用户名: 密码: 验证码:
粥样硬化性肾动脉狭窄炎症性肾损害机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     粥样硬化性肾动脉狭窄(atherosclerotic renal artery stenosis, ARAS)是肾动脉狭窄( renal artery stenosis, RAS)最常见的病因。ARAS的进展导致肾动脉闭塞、肾小球滤过率(GFR)明显下降和肾脏缩小时,诊断为缺血性肾病。目前认为重度肾动脉狭窄和缺血性肾病的病理生理变化是狭窄后肾缺血,不断激活压力调节系统(包括激活肾素-血管紧张素系统、刺激肾上腺素分泌等)导致恶性高血压发生和肾小球滤过功能丧失,肾动脉进行性狭窄是导致缺血性肾病的发生和进展至终末期的主要原因。现行血管重建治疗的指征是肾动脉狭窄超过75%,但国内外大量文献提示:已经明显狭窄的ARAS患者血管支架术后肾功能无法逆转反而恶化,提示早期诊断和治疗ARAS非常重要,然而,由于对早期ARAS病理生理机制尚不清楚,目前还缺乏有效监测和治疗手段。现有研究成果表明:ARAS是全身动脉粥样硬化性疾病在肾动脉的表现,而心血管领域的研究早已证实动脉粥样硬化病变的实质是慢性进展性炎症反应,动脉粥样硬化斑块的形成、破裂及进行性增大与慢性进展性炎症反应密切相关;临床观察到轻中度ARAS其肾动脉狭窄程度与肾损害严重程度并非完全平行;国外学者业已在临床研究中发现ARAS患者肾动脉狭窄并不是导致肾实质损害的主要原因,推测ARAS患者的慢性肾损害可能是由血管狭窄以外的其它因素所致。这些研究结果提示我们:导致动脉粥样硬化的炎症反应是否同时作用于肾实质?除肾动脉狭窄引起肾脏慢性缺血性损害以外是否有炎症因素参与其下游肾脏实质的慢性损害?
     由此我们设想:①炎症反应可能是ARAS肾损害进展的重要机制之一;②通过下游肾脏病理的变化、肾功能损伤程度以及预测因子的动态变化,可预测上游ARAS的活动情况,为临床提供早期的治疗时机;③解除和延缓肾动脉狭窄同时控制可能存在的炎症反应也许会成为更有效的治疗策略。
     为验证这些设想,我们选择ApoE-/-小鼠――目前世界公认的研究动脉粥样硬化(AS)的成熟动物模型来建立ARAS模型,动态观察ApoE-/-小鼠在ARAS发病过程中肾脏损害的特点;对ApoE-/-小鼠ARAS肾脏炎症损害机制进行实验研究;探讨Rapamycin对ApoE-/-小鼠ARAS肾损害进展的干预作用;在动物实验研究的基础上,验证炎症机制在ARAS患者肾损害中的重要作用,并对肾动脉支架置入术时机进行初步的探讨。
     主要实验方法及结果
     一:ARAS小鼠模型的建立及ARAS肾损害特点观察
     选取同周龄C57BL/6J ApoE基因敲除小鼠及C57BL/6J野生型小鼠,取材25周龄至51周龄小鼠的肾动脉和肾脏,肾动脉连续切片、V.G染色,通过Image Pro-Plus图像分析系统(Media Chernetics Inc.USA)测量、计算肾动脉的狭窄程度。根据ARAS程度分3组(A组:<50%;B组:50%-75%;C组:>75%)。A组又根据斑块是否破裂分为A1(未破裂)和A2(破裂)组。肾脏常规HE、PAS和Masson染色,采用电镜及普通光镜动态观察各组ApoE-/-小鼠肾动脉病变及相应的肾脏病变。结果:1、利用ApoE-/-小鼠成功建立了粥样硬化性肾动脉狭窄动物模型;2、肾动脉和肾脏的变化是:
     ①A1组未发现其下游肾脏病理改变;②A2组其下游肾内肾小管周围毛细血管减少,肾小管上皮细胞肿胀,电镜下可见细胞内线粒体肿胀;③B组和C组已发生斑块破裂,其肾内肾小管周围毛细血管减少明显,与A2组比较,差异显著(p<0.01,p<0.001);肾小管上皮细胞肿胀、脱落、坏死;肾小管间质病变严重;④微血栓形成;⑤斑块破裂后,肾动脉狭窄程度与肾小管周围毛细血管(PTC)密度、肾小管间质损伤(TI)程度明显负相关,PTC密度与TI程度明显负相关。
     结论:选择ApoE-/-小鼠成功建立ARAS模型;ARAS是进展性疾病;肾损害的出现不仅仅是狭窄造成的缺血性损害,缺血以外的损伤机制参与其中,极有可能是动脉粥样硬化病变的慢性进展性炎症反应。为此在实验第二部分对肾损害的炎症机制进行探讨。
     二:ApoE-/-小鼠肾动脉粥样硬化病变进展导致下游肾损害的炎症机制
     1、肾动脉粥样硬化病变活动造成肾损害的炎症因素的测定:选择各组ApoE-/-小鼠为实验组,同期喂养的野生型C57BL?6J小鼠作为对照组。取各组肾动脉及肾脏:采用Western blotting及免疫组化法检测NF-κBp65、ICAM-1及P-sel表达; ELISA检测IL-6和TF的表达;RT-PCR检测IL-6mRNA测定;免疫组化法检测巨噬细胞表达;采用激光共聚焦显微镜检测促炎症反应优势的单核巨噬细胞在各组小鼠肾组织中分布变化。
     2、ApoE-/-小鼠ARAS肾损伤与炎症因素的关系:分别取各实验组及对照组的肾组织,免疫组化方法检测α-SMA;偏振光显微镜观察ColⅠ、Col III在肾组织中表达情况;酶-底物直接显色法检测尿NAG;全自动生化分析仪检测血肌酐。研究炎症因素与肾脏纤维化及肾功能损害的相关性。
     结果:1、NF-кBp65在ARAS50%-75%的B组表达显著高于ARAS小于50%斑块已破裂的A2组,A2组明显高于ARAS小于50%斑块未破裂的A1组,而A1组与对照组相比,差异无统计学意义;其受控因子ICAM-1、P-sel、IL-6的表达变化与NF-кBp65的表达变化相似即B组表达显著高于A2组,A2组明显高于A1组,而A1组与对照组相比,差异无统计学意义;巨噬细胞及α-SMA的表达变化也与NF-кBp65的表达变化相似;尿NAG测定量变化也与NF-кBp65的表达变化相似。2、巨噬细胞在:A2亚组和B组的促炎优势单核巨噬细胞在肾小管间质及肾小球均有分布,但主要分布于肾小管、肾间质和肾血管,以肾间质最为明显;其分布数量于B组较A2组呈明显增多,且与肾功能减退呈正相关。B组肾小管间质区a-SMA及Ⅰ型胶元(Col I)、Col III蛋白质表达均明显增加,并与TIF程度以及促炎优势单核巨噬细胞分布数量呈正相关。对照组和A1亚组促炎优势单核巨噬细胞分布及数量明显少于A2组和B组, a-SMA、Ⅰ型胶元(Col I)、Col III蛋白质表达明显少于A2组和B组,无肾小管间质损害表现,肾功能正常。
     结论:炎症反应是ARAS进行性狭窄及其下游肾损害进展的重要机制之一。炎症反应在导致ARAS的同时,也同样损伤肾实质,因此炎症反应伴随在ARAS及其肾损害的始终,炎症机制是始动因素,缺血机制在后,共同控制着下游的肾损害。当ARAS到一定程度,缺血因素发生,同时又会促进下游炎性肾损害加剧,如此恶性循环导致ARAS肾损害加剧。为了进一步证实这一重要的炎症机制,我们在实验第三部分通过药物控制这种炎症反应,观察是否可以延缓ARAS肾损害的进程?
