用户名: 密码: 验证码:
基于物候表征的中国东部南北样带上植被动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种自然要素中,植物及其群体对于其他要素所施加的影响,反应最灵敏,并具有最充分的表现能力。植被特有的年际和季节的变化即植物物候,是全球变化的敏感指示器。在全球变化遥感研究中,许多学者正是根据植被的这一特点,利用宏观遥感数据,来监测植被物候的变化,并用以反演气候的变化及影响。
     基于植物物候遥感监测的原理和特点,本项研究应用野外物候观测数据和植物物候遥感监测相结合的研究方法,采用中国国家气象局355个站点从1951~2004年观测的相关资料,以及美国地球资源观测系统数据中心的探路者数据集中的NOAA/AVHRR NDVI数据,构建起Logistic模型。将其应用于中国东部南北样带上以物候为指示的植被格局动态与气候变化研究之中,分析了1982~2003年样带植被绿度始期、绿度末期、绿度期长度等绿度期参量的时空格局与演变趋势;分析了植被生长状况与气温和降水等气候因子的相关关系;重点探讨了不同植被类型和不同生物气候区植被绿度始期与绿度末期的时空变化特征及其对区域气温、降水变化的响应方式;初步揭示了全球变化下环境因子对植被生长期变化的驱动机制。论文研究工作主要结论如下:
     (1)样带近22年来冬、春季升温现象明显,春季大部分地区降水减少,冬季降水增加,植被绿度始期提前趋势明显,特别是在20世纪90年代中后期,平均绿度始期提前8天左右。样带植被季相变化对气候的响应表明温度对植被的季相变化的驱动作用大于水分条件。温度每升高1℃,植被绿度始期平均提前7天左右,绿度期长度延长5-8天。植被生长与气候条件之间表现了一定的滞后性,其中以气温对植被生长的滞后效应较为显著。春季植被生长对前一个冬季的温度有滞后效应。
     (2)冬季温度对植被绿度的影响远远超过降水冬季降水,且从南至北,这种影响趋势增加。
     植物绿度期变化在大范围上受水热条件驱动。在东部湿润的季风区沿同一经线,温度是植被绿度期变化的主要驱动因子;在北部沿同一纬线,随着从湿润季风区过渡到半干旱的草原荒漠内陆,降水是这些地区植被绿度期变化的重要驱动因子。
     (3)在中国东部南北样带不同生物气候区,植被绿度始期显著提前,而绿度末期呈不显著提前趋势,使得植被绿度期延长。这与欧洲和北美地区植被绿度始期显著提前而末期不显著推迟的变化趋势不同。
     就整个样带而言,对温度变化的敏感区位于东北、华北、华中大部分地区以及内蒙区东部;对降水敏感区主要位于内蒙东部区以及华北北部地区,其他地区响应较为零散。由南向北,温度成为影响植被覆盖变化的主要驱动因子,而且影响程度随着纬度的升高而降低。
     (4)在全球气候变暖的情况下,受气候变化干扰影响较大的植被类型是寒温带、温带针叶林和温带落叶阔叶林。它们将在地带性森林中所占比例缩小。
     样带北部温度升高、降水减少,特别是春季降水减少,会使温带荒漠地区荒漠化趋势加重。
Phenology refers to seasonal biological life stages driven by environmental factors, and is considered to be a sensitive and precise indicator of climate change. Vegetation phenology detection methods based on remote sensing overcome conventional ground observation’s shortcomings, such as limited observation sites and missing data, and realize the spatial scale transition of observation methods from points to coverage. Remote sensing technology greatly promotes a study on vegetation ecosystem response to climate changes at regional, continental, even global scales.
     Therefore, we developed a“bottom-up”method for first determining the phenological growing season at sample stations, and based on NOAA/AVVHRR, meteorological data, ground phenology observation data, vegetation category data, and so on, the essay build a Logistic fitting model on cumulative frequency of NDVI to determine turning green date(TGD)in spring, wilting date(WD) in autumn and length of greenness period (LGP) since 1982,then analyze the spatio-temporal pattern and change trends of TGD, WD, LGP,analyze correlation between NDVI and air temperature, precipitation, mainly discuss spatio-temporal dynamics of TD and WD and their response and feedback to regional air temperature and precipitation in different vegetation types and different bioclimatic regions, primarily reveal the dynamic mechanism of climate on vegetation..
