径流的补给功能.南京林业大学学报, 2000, 24 (4): 55-58
    [120]丛者福.天山北坡中部林区天山云杉林小气候观测.新疆农业大学学报, 1997, 20 (3): 23-28
    [121]郝帅,刘萍,张毓涛等.天山中段天山云杉林森林小气候特征研究.新疆农业大学学报, 2007, 30 (1): 48-52
    [122]张思玉.火生态与新疆山地森林和草原的可持续经营.干旱区研究, 2001, 18 (3): 76-79
    [123]周正,陈喜军,薛茂贤.世界主要用材树种概论.北京:中国林业出版社, 1997
    [124]宋永昌.植被生态学.上海:华东师范大学出版社, 2001
    [125]蒋有绪,郭泉水,马娟等.中国森林群落分类及其群落学特征.北京:科学出版社中国林业出版社, 1998
    [126]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社, 2001
    [127] Knowles, P.,Grant, M.C. Age and size structure analyses of engelmann spruce, ponderosa pine, lodgepole pine, and limber pine in Colorado. Ecology, 1983, 64 (1): 1-9
    [128] Taylor, A.H.,Halpern, C.B. The structure and dynamics of Abies magnifica forests in the southern Cascade Range, USA. Journal of Vegetation Science, 1991, 2 (2): 189-200
    [129] Williams, C.E.,Johnson, W.C. Age structure and the maintenance of Pinus pungens in pine-oak forests of southwestern Virginia. American Midland Naturalist, 1990, 124 (1): 130-141
    [130] Armesto, J.J.,Casassa, I.,Dollenz, O. Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Plant Ecology, 1992, 98 (1): 13-22
    [131] Kneeshaw, D.D.,Burton, P.J. Canopy and age structures of some old sub-boreal Picea stands in British Columbia. Journal of Vegetation Science, 1997, 8 (5): 615-626
    [132] Stewart, G.H. Population dynamics of a montane conifer forest, western Cascade Range, Oregon, USA. Ecology, 1986, 67 (2): 534-544
    [133] Zedler, P.H.,Goff, F.G. Size-association analysis of forest successional trends in Wisconsin. Ecological Monographs, 1973, 43 (1): 79-94
    [134] Nakashizuka, T. Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest. Journal of Vegetation Science, 1991, 2 (3): 413-418
    [135] Veblen, T.T. Age and size structure of subalpine forests in the Colorado Front Range. Bulletin of the Torrey Botanical Club, 1986, 113 (3): 225-240
    [136] Lieberman, M.,Lieberman, D.,Vandermeer, J.H. Age-size relationships and growth behavior of the palm Welfia georgii. Biotropica, 1988, 20 (4): 270-273
    [137] Akashi, N. The spatial pattern and canopy-understory association of trees in a cool temperate, mixed forest in western Japan. Ecological Research, 1996, 11 (3): 311-319
    [138] Ansley, J.-A.S.,Battles, J.J. Forest composition, structure, and change in an old-growth mixed conifer forest in the northern Sierra Nevada. Journal of the Torrey Botanical Society, 1998, 125 (4): 297-308
    [139] Agren, J.,Isaksson, L.,Zackrisson, O. Natural age and size of Pinus sylvestris and Picea abies on a mire in the inland part of northern Sweden. Holarctic Ecology, 1983, 6 (3): 228-237
    [140] Arista, M. The structure and dynamics of an Abies pinsapo forest in southern Spain. Forest Ecology and Management, 1995, 74: 81-89
    [141] Poorter, L.,Bongers, F.,van Rompaey, R.S.A.R., et al. Regeneration of canopy tree species at five sites in West African moist forest. Forest Ecology and Management, 1996, 84: 61-69
    [142] Andrzejczyk, T.,Brzeziecki, B. The structure and dynamics of old-growth Pinus sylvestris (L.) stands in the Wigry National Park, north-eastern Poland. Plant Ecology, 1995, 117 (1): 81-94
    [143] Hytteborn, H.,Packham, J.,Verwijst, T. Tree population dynamics, stand structure and species composition in the montane virgin forest of Vallib?cken, northern Sweden. Plant Ecology, 1987, 72 (1): 3-19
    [144] Stewart, G.H. The dynamics of old-growth Pseudotsuga forests in the western Cascade Range, Oregon, USA. Plant Ecology, 1989, 82 (1): 79-94
    [145] Stewart, G.H.,Rose, A.B. The significance of life history strategies in the developmental history of mixed beech (Nothofagus) forests, New Zealand. Plant Ecology, 1990, 87 (2): 101-114