     三:免疫抑制剂雷帕霉素对ApoE-/-小鼠ARAS肾损害进展的干预作用。
     由于雷帕霉素可以抑制淋巴细胞的活化而控制炎症反应,同时雷帕霉素涂层支架在治疗动脉粥样硬化性狭窄后可以控制炎症反应,近期初步的临床实验证实雷帕霉素可以延缓慢性增殖性肾病,所以我们选择雷帕霉素作为本试验炎症反应控制药物。
     1、体内实验:选择①33周龄组ApoE-/-小鼠;②药物组:33周龄ApoE-/-小鼠,予雷帕霉素100ug/kg(BW)/day灌胃8周至41周龄;③41周龄组ApoE-/-小鼠;④对照组:41周龄野生型C57BL?6J小鼠。每组6只,均为雄性。检测各组肾动脉的狭窄程度、肾动脉和肾脏M1型巨噬细胞浸润情况、NF-κBp65及IL-6mRNA的表达情况及肾脏纤维化程度。
     2、体外培养:采用雷帕霉素及LPS共同刺激小鼠腹腔巨噬细胞,检测各组小鼠腹腔巨噬细胞的NF-κBp65和MHCⅡ的表达情况及IL-6mRNA的转录水平变化。研究雷帕霉素对单核巨噬细胞促炎症优势的影响。
     结果:1、雷帕霉素能显著下调ApoE-/-小鼠肾脏α-SMA和Ⅰ型、Ⅲ型胶原纤维的表达;显著减少肾动脉斑块处及肾脏间质M1型巨噬细胞浸润数量;下调肾动脉及肾脏组织NF-κBp65的表达;减少NF-κBp65下游IL-6的表达。2、小鼠巨噬细胞经LPS刺激1h后,其核内的荧光强度(代表的NF-κBp65表达量)显著增强.与LPS刺激组相比,不同浓度的雷帕霉素+LPS组均能使NF-κBp65的荧光强度值降低,有显著性差异,雷帕霉素使NF-κBp65的荧光强度值降低呈剂量依赖性。
     结论:
     雷帕霉素可以控制ARAS所致的肾脏炎症反应,延缓肾脏纤维化,再次证实ApoE-/-小鼠ARAS肾损害的重要发生机制之一是炎症反应。
     四:临床实验:在临床ARAS患者中初步验证动物实验结论。观察尿NAG/Ucr、尿液巨噬细胞阳性率、肾活检应用于ARAS筛查及监测治疗效果的可能性。检测17例ARAS患者、20例合并≥2项动脉粥样硬化危险因素的动脉粥样硬化疾病患者及20例同年龄健康者的尿NAG/Ucr、尿液巨噬细胞阳性率、ARAS组行3例肾活检等检测肾小管间质炎症反应指标,观察支架置入术前后及未行支架术患者的尿NAG/Ucr、尿液巨噬细胞阳性率的变化。
     结果:1、尿NAG/UCr、尿液巨噬细胞阳性率能反映ARAS肾小管间质的受损情况,对监测ARAS进展及观察支架术治疗的效果有一定帮助,但与ARAS狭窄程度不一定完全平行;2、3例肾活检提示ARAS患者肾损害的重要发生机制仍然是炎症反应,其首先累及肾小管间质。由于收集样本时间有限造成样本量过小,需加进一步大样本量研究。
     结论:尿NAG/UCr、尿液巨噬细胞阳性率及肾脏病理可以作为预测ARAS活动的指标,提示控制炎症治疗和放置血管支架的时机。
     全文结论
     炎症反应是ARAS病变及其下游非缺血肾损害的重要机制之一。早期控制炎症反应不但可以延缓或阻断ARAS的进展,同时也是保护ARAS患者肾功能的重要手段。
Background
     ARAS is the most common cause for renal artery stenosis. As ARAS results in renal artery occlusion, significant reduction in the glomerular filtration rate (GFR) and kidney atrophy, ischemic nephropathy can be diagnosed. It is currently thought that the pathophysiology of severe renal artery stenosis and ischemic nephropathy is stenosis-induced renal ischemia, malignant hypertension secondary to continual activation of the blood pressure regulating systems (the renin-angiotension system and adrenal glands) and glomerular filtration dysfunction. Progressive renal artery stenosis is a major cause for end-stage ischemic nephropathy. Current indication for renal angioplasty is renal artery stenosis > 75%. Nevertheless, it is suggested that vascular stenting worsens renal function of patients with significant ARAS. Therefore, early diagnosis and treatment of ARAS is crucial. Nevertheless, since the mechanism of early ARAS remains unclear, no effective method to monitor and treat ARAS is available. It is demonstrated that ARAS is a manifestation of systematic atherosclerosis in the renal artery, and that atherosclerotic changes are essentially chronic progressive inflammatory reactions. The formation, rupture and progressive enlargement of atherosclerotic plaques are closely associated with chronic progressive inflammatory reactions. Clinical observations showed that the degree of mild to moderate ARAS does not parallel to the degree of renal damage. Clinical research has demonstrated that ARAS is not the main cause for renal parenchymal damage. Hence, it is postulated that chronic renal damage may result from other factors than renal artery stenosis in ARAS patients. These results suggest that atherosclerotic inflammatory reaction may also act on the renal parenchyma.
     Hence, we postulate that:①inflammatory reaction may be one of the important mechanisms for renal impairment progression in ARAS;②the severity of renal impairment ought to be consistent with that of renal artery atherosclerosis. Current methods to examine the renal artery cannot accurately reflect renal artery atherosclerosis and renal impairment. Nevertheless, the degree of ARAS can be inferred according to renal pathological changes and renal functional impairment, particularly tubular functional impairment. Regarding the timing for ARAS treatment, renal pathology and function should be stressed. In particular, dynamic detection of tubular function may help identify ARAS progression early;③ARAS-caused renal impairment is not always consistent with the severity of RAS; hence, the timing of vascular stenting cannot be determined according to the severity of renal artery stenosis.