     Using phenological and NDV I data from 1982 to 2003 at seven sample stations in the North South Transect of Eastern China, we calculated the cumulative frequency of leaf unfolding and leaf coloration dates for deciduous species every five days throughout the study period. Then, we determined the growing season beginning and end dates by computing times when 50% of the species had undergone leaf unfolding and leaf coloration for each station 2 year. Next, we used these beginning and end dates of the growing season as time markers to determine corresponding threshold NDV I values on NDV I curves for the pixels overlaying phenological stations. Based on a cluster analysis, we determined extrapolation areas for each phenological station in every year, and then, implemented the spatial extrapolation of growing season parameters from the seven sample stations to all possible meteorological stations in the study area.
     The results show: ( 1 ) the spatial pattern of average turning green and wilting dates of the growing season correlates significantly with the spatial pattern of average temperatures in sp ring and winter across the North South Transect of Eastern China during 1982 to 2003; the growing season extended on average by 5 to 8 days ;(2) On an interannual basis, correlation analysis shows that TGD were mainly influenced by mean air temperature from last winter to spring in all vegetation types. A negative correlation indicates that higher mean temperature in late winter and spring trigger an earlier onset of TGD. In contrast to TGD, the correlations of WD and seasonal mean air temperature before it are not significant in mostly vegetation types. It indicates that the delay or advance of WD in autumn mainly lied on a temperature threshold under which WD arise. Precipitation has a weak influence on TGD and WD In contrast to temperature.(3) a insignificant advance of wilting dates but a significant advance of turning green dates of the growing season were detected in different latitudinal zones and the whole area, which is different from findings in Europe and North America (where a significant advance of beginning dates and an insignificant delay of end dates of the growing season were observed) ; (4) An increase in air temperature in North China may tend to result in less temperate forest but more shrubs and grasses in the transect area.
引文
[1]郑新奇,姚慧,王筱明.20世纪90年代以来《science》关于全球气候变化研究评述.生态环境,2005,14(3):422-428
    [2]方修琦,余卫红.物候对全球变暖响应的研究综述.地理研究进展,2002,17(5):713-719.
    [3] Beno?t Duchemin, Jér?me Goubier, Gaston Courrier. Monitoring phonological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environment, 1999, 67: 68-82.
    [4] Chen J, Jonsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay fliter. Remote Sensing of Environment, 2004, 91: 332-344.
    [5] Chen XQ, Hu B and Yu R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 2005, 11, 1118-1130.
    [6] Menzel A. Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 2003, 57, 243-263.
    [7]联合国政府间气候变化2007年报告,2007.
    [8] Moulin S, Kergoat L, Viovy N, et al. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 1997, 10:1154-1170.
    [9] Zhang Xiaoyang, Mark A Friedl, Crystal B Schaaf, et al. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003, 84: 471-475.
    [10] Fontes J, Gastellu-Etchegorry J P, Amram O, et al. A global phonological model of the African continent[J]. Ambio, 1995, 24:297-303.
    [11] Duncan I, Stow D, Franklin I, et al. Assessing the relationship between spectral vegetation indices and shrub cover in the Iornada Basin, New Mexico. International Journal of Remote Sensing, 1993, 14: 3395-3416.
    [12] Kaduk J, Heimann M. A prognostic phenology model for global terrestrial carbon cycle models. Climate Research, 1996, 6:1-19.
    [13]何学兆. 1982-1999年我国北方农牧交错带植被NDVI的变化特征及其与气候因素的关系[硕士学位论文].北京师范大学, 2004.
    [14]李胜强,张福春.物候信息化及物候时空变化分析.地理科学进展, 1999, 18(4):352-359.
    [15]温刚,符淙斌.中国东部季风区植被物候季节变化对气候响应的大尺度特征:年际比较.气候与环境研究, 2001, 6(1): 1-11.
    [16]温刚.利用AVHRR植被指数数据集分析中国东部季风区的物候季节特征.遥感学报, 1998, 2(4): 270-275.