    [146] Agren, J.,Zackrisson, O. Age and size structure of Pinus Sylvestris populations on mires in central and northern Sweden. The Journal of Ecology, 1990, 78 (4): 1049-1062
    [147] Lorimer, C.G. Age structure and disturbance history of a southern Appalachian virgin forest. Ecology, 1980, 61 (5): 1169-1184
    [148]闫淑君,洪伟,吴承祯等.丝栗栲种群生命过程及谱分析.应用与环境生物学报, 2002, 8 (4): 351-355
    [149]李性苑,李旭光,李东平.贵州雷公山秃杉种群生态学研究.西南农业大学学报, 2005, 27 (3): 334-338
    [150]闫桂琴,赵桂仿,胡正海等.秦岭太白红杉种群结构与动态的研究.应用生态学报, 2001, 12 (6): 824-828
    [151]陈远征,马祥庆,冯丽贞等.濒危植物沉水樟的种群生命表和谱分析.生态学报, 2006, 26 (12): 4267-4272
    [152] Hoshino, D.,Nishimura, N.,Yamamoto, S. Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management, 2001, 152: 31-43
    [153] Miyadokoro, T.,Nishimura, N.,Yamamoto, S. Population structure and spatial patterns of major trees in a subalpine old-growth coniferous forest, central Japan. Forest Ecology and Management, 2003, 182: 259-272
    [154] Legendre, P.,Fortin, M.J. Spatial pattern and ecological analysis. Plant Ecology, 1989, 80 (2): 107-138
    [155] Borchsenius, F.,Kj?r Nielsen, P.,Lawesson, J.E. Vegetation structure and diversity of an ancient temperate deciduous forest in SW Denmark. Plant Ecology, 2004, 175 (1): 121-135
    [156]杨慧,娄安如,高益军等.北京东灵山地区白桦种群生活史特征与空间分布格局.植物生态学报, 2007, 31 (2 ): 272-282
    [157]于大炮,周莉,董百丽等.长白山北坡岳桦种群结构及动态分析. 2004, 23 (5): 30-34
    [158]徐文铎,郑元润.沙地云杉种群结构与动态的研究.应用生态学报, 1993, 4 (2): 126-130
    [159] Sinclair, D.F. On tests of spatial randomness using mean nearest neighbor distance. Ecology, 1985, 66 (3): 1084-1085
    [160]茹文明,张桂萍,毕润成等.濒危植物脱皮榆种群结构与分布格局研究.应用与环境生物学报, 2007, 13 (1): 14-17
    [161]康华靖,陈子林,刘鹏等.大盘山自然保护区香果树种群结构与分布格局.生态学报, 2007, 27 (1): 389-396
    [162]吴大荣,苏志尧,李秉涛等.福建三明莘青钩栲种群结构和空间分布格局动态初步研究.林业科学, 2000, 36 (3): 27-32
    [163]蔡飞,宋永昌.武夷山木荷种群结构和动态的研究.植物生态学报, 1997, 21 (2): 138-148
    [164]张文辉,王延平,康永祥等.太白山太白红杉种群空间分布格局研究.应用生态学报, 2005, 16 (2): 207-212
    [165] Szwagrzyk, J.,Czerwczak, M. Spatial patterns of trees in natural forests of east-central Europe. Journal of Vegetation Science, 1993, 4 (4): 469-476
    [166] Chokkalingam, U.,White, A. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine. Plant Ecology, 2001, 156 (2): 139-160
    [167] Gratzer, G.,Rai, P.B. Density-dependent mortality versus spatial segregation in early life stages of Abies densa and Rhododendron hodgsonii in Central Bhutan. Forest Ecology and Management, 2004, 192: 143-159
    [168] Kenkel, N.C.,Hendrie, M.L.,Bella, I.E. A long-term study of Pinus banksiana population dynamics. Journal of Vegetation Science, 1997, 8 (2): 241-254
    [169]侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析.植物生态学报, 1997, 21 (3): 242-249
    [170]张文辉,卢志军,李景侠等.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报, 2002, 22 (3): 476-483
    [171]郭华,王孝安,肖娅萍.秦岭太白红杉种群空间分布格局动态及分形特征研究.应用生态学报, 2005, 16 (2 ): 227-232
    [172] Marcysiak, K.,Boratyński, A. contribution to the taxonomy of Pinus uncinata (Pinaceae) based on cone characters. Plant Systematics and Evolution, 2007, 264 (1): 57-73
    [173] Medrano, M.,Castellanos, M.,Herrera, C. Comparative floral and vegetative differentiation between two European Aquilegia taxa along a narrow contact zone. Plant Systematics and Evolution, 2006, 262 (3): 209-224
    [174] Otieno, D.,Balkwill, K.,Paton, A. A multivariate analysis of morphological variation in the Hemizygia bracteosa complex (Lamiaceae, Ocimeae). Plant Systematics and Evolution, 2006, 261 (1): 19-38