     In the present study, ARAS models were established in ApoE-/- mice, and then the characteristics of renal impairment were dynamically observed during ARAS. The mechanisms of renal impairment in ARAS and the effect of rapamycin, an anti-inflammatory drug, on the progression of renal impairment were explored. Furthermore, in order to investigate the role of inflammation in ARAS-caused renal impairment and the timing for renal artery stent placement, renal arteriography, biopsy and tubular function testing were carried out in ARAS patients.
     Methods and results
     1. Establishment of ARAS models and observations of ARAS-caused renal impairment.
     The renal arteries and kidneys were harvested from C57BL/6J ApoE-knockout mice and wild-type mice of the same age. The renal arteries were embedded in paraffin, sectioned successively, and subjected to V.G staining. The sections were analyzed for renal artery stenosis using Image Pro-Plus image analysis system (Media Chernetics Inc. USA). Based on the severity of ARAS, the animals were divided into 3 groups (A: renal arterial luminal stenosis <50%; B: 50% -70%; C: >70%). In addition, group A was subdivided to A1 (without atherosclerotic plaque rupture) and A2 (with atherosclerotic plaque rupture) according to the status of atherosclerotic plaques. Kidney sections were subjected to conventional HE, PAS and Masson staining, and observed dynamically under electronmicroscopy and light microscopy for renal artery lesions and renal lesions.
     Results: 1. ARAS models were established successfully in ApoE-/- mice; 2. with the progression of renal artery atherosclerotic lesions, i.e., rupture and progressive enlargement of atherosclerotic plaque, tubular interstitial impairment occurred and aggravated, which resulted in tubular interstitial fibrosis and nephron destruction.
     2. Mechanisms of renal impairment due to progression of renal artery atherosclerotic lesions in ApoE-/- mice.
     (1) ApoE-/- mice from groups A1 and A2 and wild-type mice of the same age were raised under the same conditions. In order to investigate the mechanism of renal impairment due to rupture of renal artery atherosclerotic plaques, NF-κB p65, ICAM-1 and P-sel expression was detected by Western blotting; IL-6 expression was detected by ELISA; IL-6 mRNA was detected by RT-PCR; macrophages were observed immunohistochemically; urine NAG was detected by direct enzyme-substrate coloration.
     (2) ApoE-/- mice were used in the experimental group, and wild-type mice were included in the control group. In order to investigate the effect of progressive lesion enlargement after renal artery atherosclerotic plaque rupture on renal inflammatory impairment and tubular interstitial fibrosis in ApoE-/-mice,α-SMA, ICAM-1, P-sel, NF-κBp65 expression and macrophages (F4/80) in the kidney tissue were detected immunohistochemically; IL-6 and TF expression was detection by ELISA; urine NAG was detected by direct enzyme-substrate coloration; blood creatinine was determined using an automatic biochemistry analyzer.
     (3) In order to investigate the role of mononuclear macrophages in ARAS-caused renal impairment of ApoE-/- mice, kidney tissue of groups A1, A2, B and of the control group were observed under laser confocal scanning microscopy for changes in the distribution of proinflammatory mononuclear macrophages;α-SMA was detected immunohistochemically; the expression of Col I and Col III was observed under polarizing microscopy. Results:①NF-κB p65 dominated ARAS progression, which played important roles in tubular-interstitial cell phenotypic transformation, tubular interstitialα-SMA expression upregulation, extensive necrosis of tubular epithelial cells and interstitial fibrosis, and inflammatory cell infiltration, as well as interstitial inflammatory impairment.②with rupture and enlargement of renal artery atherosclerotic plaques, pro-inflammatory, activated macrophages accumulated at the site of plaque ruptures and in tubular interstitium.③Aggravation of inflammatory reactions was the major cause for rupture and progressive enlargement of renal artery atherosclerotic plaques and subsequent renal artery stenosis, and was also one of the key factors causing progressive tubular interstitial impairment and nephron destruction.
     3. Effect of rapamycin on the progression of ARAS-caused renal impairment in ApoE-/- mice.
     (1) In vivo study: 24 male mice were used in the study:①33-week-old ApoE-/- mice;②medication group: 33-week-old ApoE-/-mice, which were intragastrically administered 100ug/kg rapamycin daily for 8 to 41 weeks;③41-week-old ApoE-/-mice;④control group: 41-week-old wild-type mice (n=6 for each group). The severity of renal artery stenosis, M1-type macrophage infiltration in the renal artery and kidney, NF-κBp65 and IL-6mRNA expression, and the severity of renal fibrosis were investigated in each group.
     (2) In vitro cell culture: In order to investigate the effect of rapamycin on the proinflammatory properties of mononuclear macrophages, mouse peritoneal macrophages were co-stimulated with rapamycin and LPS, and the changes in NF-κBp65 and MHCII expression and IL-6mRNA transcription were detected in each group. Results:①rapamycin significantly reduced M1-type macrophage infiltration in renal artery atherosclerotic plaques and renal interstitium, downregulated NF-κBp65 expression by the renal artery and renal tissue, the transcription of IL-6 (a central regulator of inflammatory reaction), and the expression of renalα-SMA and types I, III collagen;②rapamycin inhibited the activation by LPS of MHCII and NF-κBp65 expression by mouse peritoneal macrophages in a dose dependent manner. These findings support inflammatory reaction as an important pathological mechanism of ARAS caused renal impairment.
     4. In patients on high risk of ARAS, tubular interstitial inflammatory reaction was assessed by determining urine NAG/Ucr and the urine macrophage detection rate and performing renal biopsy, if necessary. ARAS patients were screened through color Doppler of the renal artery or/and nephrogram, and were treated by renal artery stenting after definite diagnosis by arteriography. Changes in urine NAG/Ucr and the urine macrophage detection rate were observed before and after stent placement and in patients who did not undergo stenting.
     Results: 1. Inflammatory reaction was found to be an important mechanism for ARAS caused renal impairment, which affected tubular interstitium first; 2. Urine NAG/UCr and the urine macrophage detection rate reflected tubular interstitial impairment, thus helping monitor ARAS progression and assess the therapeutic effect of stenting; 3. The severity of ARAS stenosis was not an indicator for treatment, but active ARAS lesions should be treated.
     Conclusions
     1. ARAR models were established successfully in C57BL/6J ApoE-/- mice. Active ARAS lesions in ApoE-/- mice, i.e., rupture and progressive enlargement of atherosclerotic plaques, are an important factor promoting and aggravating renal lesions, and tubular interstitium is the first to be affected.
     2. Aggravation of inflammatory reaction acts as an important mechanism of active ARAS lesions, i.e., rupture and progressive enlargement of renal artery atherosclerotic plaques, and ARAS-caused renal impairment is mediated by this mechanism. Early control of renal artery inflammatory reaction is beneficial for delaying or suppressing the occurrence of tubular interstitial lesions and protecting renal function.