    [17] Michael A W, Forrest H and William W H, et al. A global framework for monitoring phenological responses to climate change. Geophysical Research Letters, 2005, 32
    [18] Los S O. Linkages between global vegetation and climate: an analysis based on NOAA Advanced Very High Resolution Radiometer Data [PH. D. dissertation]. National Aeronautics and Space Administration (NASA), 1998.
    [19]孙龙,国庆喜,王晓春等.中国东部南北样带中南段典型植被类型NDVI变化分析.应用与环境生物学报,2003,9(5):449-454
    [20] Ahas R, Jaagus J, Aasa A. The phonological calendar of Estonia and its correlation with mean air temperature. International Journal of Biometeorol. 2000, 44(4): 159-166.
    [21]竺可桢,皖敏渭.物候学.长沙:湖南教育出版社, 1999, 1-22.
    [22]张福春.物候.北京:气象出版社, 1985, 20-21.
    [23]徐雨晴,陆佩玲,于强.气候变化对植物物候影响的研究进展.资源科学, 2004, 26(1): 129-136.
    [24]吴炳方.全国农情监测与估产的运行化遥感方法.地理学报, 2000, 55(1): 25-35.
    [25] Tateishi R, Ebata M. Analysis of phonological change patterns using 1982-2000 Advanced Very High Resolution Radiometer (AVHRR) data. International Journal of Remote Sensing, 2004, 25(12): 2287-2300.
    [26] Zhou L, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research, 2001, 106(D17): 2 0069-2 0083.
    [27] Tucker C J, Dregne H E, Newcomb W W. AVHRR datasets for determination of desert spatial extent. International Journal of Remote Sensing, 2000, 15: 3547-3565.
    [28] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386, 698-702.
    [29] Lucht W, Prentice I C, Myneni R B, et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 2002, 296, 1687-1689.
    [30] Ebata M, Tateishi R. Phenological stage monitoring in Siberia by using NOAA/AVHRR data. The 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore.
    [31]齐晔.北半球高纬度地区气候变化对植被的影响途径和机制.生态学报, 1999, 19(4): 474-477.
    [32]赵茂盛,符淙斌,延晓东等.应用遥感数据研究中国植被生态系统与气候的关系.地理学报, 2001, 56(3): 287-296.
    [33]孙红雨,王长耀,牛铮等.中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析.遥感学报, 1998, 2(3): 204-210.
    [34]朴世龙,方精云. 1982-1999年我国陆地植被活动对气候变化响应的季节差异.地理学报, 2003, 58(1): 119-125.
    [35]李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析.植物生态学报, 2000, 24(3): 379-382.
    [36]赵茂盛, Ronald P N,延晓冬等.气候变化对中国植被可能影响的模拟.地理学报, 2002, 57(1): 28-38.
    [37]张福春,郑景云编.中国物候观测规范质量要求与观测报表(简易本).中国科学院地理科学与资源研究所. 2002.
    [38]吴炳方.全国农情监测与估产的运行化遥感方法.地理学报, 2000, 55(1): 25-35.
    [39] White M A, Thomton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997, 11: 217-234.
    [40] Kang S, Running S W, Lim J H, et al. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index. Remote Sensing of Environment, 2003, 86: 232-242.
    [41] Reed, Bradley C, Brown Jesslyn F, et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994, 5: 703-714.
    [42] Schwartz M D, Reiter B E. Changes in North American spring. International Journal of Climatology, 2000, 20: 929-932.
    [43] Schwartz MD, Crawford TM. Detecting energy-balance modifications at the onset of spring. Physical Geography, 2001, 22: 394-409.
    [44] Yu Fangfang, Kevin P Price, James Ellis, et al. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment, 2003, 87: 42-54.
    [45] Chen XQ, Xu CX, Tan ZJ. An analysis of relationships among plant community phenology andseasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China. International Journal of Biometeorology, 2001, 45 (4): 170-177.
    [46] Chen XQ, Hu B and Yu R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 2005, 11, 1118-1130.
    [47] Chen XQ, Pan WF. Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. International Journal of Climatology, 2002, 22(14): 1781-1792.