    [175] Ishimitsu, M.,Tateoka, T. Morphological variation and taxonomy of the Poa macrocalyx complex (Poaceae) in Hokkaido. Journal of Plant Research, 1983, 96 (3): 245-267
    [176] Newell, S.J. Variation in leaflet morphology among populations of Caribbean Cycads (Zamia). American Journal of Botany, 1989, 76 (10): 1518-1523
    [177] Sanou, H.,Picard, N.,Lovett, P.N., et al. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa C.F. Gaertn., in Mali. Genetic Resources and Crop Evolution, 2006, 53 (1): 145-161
    [178] Hausmann, S.,Lotter, A.F. Morphological variation within the diatom taxon Cyclotella comensis and its importance for quantitative temperature reconstructions. Freshwater Biology, 2001, 46(10): 1323-1333
    [179] Joel, G.,Aplet, G.,Vitousek, P.M. Leaf morphology along environmental gradients in Hawaiian Metrosideros Polymorpha. Biotropica, 1994, 26 (1): 17-22
    [180]阎爱民,陈文新.苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析.生物多样性, 1999, 7 (2): 1-8
    [181]顾万春著.统计遗传学.北京:科学出版社, 2004
    [182] Mizianty, M.,Frey, L.,Bieniek, W., et al. Variability and structure of natural populations of Hordelymus europaeus (L.) Jess. ex Harz and Leymus arenarius (L.) Hochst. as revealed by morphology and DNA markers. Plant Systematics and Evolution, 2007, 269 (1): 15-28
    [183] Schoettele, A.W.,Rochelle, S.G. Morphological variation of Pinus Flexilis (Pinaceae), a bird-dispersed pine,across a range of elevations. American Journal of Botany, 2000, 87 (12): 1797-1806
    [184] Hornung-Leoni, C.,Sosa, V. Morphological variation in Puya (Bromeliaceae):an allometric study. Plant Systematics and Evolution, 2006, 256: 35–53
    [185] Cron, G.V.,Balkwill, K.,Knox, E.B. Multivariate analysis of morphological variation in Cineraria deltoidea (Asteraceae, Senecioneae). Botanical Journal of the Linnean Society, 2007, 154 (4): 497-521
    [186] Linhart, Y.B. Maintenance of variation in cone morphology in California closed-cone pines: the roles of fire, squirrels and seed output. The Southwestern Naturalist, 1978, 23 (1): 29-40
    [187]罗建勋,李晓清,孙鹏等.云杉天然群体表型变异.东北林业大学学报, 2003, 31 (1): 9-11
    [188]孙玉玲,李庆梅,谢宗强.濒危植物秦岭冷杉结实特性的研究.植物生态学报, 2005, 29 (2): 251-257
    [189]马绍宾,姜汉侨.小檗科鬼臼亚科种子大小变异式样及其生物学意义.西北植物学报, 1999, 19 (4): 715-724
    [190] Benkman, C.W. Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in pines. Oikos, 1995, 73 (2): 221-224
    [191]徐亮,包维楷,何永华. 4个岷江柏种群的球果和种子形态特征及其地理空间差异.应用与环境生物学报, 2004, 10 (6): 707-711
    [192] Li, C.Y.,Zhang, X.J.,Liu, X.L., et al. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 2006, 40 (1): 5-13
    [193] Li, M.,Han, H.R.,Kang, F.F., et al. Morphological variation of Quercus liaotungensis leaves in Lingkong Mountain, Shanxi province. Frontiers of Forestry in China, 2007, 2 (2): 185-191
    [194] K?rner, C.,Bannister, P.,Mark, A.F. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia, 1986, 69 (4): 577-588
    [195] Hultine, K.R.,Marshall, J.D. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 2000, 123 (1): 32-40
    [196] Velazquez-Rosas, N.,Meave, J.,Vazquez-Santana, S. Elevational variation of leaf traits in montane rain forest tree species at La Chinantla, southern Mexico. Biotropica, 2002, 34 (4): 534-546
    [197]祁建,马克明,张育新.辽东栎(Quercus liaotungensis )叶特性沿海拔梯度的变化及其环境解释.生态学报, 2007, 27 (3): 930-937
    [198] Oleksyn, J.,Modrzynski, J.,Tjoelker, M.G., et al. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 1998, 12 (4): 573-590
    [199] James, J.C.,Grace, J.,Hoad, S.P. Growth and photosynthesis of Pinus Sylvestris at its altitudinal limit in Scotland. The Journal of Ecology, 1994, 82 (2): 297-306