     3. Both in vivo and in vitro experiments indicated that rapamycin①reduces the accumulation of macrophages in the renal artery and renal tissue of ApoE-/- mice and suppresses the proinflammatory action of macrophages;②downregulates the expression of inflammatory factors;③reduces renal mesenchymal cells. Therefore, rapamycin suppresses renal artery atherosclerosis and tubular interstitial fibrosis, and protects renal function. These results support inflammatory reaction as an important pathogenetic mechanism of ARAS.
     4. Clinical studies preliminarily indicate that:①active ARAS lesions should be treated;②urine testing and renal biopsy may indicate active renal artery lesions, thus helping guide the treatment;③a preliminary strategy to treat ARAS is to combine anti-inflammatory therapy with early renal artery stenting.
引文
1. Baboolal K, Evans C, Moore RH. Incidence of end-stage renal disease in medically treated patients with severe bilateral atherosclerotic renovascular disease [J]. Am J Kidney Dis,1998,31(6):971- 977.
    2. Stephen C. Textor. Ischemic Nephropathy: Wheren Are We NOW? J Am Soc Nephrol. 2004,15:1974-1982.
    3. Dorros G, Mathiak L. Four-year follow-up of Palmaz-Schatz stent revasculization as treatment for atherosclerotic renal artery stenosis. Circulation,1998, 645:642-647.
    4.蒋雄京、吴海英、明广华,等。支架置入重建血运治疗肾动脉狭窄中期临床结果中华心血管病杂志2005,33(3):224-227。
    5. Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C: Increased oxidative stress in experimental renovascular hypertension. Hypertension 37: 541–546, 2001。
    6. Ross R. At herosclerosis-an inflammatory disease[J ] . N Engl J Med ,1999 ,340 (2) :115.
    7. Bermudez EA , Ridker PM. C2reactive protein , statins , and the primary prevention of at herosclerotic cardiovascular disease[J ] . Preventive Cadiology ,2002 ,5 (1) :42-46.
    8. Onno J , de Boer AC , Peter TL , et al . Leucocyte recruitment in rupt ure prone regions of lipid-rich plaques : a prominent role for neovascularization [ J ] . Cardiovascular Research , 1999 ,41 (3) :443-449.
    9. Textor SC: Renovascular hypertension and ischemic nephropathy. In: Brenner and Rector’s The Kidney, edited by Brenner BM, Philadelphia, W.B. Saunders, 2004, pp 2065–2108
    [1]. Ryuji Ohashi, Hong Mu, Qizhi Yao,et al. Cellular and Molecular Mechanisms of Atherosclerosis with Mouse Models[J]. Trends in Cardiovascular Medicine, 2004;14: 187-190.
    [2]. Renhui Yang,Lyn Powell-Braxton,Annie Ko Ogaoawara, et al. Hypertension and endothelial dysfunction in apolipoprotein E knockout mice[J ]. Arterioscler Thromb Vasc Biol. 1999; 19: 2762 -2776.
    [3]. Kang DH, Joly AH, Oh SW, et al . Impaired angiogenesis in the remnant kidney model (1) : Potential role of vascular endothelial growth factor and thrombospondin-1[J ] . J Am Soc Nephrol . 2001 ,12 :1434-1447.
    [4]. Plump AS , Smith JD , Hayek T et al . Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created byhomologous recombination in ES Cells[J ] . Cell , 1992 , 71 (1) :343- 353.
    [5]. Zhang SH , Reddick RL , Piedrahita JA , et al . Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E[J ] . Science , 1992 , 258 (5081) :468 - 471.
    [6]. Jawien J , Nastalek P , Korbut R. Mouse models of experimental atherosclerosis[J ] . Physiol Pharmacol , 2004 , 55(3) :503 - 5171
    [7]. Nakashima Y, AS Plump , EW Raines , et al . ApoE2deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree[J ] . Arterioscler Thromb , 1994 , 14(1) :133 - 1401
    [8]. Cullen P , Baetta R , Bellosta S , et al . Rupture of the atherosclerotic plaque : does a good animal model exist ? [J ] . Arteroc Thomb Vasc Biol , 2003 , 23(4) :535 - 5421
    [9]. Rosenfeld ME , Polinsky P , Virmani R , et al . Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse[J ] . Arterioscler Thromb Vasc Biol , 2000 , 20 (12) :2587 -25921
    [10]. Hansson GK. Inflammation , atherosclerosis , and coronary artery disease[J ] . N Engl J Med , 2005 , 352 (16) :1685 - 16951
    [11]. Johnson J , Carson K, Williams H , et al . Plaque rupture after short periods of fat feeding in the apolipoprotein E2knockout mouse : model characterization and effects of pravastatin treatment [J ] . Circulation , 2005 , 111 (11) :1422– 1430.
    [12]. Napoli C , Williams2Ignarro S , de Nigris F , et al . Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice[J ] . PNAS , 2006 , 103 (27) :10479– 10484.
    [13]. Falk E , Schwartz SM, Galis ZS , et al . Putative murine models of plaque rupture[J ] . Arterioscler Thromb Vasc Biol , 2007 , 27 (4) : 969 - 972.
    [14]. Lipinski MJ , Amirbekian V , Frias JC , et al . Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI[J ] . Proc Natl Acad Sci U S A. 2007 , 104 (3) :961- 966.
    [15]. D. B. Wilson, K. Mostafavi, T. E. Craven, et al.Clinical course of mesenteric artery stenosis in elderly Americans[J]. Archives of Internal Medicine, 2006; 166: 2095 - 2100.
    [16].蒋文功,刘玉华.人类IgA肾病肾小球Ki267阳性细胞、α-SMA表达的免疫组化研究[ J ].广东药学院学报, 2006, 22 (2) : 188 - 190.
    [17].王瑞英,姚敏,王绵,等. 2型糖尿病大鼠肾小管上皮细胞中α-SMA的表达及其与肾功能的关系[ J ].中国老年学杂志, 2006, 26 (5) : 647 - 649.
    [18].丁跃玲,丁英钧,赵玉庸.阿霉素肾病大鼠α2SMA表达特点及缬沙坦的干预治疗[ J ].中国药理学通报, 2005, 21 (6) : 730 - 733.
    [19]. Zhao DA, Yang DS,Bi LY, et al. Bailing cap sule in p reventing ep ithelial - mesenchymal transitionin ratswith tubulointerstitial fibrosis[ J ]. J Appl Clin Pediatr, 2005, 20 (9) : 939 - 942.
    [20].刘殿阁,刘必成,张春霞.α2平滑肌肌动蛋白在实验性放射线大鼠肾病组织中的表达和意义[ J ].中华病理学杂志, 2005, 34 ( 11 ) : 743 - 744.
    [21].王玉,李晓玫.肾脏固有细胞的表型特征及其病理生理意义[J].中国病理生理杂志, 2002, 18(10): 1303-1307.
    [22]. Ng YY, Huang TP, Yang WC, et al. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats[J]. Kidney Int, 1998, 54(3): 864-866.