    [48] Chen XQ, Tan ZJ, Schwartz MD et al. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China. International Journal of Biometeorology, 2000, 44, 97-101.
    [49] Chen XQ, Xu CX, Tan ZJ. An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China. International Journal of Biometeorology, 2001, 45 (4): 170-177.
    [50] Menzel A, Fabian P. Growing season extended in Europe. Nature, 1999, 397: 659.
    [51]张福春,郑景云编.中国物候观测规范质量要求与观测报表(简易本).中国科学院地理科学与资源研究所. 2002.
    [52]张学霞.中国植物物候期时空格局对气候变化的响应[博士学位论文].中国科学院地理科学与资源研究所, 2004.
    [53] Beaubien E G, Freeland H J. Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 2000, 44, 53-59.
    [54] Cannel M I R, Smith R I. Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology, 1986, 23:177-191.
    [55] Andreas Hense, Rita Glowienka-Hense, Markus Muller, et al. Spatial modeling of phenological observations to analyse their interannual variations in Germany. Agricultural and Forest Meteorology, 2002, 112: 161-178.
    [56] Aaron M, David M J. Land-surface phenologies from AVHRR using the discrete fourier transform. Remote Sensing of Environment, 2001, 75, 305-323.
    [57] Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 1994, 48: 220-230.
    [58]武永峰,何春阳,马瑛等.基于计算机模拟的植物返青期遥感监测方法比较研究.地球科学进展,2005,20(7):724-731
    [59]李荣平,周广胜,阎巧玲.植物物候模型研究.中国农业气象,2005,26(4):210-214
    [60]腾菱,任海,彭少麟.中国东部陆地农业生态系统南北样带的自然概况.生态科学,2000,19(4):1-10
    [61]宋富强,张一平.动态物候模型发展及其在全球变化研究中的应用.生态学杂志,2007,26(1):115-120
    [62]陈效逑,胡冰,喻蓉.中国东部温带植被生长季节的空间外推估计.生态学报,2007,27(1):65-74
    [63]王宏,李晓兵,李霞等.基于NOAA/NDVI和MSAVI研究中国北方植被生长季变化.生态学报,2007,27(2):504-515
    [64]李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析.植物生态学报, 2000, 24(3): 379-382.
    [65]孟学多. Logistic曲线的自动拟合.浙江农业大学学报, 1996, 22(2): 205-208.
    [66]赖彦斌,徐霞,王静爱等. NSTEC不同自然带土地利用/覆盖格局分析.地球科学进展,2002,17(2):215-221
    [67]赵济.中国自然地理(第3版).北京:高等教育出版社,2000.
    [68] Malingreau J P. Global vegetation in dynamics, satellite observations over Asia. International Journal of Remote Sensing, 1986, 7: 1121-1146.
    [69] Menzel A, Estrella N and Fabian P. Spatial and temporal variability of the phonological seasons in Germany from 1951 to 1996. Global Change Biology, 2001, 7, 657-666.
    [70] Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 1996, 382: 146-149.
    [71] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300, 1560-1563.
    [72] Reed, Bradley C, Brown Jesslyn F, et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994, 5: 703-714.
    [73] Schultz P A, Halpert M S, Global correlation of temperature, NDVI and precipitation. Advances in SpaceResearch, 1993, 13: 277-280.
    [74]魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999, 43-47.
    [75]徐建华.现代地理学中的数学方法. 1994,北京:高等教育出版社
    [76]杨纪珂,齐翔林.现代生物统计.合肥:安徽教育出版社, 1985, 445-449.
    [77] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386, 698-702.
    [78] Liu J Y, Zhuang D F, Luo D, et al. Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. International Journal of Remote Sensing, 2003, 24(12): 2485-2500.
    [79]竺可桢,宛敏渭.物候学(增订本).北京:科学出版社,1983:148-150
    [80] Chmielewski FM, Roetzer T. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 2001, 108: 101-112.
    [81]张学霞,葛全胜,郑景云.遥感技术在植物物候研究中的应用综述.地球科学进展, 2003, 18(4):534-544.
    [82]陈述彭.遥感大辞典.北京:科学出版社, 1990, 382-383.