    [200] Cordell, S.,Goldstein, G.,Meinzer, F.C., et al. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and 13C along an altitudinal gradient Functional Ecology, 1999, 13 (6): 811-818
    [201] Tang, C.Q.,Ohsawa, M. Altitudinal distribution of evergreen broad-leaved trees and their leaf-size pattern on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecology, 1999, 145 (2): 221-233
    [202]江洪.冷杉生态型分化的初步研究.生态学杂志, 1984, (3): 5-8
    [203] Myers, O., Jr.,Bormann, F.H. Phenotypic variation in Abies balsamea in response to altitudinal and geographic gradients. Ecology, 1963, 44 (3): 429-436
    [204] Kappelle, M.,Uffelen, J.G.V.,Cleef, A.M. Altitudinal zonation of montane Quercus forests along two transects in Chirripónational park, Costa Rica. Vegetatio, 1995, 119: 119-153
    [205] Jacquemyn, H.,Micheneau, C.,Roberts, D.L., et al. Elevational gradients of species diversity, breeding system and floral traits of orchid species on Re′union Island. Journal of Biogeography, 2005, 32: 1751-1761
    [206] Carpenter, C. The environmental control of plant species density on a Himalayan elevation gradient. Journal of Biogeography, 2005, 32 (6): 999-1018
    [207] Muoghalu, J.I.,Okeesan, O.O. Climber species composition, abundance and relationship with trees in a Nigerian secondary forest. African Journal of Ecology, 2005, 43: 258-266
    [208] Lovett, J.C.,Marshall, A.R.,Carr, J. Changes in tropical forest vegetation along an altitudinal gradient in the Udzungwa Mountains National Park,Tanzania. African Journal of Ecology, 2006, 44: 478-490
    [209]党坤良,张长录,陈海滨等.秦岭南坡不同海拔土壤肥力的空间分异规律.林业科学, 2006, 42 (1): 16-21
    [210] Pendry, C.A.,Proctor, J. The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. The Journal of Ecology, 1996, 84 (3): 407-418
    [211] Marrs, R.H.,Proctor, J.,Heaney, A., et al. Changes in soils, nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. The Journal of Ecology, 1988, 76 (2): 466-482
    [212] K?rner, C.h. Alpine plant life: functional plant ecology of high mountain ecosystems. New York: Springer, 1999
    [213] Sousa, W.P. The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 1984, 15: 138-176
    [214] Ohsawa, M.,Nainggolan, P.H.J.,Tanaka, N., et al. Altitudinal zonation of forest vegetation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of east Asia. Journal of Tropical Ecology, 1985, 1 (3): 193-216
    [215] Lieberman, D.,Lieberman, M.,Peralta, R., et al. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. The Journal of Ecology, 1996, 84 (2): 137-152
    [216] Stevens, G.C.,Fox, J.F. The causes of treeline. Annual Review of Ecology and Systematics, 1991, 22: 177-191
    [217] Barrera, M.D.,Frangi, J.L.,Richter, L.L., et al. Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego,Argentina. Journal of Vegetation Science, 2000, 11 (2): 179-188
    [218] Hicks, D.J. Population structure and growth patterns of Opuntia echios var. gigantea along an elevational gradient in the Galapagos Islands. Biotropica, 2000, 32 (2): 235-243
    [219] Miyajima, Y.,Takahashi, K. Changes with altitude of the stand structure of temperate forests on Mount Norikura, central Japan. The Japanese Forest Society, 2007, 12: 187-192
    [220] Pardos, M.,Montes, F.,Aranda, I., et al. Influence of environmental conditions on germinant survival and diversity of Scots pine (Pinus sylvestris L.) in central Spain. European Journal of Forest Research, 2007, 126 (1): 37-47
    [221] Thompson, K.,Grime, J.P. A comparative study of germination responses to diurnally-fluctuating temperatures. The Journal of Applied Ecology, 1983, 20 (1): 141-156
    [222] Montgomery, R.A.,Chazdon, R.L. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 2002, 131 (2): 165-174