    [23].陈香美.肾小球疾病中肾小管间质损害的研究进展[J].中华肾脏病杂志, 2002, 18(2): 146-147.
    [24].王海燕.动脉粥样硬化性肾动脉狭窄.中华内科杂志,2005,44:801-802.
    1. Nath K A. Tubulointerstitial changes as a major determinant in the progression of renal damage [ J ]. Am J KidneyDis, 1992; 20: 1217.
    2. Bohle A, Muller G A, Wehrmann M et al. Pathogenesis of chronic renal failure in the p rimary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides [ J ]. Kidney Int, 1996; 49 ( Supp l54) : S2-S9.
    3. Hay E D. An overview of ep ithelio2mesenchymal transformation [ J ]. Acta Anat, 1995; 154: 8-20.
    4. Conlon PJ, Athirakul K, Kovalik E, et al. Survival in renal vascular disease [ J ] . J Am Soc Nephrol, 1998, 9 (2) : 252-256.
    5. Stephen C. Textor. Ischemic Nephropathy: Where Are We NOW? J Am Soc Nephrol. 2004,15:1974-1982.
    6. Deyu Z, LishengL, Rup ingD, et al. Percutaneous transluminal renal angioplasty in aortoarteritis. Int J Cardiol, 1998, 66 ( Supp l 1) : S205-S211.
    7. Ryuji Ohashi, Hong Mu, Qizhi Yao, et al. Cellular and Molecular Mechanisms of Atherosclerosis with Mouse Models[J].Trends in Cardiovascular Medicine, 2004;14: 187-190.
    8. Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectors. Atherosclerosis, 2002,160:147-153.
    9. Cuzzocrea S,Rossi A,Pisano B, et al. Pyrrolidine dithiocarbamate attenuates the development of orgen failure induced by zymosan in mice[J].Intensive Care Med,2003,29(11):2016-2025.
    10. Diatchenko L,Romanov S,Malinina I,et al. Identification of novel mediators of NF-{kappa}B through genome-wide survey of monocyte adherence-induced genes Leukoc Biol,2005,78(6):1366-1377.
    11. Kim JH,Ha IS,Hwang CI, et al. Gene expression profiling of anti-GBMglomerulonephritis model :the role of NF-{kappa}B in immune complex kidney disease. Kidney Int,2004,66(5):1826-1837.
    12. Harris TB, Ferrucci L, Traey RP, et al. Mortality risk associated with elevated interleukin-6 and C-reactive protein in old age . Am J Med,1999,196:506-512
    13. Garovic VD, Textor C. Renovascular hypertension and ischemic nephropathy [ J ] .Circulation, 2005, 112 (9) : 1362-1374.
    14. Stephen C. Textor. Pitfalls in Imaging for Renal Artery Stenosis. Annals of Internal Medicine. 2004, 141:730-731.
    15. Hay E D. An overview of ep itheliomesenchymal transformation [ J ]. Acta Anat, 1995; 154: 8-20.
    16. Hewttson T D, Wu H L, Becker G J. Interestitial myofibroblasts in experimental renal infection and scarring [ J ]. Am J Nephrol, 1995; 15: 411-417.
    17. Miyajima A, Kosaka T, Seta K, et al. Novel nuclear factor kappa B activation inhibitor prevents inflammatory injury in unilateral ureteral obstruction. J Urol, 2003, 169 (4) : 1559 - 63.
    18. Rangan GK, Wang Y, Tay YC, et al. Inhibition of nuclear factor -kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats. Kidney Int, 1999, 56 (1) : 118 - 34.
    19. Klahr S, Morrissey JJ. The role of growth factors, cytokines, and vasoactive compounds in obstructive nephropathy. Semin Nephrol, 1998, 18 (6) : 622 - 32.
    20. Tamada S, Nakatani T, Asai T, et al. Inhibition of nuclear factor -kappaB activation by pyrrolidine dithiocarbamate p revents chronic FK506 nephropathy. Kidney Int, 2003, 63 (1) : 306 - 14.
    21.李恒,刘志红,戴春笋et al.雷公藤内酯醇对人肾小管上皮细胞抗原呈递功能的影响[ J ].肾脏病与透析肾移植杂志, 2001; 10 (4) : 303-308.
    22. Tremaoli E , Camera M, Toschi V , et al. Tissue factor in atherosclerosis[J ] . Atherosclerosis , 1999 , 144 (2) : 273 -283.
    23. antucci RA , Erlich J , Labriola J , et al. Measurement at tissue factor activity in whole blood [ J ] . Thromb Haemost , 2000 , 83(3) : 445 - 454.
    24. Croce K. Libby , P. Intertwining of thrombosis and inflammation in atherosclerosis[J ] . Curr Opin Int Med , 2007 , 6 (2) :137– 143.
    25. Yang N et al. Nephrol Dial Transplant, 1998, 13: 1967
    26. Erwig Lp, Kluth DC, Rees AJ。Macrophage in renal inflammation〔J〕.Curr Opin Nephrol Hypertens, 2001, 10(3):341-347.
    27. Kluth DC,Rees AJ.Anti-glomerular basement membrane disease [J]. J Am Soc Nephrol,1999,10(11):2446-2453.
    28. Geissmann F et al. Immunity, 2003,19:71.
    29. Verreck FA et al.Proc Natl Acad Sci USA,2004, 101:4560.
    30. Gorod S.Nat Rev Immunol,2003,3:23.
    1. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. Il. Fermentation, isolation and characterization. J Antihiot (Tokyo), 1975, 28: 727-732.
    2. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transcluction and inhibition of cell cycle progression. Clin Biochem, 1998, 31: 335-340.
    3. Marx SO, Marks AR. Bench to bedside: the development of rapamycin and its application to stent restenosis. Circulation, 2001, 104: 852-855.
    4. Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantation without calcinenrin inhibitor drags: a prospective, randomized trial of sirolimus versus cyelosporine. Transplantation, 2002, 74: 1070-1076.
    5. Keogh A, Richardson M, Ruygrok P, el al. Sirolimus in denovo heart transplant recipients neduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation, 2004, Il0: 2694-2700.
    6. Shitnt D, Rahamimov R, Gidon S, et al. Use of siroimus and low-dose calcineurin inhibitor in lung transplant recipients with renal impairment: results of a controlled pilot study. Kidney Iht, 2005, 67: 1471-1475.
    7. Cuertin DA, Snhatini DM. An expanding role for mTOR in cancer. Trends Mol Med, 2005, Il: 353-361.
    8. Fajadet J, Morice MC, Bode C, et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents: three-year moults of the RAVEL tnal. Circulation, 2005, 111: 1040-1044.
    9. Rajbabu Pakala, Eugenio Stabile, Gil Jin Jang, et al.Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice J Cardiovasc PharmacolTM 2005;46:481-486.
    10. Suzuki K, Kopia G, Bailey L,et al.Stent-based delivery of sirolimus reduces neointimal formation and in stent restenosis in a porcine coronary model〔J〕。Circulation, 2001, 104:1188-1193.