    [83]陈效逑,曹志萍.植物物候期的频率分布型及其在季节划分中的应用.地理科学, 1999, 19(1): 21-27.
    [84]陈效逑.论树木物候生长季节与气温生长季节的关系——以德国中部Taunus山区为例.气象学报,2000, 58(6): 726-737.
    [85]陈云浩,李晓兵,史培军. 1983-1992年中国陆地NDVI变化的气候因子驱动分析.植物生态学报, 2001, 25(6): 716-720.
    [86]程承旗,吴宁,郭仕德等.城市热岛强度与植被覆盖关系研究的理论技术路线和北京案例分析.水土保持研究, 2004, 11(3): 172-174.
    [87]方精云,朴世龙,贺金生等.近20年来中国植被活动在增强.中国科学(C辑), 2003, 33(6): 554-565.
    [88]方修琦,余卫红.物候对全球变暖响应的研究综述[J].地球科学进展,2002,17(5): 714-719.
    [89]高雷明,黄银晓,林舜华.CO2倍增对羊草物候和生长的影响.环境科学, 1999, 20(5): 25-29.
    [90]高志强,刘纪远.基于遥感和GIS的中国植被指数变化的驱动因子分析及模型研究.气候与环境研究, 2000, 5(2): 155-164.
    [91]葛全胜,郑景云,张学霞等.过去40年中国气候与物候的变化研究.自然科学进展, 2003,13(10):1048-1053.
    [92]辜智慧.中国农作物复种指数的遥感估算方法研究[硕士学位论文].北京师范大学, 2003.
    [93]何学兆.1982-1999年我国北方农牧交错带植被NDVI的变化特征及其与气候因素的关系[硕士学位论文].北京师范大学, 2004.
    [94]胡小明,刘树华,梁福明等.北京区域近地边界层特征数值模拟.北京大学学报, 2005, 41(4):514-522.
    [95]黄敬峰,王秀珍,蔡承侠.新疆冬小麦午后与气候条件研究.中国农业气象, 2000, 21(1): 14-19.
    [96]黄敬峰,王秀珍,蔡承侠.新疆冬小麦与物候条件研究.中国农业气象,2000, 21(1): 42.
    [97]李本纲,陶澍. AVHRR NDVI与气候因子的相关分析.生态学报, 2000, 20(5): 898-902.
    [98]李胜强,张福春.物候信息化及物候时空变化分析.地理科学进展, 1999, 18(4): 352-359.
    [99]李双成.植物响应气候变化模型模拟研究进展.地理科学进展, 2001, 20(3): 217-226.
    [100]李晓兵,王瑛,李克让. NDVI对降水季节性和年际变化的敏感性.地理学报, 2000, 55(增刊): 82-89.
    [101] Gowda Y N. Regulation of flowering in C. Persicum. Millfolial application of cycocel. Current Research for Uni. Agricultural Science, 1991, 20 (12): 256-259.
    [102] Hnninen H. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 1990, 213: 1-47.
    [103] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geoscience and Remote Sensing, 2002, 40 (8): 1824-1832.
    [104]刘占林,宋颐,李珊等.华山新麦草开花物候期观测和自然种群基因流的间接估测.植物生态学报,2001, 25(4): 426-430.
    [105]马玉玲,余卫红,方修琦.呼伦贝尔草原对全球变暖的响应.干旱区地理, 2004, 27(1): 29-34.
    [106]林学椿,于淑秋.北京地区气温的年代际变化和热岛效应.地球物理学报, 2005, 48(1): 39-45.
    [107]刘良明,梁益同,马惠云等. MODIS和AVHRR植被指数关系的研究.武汉大学学报(信息科学版),2004, 29(4): 307-310.
    [108] Kaufman Y J, Hoben B N. Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. International Journal of Remote Sensing, 1993, 14: 21-52.
    [109] Justice C O, Townshend J R G, Holben B N, et al. Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 1985, 6: 1271-1318.
    [110] Menzel A. Phenology: its importance to the global change community. Climatic Change, 2002, 54, 379-385.
    [111] Nilsson O, Wigel D. Modulating the time of flowering. Current Opinion in Biotechnology, 1997, 8(2): 195-199.