    [223] Broncano, M.J.,Retana, J.,Rodrigo, A. Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in northeastern Spain. Plant Ecology, 2005, 180: 47-56
    [224] Ericsson, S.,?stlund, L.,Axelsson, A.L. A forest of grazing and logging: deforestation and reforestation history of a boreal landscape in central Sweden. New Forests, 2000, 19: 227-240
    [225] McEvoy, P.M.,McAdam, J.H.,Mosquera-Losada, M.R., et al. Tree regeneration and sapling damage of pedunculate oak Quercus robur in a grazed forest in Galicia, NW Spain: a comparison of continuous and rotational grazing systems. Agroforestry Systems, 2006, 66: 85-92
    [226] Hofstede, R.G.M. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian pa′ramo grasslands. Plant and Soil, 1995, 173: 111-132
    [227] Wangda, P.,Ohsawa, M. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management, 2006, 230: 136-150
    [228] Gao, J.F.,Zhang, Y.X. Distributional patterns of species diversity of main plant communities along altitudinal gradient in secondary forest region, Guandi Mountain, China. Journal of Forestry Research, 2006, 17 (2): 111-115
    [229]朱彪,陈安平,刘增力等.广西猫儿山植物群落物种组成、群落结构及树种多样性的垂直分布格局.生物多样性, 2004, 12 (1): 44-52
    [230]郑成洋,刘增力,方精云.福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化.生物多样性, 2004, 12 (1): 63-74
    [231] Cierjacks, A.,Rühr, N.K.,Wesche, K., et al. Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecology, 2008, 194: 207-221
    [232] Pendry, C.A.,Proctor, J. Altitudinal zonation of rain forest on Bukit Belalong, Brunei: soils, forest structure and floristics. Journal of Tropical Ecology, 1997, 13 (2): 221-241
    [233] ?r?tek, M.,Dolezal, J.,Hara, T. Spatial structure and associations in a Pinus canariensis population at the treeline, Pico del Teide, Tenerife, Canary Islands. Arctic, Antarctic, and Alpine Research, 2002, 34 (2): 201-210
    [234]朱彪,陈安平,刘增力等.南岭东西段植物群落物种组成及其树种多样性垂直格局的比较.生物多样性, 2004, 12 (1): 53-62
    [235]李江风.新疆气候.北京:气象出版社, 1991
    [236]娄安如.天山中段山地植被的生态梯度分析及环境解释.植物生态学报, 1998, 22 (4): 364-372
    [237] Bhattarai, K.R.,Vetaas, O.R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 2003, 12 (4): 327-340
    [238] Grytnes, J. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 2003, 26: 291-300
    [239] Wang, Z.H.,Tang, Z.Y.,Fang, J.Y. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 2007, 13 (6): 845-854
    [240] Gracia, M.,Montan, F.,Piqu, J., et al. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecology and Management, 2007, 242: 391-397
    [241]唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局.生物多样性, 2004, 12 (1): 108-114
    [242] Rahbek, C. The elevational gradient of species richness: a uniform pattern? Ecography, 1995, 18 (2): 200-205
    [243] Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 2007, 57 (10): 845-858
    [244] Barbie, S.,Gosselin, F.,Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. Forest Ecology and Management, 2008, 254: 1-15
    [245] Brown, S.,Lugo, A.E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 1982, 14 (3): 161-187
    [246] Field, C.B.,Kaduk, J. The carbon balance of an old-growth forest: building across approaches. Ecosystems, 2004, 7 (5): 525-533
    [247] Clark, D.A. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions: Biological Sciences, 2004, 359 (1443): 477-491
    [248] Hoshizaki, K.,Niiyama, K.,Kimura, K., et al. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecological Research, 2004, 19 (3): 357-363
    [249] Garkoti, S. Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas. Ecological Research, 2008, 23 (1): 41-49