    11. Mohacsi PJ, Tuller D, Hulliger B,et al. Differert inhibitory effect of immunosuppressive drugs on human and rat aortic smooth muscle and endothelial cellproliferation stibymulated by platelet-derived growth factor or endothelial cell growth factor[J] . J Heart Lung Transplant, 1997,16:484-492.
    12. Bonegio R, Fuhro R, Wang Z,et al. Rapamycin ameliorates proteinuria-induced tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J. Am. Soc. Nephrol., 2005, 16(7):2063-2072.
    13. M-J Wu, M-C Wen, Y-T Chiu, et al.Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney International,2006,69:2029-2036.
    14. Zac Varghese,Ray Fernando, John F. Moorhead, et al. Effect of sirolimus on mesangial cell cholesterol homeostasis: a novel mechanism for its action against lipid-mediated injury in renal allografts. Am J Physiol Renal Physiol.2005,289:F43-F48.
    15. Castro C, Campistol,JM, Saneho D, el al.. Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kiplindependent pathway. Atherosclerosis,2004, 172: 31-38.
    16. Pakala R, Stabile E, Jang GJ, et al. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitoty effect on monocyte chemotaxis. J Cardiovasc Pharmacol, 2005, 46: 481-486.
    17. Waksman R, pakala R, Bumett MS, et al. Oral rapamycin inhibits growth of athorosclerotic plaque in apoE knock-out mice. Cardiovasc Radiat Med, 2003, 4: 34-38.
    1 Salian RD, Textor SC, Medical progress: renal-artery stenosis.N Engl J Med,2001,344:431-442
    2王梅,王海燕.慢性缺血性肾脏疾病的诊断与治疗(三)动脉粥样硬化引起的肾动脉狭窄的诊断与治疗.中华内科杂志,2002,1:56-58.
    3 Dorros G, Mathiak L. Four-year follow-up of Palmaz-Schatz stent revasculization as treatment for atherosclerotic renal artery stenosis. Circulation,1998,645:642-647.
    4 Dey HM, Hoffer PB, Lerner E, et al. Quantitative analysis of the technetium-99m-DTPA captopril renogram: contribution of washout parameters to the diagnosis of renal artery stenosis[J]. J Nucl Med,1993,34(9):1416- 1419.
    5 Mittal BR, Kumar P, Arora P, et al. Role of captopril renography in the diagnosis of renovascular hypertension [J]. Am J Kidney Dis,1996,28(2):209- 213.
    6 Staub D, Canevascini R, Huegli RW, et al. Best duplexsonographic criteria for the assessment of renal artery stenosis--correlation with intra-arterial pressure gradient [J]. Ultraschall Med,2007,28(1):45- 51.
    7 Chain S, Luciardi HL, Feldman G, et al. Diagnostic role of new Dopper index in assesment of renal artery stenosis [J]. Cardiovasc Ultrasound,2006,4(1):4.
    8 Hultberg B. The exerection of N - acetyl -β- glucosaminidase in glomerulonephritis[J ] . Clin Nephrol ,1981 ,15 :32.
    9陈香美.肾脏疾病的实验室检查与发展前景[J ] .中国实验诊断学, 2001 ,5 (4) :151.
    10袁振祥,于小燕,杨文东. 2型糖尿病患者肾脏早期损害的诊断指标[J] .临床荟萃,2003 ,18(3) :139.
    1. Safian RD, Textor SC. Renal-artery stenosis[J]. N Engl J Med, 2001, 344(6):431- 432
    2.王芳,王梅,刘玉春,等.动脉粥样硬化性肾动脉狭窄的发病趋势[J].中华医学杂志,2005,85 (39):2762-2766.
    3. Schwartz CJ, White TA. Stenosis of the renal artery:an unselected necropsy study. BMJ 1964;2:1415–1421.
    4. Baboolal K, Evans C, Moore RH. Incidence of end-stage renal disease in medically treated patients with severe bilateral atherosclerotic renovascular disease [J]. Am J Kidney Dis,1998,31(6):971- 977.
    5.王梅,王海燕.慢性缺血性肾脏疾病的诊断与治疗(三)动脉粥样硬化引起的肾动脉狭窄的诊断与治疗.中华内科杂志,2002,41(1):56-58.
    6. Conlon PJ, Athirakul K, Kovalik E, et al. Survival in renal vascular disease [ J ] . J Am Soc Nephrol, 1998, 9 (2) : 252-256.
    7. Mikhail A, Scoble JE: Progressive renal dysfunction despite successful renal artery angioplasty in a single kidney. Lancet 349: 926, 1997.
    8. Deyu Z, LishengL, Rup ingD, et al. Percutaneous transluminal renal angioplasty in aortoarteritis. Int J Cardiol, 1998, 66 ( Supp l 1) : S205-S211.
    9. Krijnen P, van Jaarsveld BC, Steyerberg EW, et al.A clinical prediction rule for renal artery stenosis. Ann Intern Med. 1998;129:705-711.
    10. Hansen KJ, Edwards MS, Craven TE, Cherr GS, Jackson SA, Appel RG, Burke GL, Dean RH. Prevalence of renovascular disease in the elderly: a population based study. J Vasc surg. 2002; 36: 443–451.
    11. Coen G, Manni M, Giannoni MF, et al. Ischemic nephropathy in elderly nephrologic and hypertensive population. Am J Nephrol, 1998,18:221-227. Coen G,Manni M,Giannoni MF,et al. Am J Nephrol, 1998, 18: 221-227.
    12. Kuroda S, Nishida N, UzuT et al. Prevalence of renal artery stenosis in autopsy patients with stroke. Stroke2000; 31: 61–65 .
    13. Rahal CS, Textor SC,Breen JF,et al. Mayo Clin Proc. 2002,77:309-316.
    14. Tadeusz Przewlocki, Anna Kablak-Ziembicka, Wieslawa Tracz, et al. Prevalence and prediction of renal artery stenosis in patients with coronary and supraaortic arteryatherosclerotic disease。Nephrology Dialysis Transplantation 2008 23(2):580-585。
    15. Zoccali C, Mallamaci F,Finocchiaro P. J Am Soc Nephrol, 2002,13(suppl 3):179-183。
    16. Leertouwer TC, Pattynama PMT, van den Berg-Huysmans A。Incidental renal artery stenosis in peripheral vascular disease: Acase for treatment? Kidney Int 59: 1480–1483, 2001
    17. Textor SC: Renovascular hypertension and ischemic nephropathy. In: Brenner and Rector’s The Kidney, edited by Brenner BM, Philadelphia, W.B. Saunders, 2004, pp 2065–2108
    18. Stephen C. Textor. Ischemic Nephropathy: Wheren Are We NOW? J Am Soc Nephrol. 2004,15:1974-1982.
    19. Caps MT, Zierler RE, Polissar NL,et al. Kidney Int,1998,53:735- 742。
    20. Van Jaarsfeld BC,Krijinen P,Pieteman H,et al. N Engl J Med,2000,42:1007-1014。
    21. Krijnen P, van Jaarsveld BC, Steyerberg EW, et al. A clinical prediction rule for renal artery stenosis. Ann Int Med. 1998; 129: 705–711.