    [112] Schultz P A, Halpert M S, Global correlation of temperature, NDVI and precipitation. Advances in Space Research, 1993, 13: 277-280.
    [113] Schwartz M D. Green-wave phenology. Nature, 1998, 394: 839-840.
    [114] Snyder R L, Spano D, Duce P, et al. Temperature data for phonological models. International Journal of Biometeorol. 2001, 45(4): 178-183.
    [115] Stone T A, Schlesinger S, Houghton R A, et al. A map of the vegetation of South America based on satellite imagery. Photogrammetric Engineering and Remote Sensing, 1994, 60: 541-551.
    [116]王丽华,张德二.国外有关近两千年气候变化的研究进展.气象科技,2001(2):21-28
    [117]匡文慧,张树文,张养贞等.吉林省东部山区近50年森林景观变化及驱动机制研究.北京林业大学学报. 2006,28(3):38-45
    [118]徐新良,刘纪远,庄大方.基于3S技术的中国东北地区林地时空动态特征及驱动力分析.地理科学,2004,24(1):55-60
    [119]徐新良,刘纪远,庄大方等.中国林地资源时空动态特征及驱动力分析.北京林业大学学报,2004,26(1):41-46
    [120]《中国森林》编辑委员会.中国森林.北京:中国林业出版社,1997
    [121]中国气候网http://www.ipcc.cma.gov.cn/cn/
    [122]唐守正.中国森林资源及其对环境的影响.生物学通报, 1998,33(11):2-6.
    [123]倪健,李宜垠,张新时.从生态地理特征论中国东北样带(NECT)在全球变化研究中的科学意义.生态学报,1999,19(5):622-629
    [124]王静爱,赖彦斌,徐伟等. NSTEC土地利用格局的人口密度变化驱动力研究.自然资源学报,2004,19(1):21-28
    [125]韦志刚,董文杰,范丽军. 80年代以来华北地区气候和水量变化的分析研究.高原气象,1999,18(4):525-534
    [126] Town shend J R G. Global data sets for land app lications from the advance very high resolution radiometer: an introduction. Remote Sensing, 1994 (15) : 3319~3332
    [127]唐海萍,陈玉福.中国东北样带NDV I的季节变化及其与气候因子的关系.第四纪研究,2003,23(3): 318-325
    [128]王菱,谢贤群,苏文等.中国北方地区50年来最高和最低气温变化及其影响.自然资源学报,2004,19(3):337-342
    [129]张存杰,高学杰,赵红岩.全球气候变暖对西北地区秋季降水的影响.2003,25(2):157-164.
    [130]周召梅,李强.湖南省生态环境变化及驱动机制.水土保持研究,2007,14(1):164-169
    [131]孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响.生态学杂志,2005,24(7):751-755
    [132]郭泉水,刘世荣,陈力等.适应全球气候变化的中国林业适应对策探讨.生态学杂志, 1996,15(5):47-54
    [133] IPCC. Cambridge.2000. Land-Use Change, and Forestry. A special report of the IPCC: Cambridge University Press.
    [134]王连喜,杨有林,何雨红等.气候变化和植被关系研究方法探讨.生态学杂志志,200322(1):43-48.
    [135]王绍武,叶瑾琳,龚道溢等.近百年中国年气温序列的建立.应用气象学报, 1998,9(4):392~401.
    [136]李秀彬.全球环境变化研究的核心领域—土地利用/土地覆盖变化的国际动向.地理学报, 1996, 51(6): 553-558
    [137]彭少麟,郭志华.利用GIS和RS估算广东植被光利用率.生态学报,2000,20(6):903-909
    [138]于德永,潘耀忠,姜萍等.东亚地区植被第一性生产力对气候变化的时空响应.北京林业大学学报,2005,27(2)增刊:96-101
    [139]席建超,张红旗,张志强.应用遥感数据反演针叶林有效叶面积指数.北京林业大学学报,2004,26(6):36-39.
    [140]陈新芳,安树青,陈镜明等.森林生态系统生物物理参数遥感反演研究进展.生态学杂志,2005,24(9):1074-1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700