    [250] Thuille, A.,Schulze, E.-D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology, 2006, 12 (2): 325-342
    [251] Malhi, Y.,Phillips, O.L. Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions: Biological Sciences, 2004, 359 (1443): 549-555
    [252] Lewis, S.L.,Phillips, O.L.,Baker, T.R., et al. Concerted changes in tropical forest structure and dynamics: evidence from 50 south American long-term plots. Philosophical Transactions: Biological Sciences, 2004, 359 (1443): 421-436
    [253] Chave, J.,Condit, R.,Lao, S., et al. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. The Journal of Ecology, 2003, 91 (2): 240-252
    [254] Houghton, R.A.,Lawrence, K.T.,Hackler, J.L., et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 2001, 7 (7): 731-746
    [255]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响.林业科学研究, 1993, 6 (6): 633-641
    [256] Brown, S.,Iverson, L.R.,A, P., et al. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International, 1993, 4: 45-49
    [257] Fang, J.Y.,Chen, A.P.,Peng, C.H., et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (22): 2320-2322
    [258] Sampson, D.A.,Waring, R.H.,Maier, C.A., et al. Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management. Forest Ecology and Management, 2006, 221: 91-109
    [259] Baker, T.R.,Phillips, O.L.,Malhi, Y., et al. Increasing biomass in Amazonian forest plots. Philosophical Transactions: Biological Sciences, 2004, 359 (1443): 353-365
    [260] Tian, H.,Melillo, J.M.,Kicklighter, D.W., et al. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography, 2000, 9 (4): 315-335
    [261] Houghton, R.A.,Hackler, J.L. Changes in terrestrial carbon storage in the United States. 1: the roles of agriculture and forestry. Global Ecology and Biogeography, 2000, 9 (2): 125-144
    [262] Botkin, D.B.,Simpson, L.G.,Nisbet, R.A. Biomass and carbon storage of the north American deciduous forest. Biogeochemistry, 1993, 20 (1): 1-17
    [263]杨昆,管东生.珠江三角洲地区森林生物量及其动态.应用生态学报, 2007, 18 (4): 705-712
    [264] Brown, S.L.,Schroeder, P.,Kern, J.S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 1999, 123 (1): 81-90
    [265] Dixon, R.K.,Solomon, A.M.,Brown, S., et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185-190
    [266] Chave, J.,Riera, B.,Dubois, M.A. Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 2001, 17 (1): 79-96
    [267] Devi, N.,Hagedorn, F.,Moiseev, P., et al. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Global Change Biology, 2008, 14: 1-11
    [268] Phillips, O.L.,Malhi, Y.,Higuchi, N., et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282 (5388): 439-442
    [269] Fan, S.,Gloor, M.,Mahlman, J., et al. A large terrestrial carbon sink in north America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998, 282 (5388): 442-446
    [270]刘兴良,史作民,杨冬生等.山地植物群落生物多样性与生物生产力海拔梯度变化研究进展.世界林业研究, 2005, 18 (4): 27-34
    [271] Garkoti, S.C.,Singh, S.P. Variation in net primary productivity and biomass of forests in the high Mountains of central Himalaya. Journal of Vegetation Science, 1995, 6 (1): 23-28
    [272]索安宁,巨天珍,张俊华等.甘肃小陇山锐齿栎群落生物量特征分析.山地学报, 2006, 24 (1): 123-128
    [273]蓝振江,蔡红霞,曾涛等.九寨沟主要植物群落生物量的空间分布.应用与环境生物学报, 2004, 10 (3): 299-306
    [274]张文辉,张存旭,李景侠.川西泡沙参种群地上生物量生长发育的研究.西北植物学报, 1999, 19 (5): 44-53
    [275] Luo, T.X.,Shi, P.L.,Luo J, et al. Distribution patterns of aboveground biomass in Tibetan alpine vegetation transects. Acta Phytoecologica Sinica, 2002, 26 (6): 668-676
    [276]马明东,江洪,罗承德.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究.植物生态学报, 2007, 31 (2): 305-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700