    22. Iantorno M, Pola R, Schinzari F, et al. Association between altered circadian blood pressure profile and cardiac end-organ damage in patients with renovascular hypertension. Cardiology. 2003; 100: 114–119.
    23. Atkinson AB, Davies DL, Leckie B, et al. Hyponatremic hypertensive syndrome with renal artery occlusion corrected by captopril. Lancet. 1979; 2: 606–609.
    24. Mounier-Vehier C, Cocheteux B, Haulon S,et al. Changes in renal blood flow reserve after angioplasty of renal artery stenosis in hypertensive patients. Kidney Int. 2004; 65: 245–250.
    25. Ruggenenti P, Mosconi L, Bruno S, et al. Post-transplant renal artery stenosis: the hemodynamic response to revascularization. Kidney Int. 2001; 60: 309–318.
    26. van de Ven PJG, Beutler JJ, Kaatee R, et al. Angiotensin converting enzyme inhibitor-induced renal dysfunction in atherosclerotic renovascular disease. Kidney Int. 1998; 53: 986–993.
    27. Holm EA, Randlov A, Strandgaard S. Brief Report: acute renal failure after losartan treatment in a patient with bilateral renal artery stenosis.Biood Pressure. 1996;5:360-362.
    28. Schoolwerth AC, Sica DA, Ballermann BJ, et al. Renal considerations in angiotensin converting enzyme inhibitor therapy. Circulation. 2001; 104: 1985–1991.
    29. Jackson B, Matthews PG, McGrath BP, et al. Angiotensin converting enzyme inhibition in renovascular hypertension: frequency of reversible renal failure. Lancet. 1984; i: 225–226.
    30. Kennedy DJ, Colyer WR, Brewster PS, et al. Renal insufficiency as a predictor of adverse events and mortality after renal artery stent placement. Am J Kidney Dis. 2003; 14: 926–935.
    31. Gandhi SK, Powers JC, Nomeir AM,et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001; 344: 17–22.
    32. Bloch MJ, Trost DW, Pickering TG, et al. Prevention of recurrent pulmonary edema in patients with bilateral renovascular disease through renal artery stent placement. Am J Hyper. 1999; 12: 1–7.
    33. MacDowall P, Kalra PA, O’Donoghue DJ, et al. Risk of morbidity from renovascular disease in elderly patients with congestive cardiac failure. Lancet. 1998; 352: 13–16.
    34. Isles C, Main J, O'Connell J,et al. Survival associated with renovascular disease in Glasgow and Newcastle. Scot Med J 1990;35:70–73.
    35. Wollenweber J, Sheps SG, Davis GD. Clinical course of atherosclerotic renovascular disease. Am J Cardiol 1968;21:60–71.
    36. Conlon PJ, Athirakul K, Kovalik E, et al. Survival in renal vascular disease. J Am Soc Nephrol 1998;9:252–256.
    37. Pillay WR, Kan YM, Crinnion JN, Wolfe JHN on behalf of the Joint Vascular Research Group, UK. Prospective multicentre study of the natural history of atherosclerotic renal artery stenosis in patients with peripheral vascular disease. Br J Surg 2002;89:737–740.
    38. Ramesh de Silva, Nikolay P. Nikitin, Sunil Bhandari, et al。Atherosclerotic renovascular disease in chronic heart failure: should we intervene? European Heart Journal 2005 26(16):1596-1605。
    39. Mailloux LU ,Napolitano B ,Bellucci AG, et al . Renal vascular diseasecausing end stage renal disease ,incidence ,clinical correlates ,and outcomes :a 202year clinical experience [J ] . Am J Kidney Dis ,1994 ,24 (4) :622-629.
    40. William FK. Sounders company, 1999,159-163.
    41.黄朝晖,吴雄飞(通讯作者),赵洪雯,刘宏,王汉民.ApoE-/-小鼠肾动脉狭窄及肾损害特点观察第三军医大学学报, 2007年19期,1844-1847.
    42. Lerman L, Textor SC: Pathophysiology of ischemic nephropathy. Urol Clin North Am 28: 793–803, 2001。
    43. Chade AR, Rodriguez-Porcel M, Grande JP, Zhu X, Sica V, Napoli C, Sawamura T, Textor SC, Lerman A, Lerman LO: Mechanisms of renal structural alterations in combined hypercholesterolemia and renal artery stenosis. Arterioscler Thromb Vasc Biol 23: 1295–1301, 2003。
    44. Louis GM, John HR, David S,et al. J Vasc Interv Radiol, 2003,14:S297-S310。
    45. Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C: Increased oxidative stress in experimental renovascular hypertension. Hypertension 37: 541–546, 2001。
    46. Epstein FH: Oxygen and renal metabolism. Kidney Int 51: 381–385, 1997。
    47. Caps MT, Perissinotto C, Zierler RE, Poissar NL, Bergelin RO, Tullis MJ, Cantwell-Gab K, Davidson RC, Strandness DE: Prospective study of atherosclerotic disease progression in the renal artery. Circulation 98: 2866–2872, 1998。
    48. Stephen C. Textor. Pitfalls in Imaging for Renal Artery Stenosis. Annals of Internal Medicine. 2004, 141:730-731.
    49. Nazzal MM, Hoballah JJ, Miller EV, et al. Renal hilar Doppler analysis is of value in the management of patients with renovascular disease[J]. Am J Surg,1997,174 (2):164- 168.
    50. Hua HT, Hood DB, Jensen CC, et al. The use of colorflow duplex scanning to detect significant renal artery stenosis[J]. Ann Vasc Surg,2000,14(2):118- 124.
    51. Staub D, Canevascini R, Huegli RW, et al. Best duplexsonographic criteria for the assessment of renal artery stenosis--correlation with intra-arterial pressure gradient [J]. Ultraschall Med,2007,28(1):45- 51.
    52. Kawarada O, Yokoi Y, Takemoto K, et al. The performance of renal duplex ultrasonography for the detection of hemodynamically significant renal artery stenosis [J]. Catheter Cardiovasc Interv,2006,68(2):311- 318.
    53. Chain S, Luciardi HL, Feldman G, et al. Diagnostic role of new Dopper index in assesment of renal artery stenosis [J]. Cardiovasc Ultrasound,2006,4(1):4.
    54. Oliva VL, Soulez G, Lesage D, et al. Detection of renal artery stenosis with Doppler sonography before and after administration of captopril: value of early systolic rise[J]. AJR Am J Roentgenol,1998,170(1):169- 175.
    55. Manganaro A, Ando'G, Salvo A, et al. A comparison of Power Doppler with conventional sonographic imaging for the evaluation of renal artery stenosis[J]. Cardiovasc Ultrasound, 2004,2(1):1.
    56. Dey HM, Hoffer PB, Lerner E, et al. Quantitative analysis of the technetium-99m-DTPA captopril renogram: contribution of washout parameters to the diagnosis of renal artery stenosis[J]. J Nucl Med,1993,34(9):1416- 1419.
    57. Mittal BR, Kumar P, Arora P, et al. Role of captopril renography in the diagnosis of renovascular hypertension [J]. Am J Kidney Dis,1996,28(2):209- 213.
    58. Clark RA, Alexander ES. Digital subtraction angiography of the renal arteries. Prospective comparison with conventional arteriography[J]. Invest Radiol,1983, 18(1):6- 10.
    59. Kim D, Porter DH, Brown R, et al. Renal artery imaging: a prospective comparison of intra-arterial digital subtraction angiography with conventional angiography[J]. Angiology, 1991,42(5):345- 357.
    60. De Cobelli F, Mellone R, Salvioni M, et al. Renal artery stenosis: value of screening with three-dimensional phasecontrast MR angiography with a phased-array multicoil[J]. Radiology,1996,201(3):697- 703.
    61. de Haan MW, Kouwenhoven M, Thelissen RP, et al. Renovascular disease in patients with hypertension: detection with systolic and diastolic gating in three-dimensional, phase-contrast MR angiography [J]. Radiology, 1996,198(2):449- 456.
    62. Snidow JJ, Johnson MS, Harris VJ, et al. Three-dimensional gadolinium-enhanced MR angiography for aortoiliac inflow assessment plus renal artery screening in a single breath hold[J]. Radiology,1996,198(3):725- 732.
    63. Postma CT, Joosten FB, Rosenbusch G, et al. Magnetic resonance angiography has a high reliability in the detection of renal artery stenosis[J]. Am J Hypertens,1997, 10(9 Pt 1):957- 963.
    64. Rubin GD, Dake MD, Napel S, et al. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques[J]. Radiology,1994,190(1):181- 189.
    65. Fraioli F, Catalano C, Bertoletti L, et al. Multidetectorrow CT angiography of renal artery stenosis in 50 consecutive patients: prospective interobserver comparison with DSA[J]. Radiol Med (Torino),2006,111(3):459- 468.
    66. Vasbinder GB, Nelemans PJ, Kessels AG, et al. Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis[J]. Ann Intern Med,2001,135 (6):401 - 411.2001 Sep 18;135 (6): 401- 11.
    67. Schoolwerth AC, Sica DA, Ballermann BJ, Wilcox CS: Renal considerations in angiotensin converting enzyme inhibitor therapy. Circulation 104: 1985–1991, 2001
    68. Losito A, Gaburri M, Errico R, Parente B, Cao PG: Survival of patients with renovascular disease and ACE inhibition. Clin Nephrol 52: 339–343, 1999
    69.张欣,王梅,王海燕.血管紧张素转换酶抑制剂对单侧动脉粥样硬化性肾动脉狭窄患者肾功能的影响[J ] .中华肾脏病杂志, 2005 ,21 (8) :433-437.
    70. Khong TK, Missouris CG, Belli AM, MacGregor GA: Regression of atherosclerotic renal artery stenosis with aggressive lipid lowering therapy. J Hum Hypertens 15: 431–433, 2001
    71. Bianchi S, Bigazzi R, Calazza A, Campese VM: A Controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 41: 565–570, 2003
    72. The ASTRAL Trial. Available at :http://www.clinicaltrials.gov.Accessed。
    73. Van Jaarsveld B, Krijnen P, Pieterman H, et al. N Engl J Med, 2000,342:1007- 1014。
    74. Textor SC, Wilcox CS: Renal artery stenosis: A common, treatable cause of renal failure? Annu Rev Med 52: 421–442, 2001。
    75. Korsakas S, Mohaupt MG, Dinkel HP, Mahler F, Do DD, Voegele J, Baumgartner I: Delay of dialysis in end-stage renal failure: Prospective study on percutaneous renal artery interventions. Kidney Int 65: 251–258, 2004
    76. Textor SC, McKusick M: Renovascular hypertension and ischemic nephropathy: Angioplasty and stenting. In: Therapy in Nephrology and Hypertension, edited by Brady HR, Wilcox CS. London, WB Saunders, 2003, pp 599–609.
    77. BlumU, Krumme B, Flugel P,et al. NEng J Med,1997,336:459- 465.
    78. Van Jaarsveld B, Krijnen P, Pieterman H, et al. N Engl J Med, 2000,342: 1007- 1014.
    79. Gray BH.J Hypertension,2005, 23:23- 29.
    1. Huang ZH, Wu XF, Zhao HW, et al. Characteristics of renal artery stenosis and renal damage in ApoE-/- mice [J]. J Third Milit Med Univ, 2007, 29 (19): 1844-1847.
    2. Conlon PJ, Athirakul K, Kovalik E, et al. Survival in renal vascular disease [J]. J Am Soc Nephrol, 1998, 9 (2): 252-256.
    3. Stephen C. Textor. Ischemic Nephropathy: Where Are We NOW? J Am Soc Nephrol. 2004, 15: 1974-1982.
    4. Deyu Z, LishengL, Rup ingD, et al. Percutaneous transluminal renal angioplasty in aortoarteritis. Int J Cardiol, 1998, 66 (Supp l 1): S205-S211.
    5.de Silva R, Nikitin NP, Bhandari S, et al. Atherosclerotic renovascular disease in chronic heart failure: should we intervene?[J] . Eur Heart J, 2005,26(16):1596- 1605.
    6. Ohashi R, Mu H, Yao QZ, et al. Cellular and Molecular Mechanisms of Atherosclerosis with Mouse Models [J]. Trends in Cardiovascular Medicine, 2004;14: 187-190.
    7. Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris.Atherosclerosis, 2002, 160:147-153.
    8. Cuzzocrea S, Rossi A, Pisano B, et al. Pyrrolidine dithiocarbamate attenuates the development of organ failure induced by zymosan in mice [J]. Intensive Care Med, 2003, 29(11):2016-2025.
    9. Diatchenko L, Romanov S, Malinina I, et al. Identification of novel mediators of NF-{kappa}B through genome-wide survey of monocyte adherence-induced genes Leukoc Biol, 2005, 78(6):1366-1377.
    10. Kim JH, Ha IS, Hwang CI, et al. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-{kappa}B in immune complex kidney disease. Kidney Int, 2004, 66(5):1826-1837.
    11. Harris TB, Ferrucci L, Traey RP, et al. Mortality risk associated with elevated interleukin-6 and C-reactive protein in old age. Am J Med, 1999, 196: 506-512
    12. Garovic VD, Textor C. Renovascular hypertension and ischemic nephropathy [J].Circulation, 2005, 112 (9): 1362-1374.
    13. Stephen C. Textor. Pitfalls in Imaging for Renal Artery Stenosis. Annals of Internal Medicine. 2004, 141:730-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700