用户名: 密码: 验证码:
腺病毒介导的KDRscFv融合sTRAIL基因抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]:研究腺病毒介导的重组IL2-KDRscFv、IL2-sTRAIL(114-281aa)及IL2- KDRscFv-sTRAIL对胃癌SGC-7901细胞、肝癌HepGII细胞、大肠癌SW480细胞及人正常肝细胞株LO2的杀伤作用,以及对裸鼠肿瘤体积、肿瘤微血管生成的抑制作用,观察KDRscFv融合sTRAIL是否有协同抗瘤效果,为应用TRAIL进行肿瘤基因治疗提供实验基础。
     [方法]:采用重叠延伸PCR方法,分别在KDRscFv及sTRAIL(114-281aa)基因的N端融合IL2信号肽基因,以提高蛋白表达的可溶性。然后采用基因融合技术,构建IL2-KDRscFv与sTRAIL的融合基因。根据细菌内同源重组原理,首先构建编码TRAIL胞外区114~281位氨基酸、编码KDR单链抗体及编码二者融合基因的腺病毒穿梭质粒pAd-IL2-KDRscFv、pAd-IL2-sTRAIL及pAd-IL2-KDRscFv-sTRAIL,酶切线性化后转染BJ5183菌,与腺病毒骨架质粒pAdEasy-1在细菌内发生同源重组,将阳性重组子转染HEK293人胚肾细胞,获得高滴度的重组病毒颗粒后,转导人胃癌细胞株SGC-7901、人肝癌细胞株HepGII和结肠癌细胞株SW480以及人正常肝细胞株LO2,并采用荷瘤裸鼠瘤体内注射的方法,通过流式细胞仪、MTT、Western印迹法和免疫组化等方法测定重组腺病毒介导的目的蛋白在体内外的表达及观察肿瘤细胞的凋亡诱导作用和对肿瘤体积、肿瘤血管生成的抑制作用。
     [结果]:
     (1)成功地获得了三种重组腺病毒,在293细胞中大量扩增后,经氯化铯纯化浓缩后病毒滴度可达1012vp/ml。且均对真核细胞有高效感染效率。
     (2)三种重组腺病毒对SGC-7901、SW480和HepGII细胞均有一定程度的凋亡诱导作用,其中以重组Ad-IL2-KDRscFv-sTRAIL腺病毒的作用最为明显。在感染复数为20,作用48小时情况下,可诱导39.16%的肝癌HepGII细胞发生凋亡,与PBS及Ad-GFP对照组相比,结果具有显著统计学差异。
     (3)三种肿瘤细胞中,以肝癌HepGII细胞对负载有目的基因的腺病毒最为敏感,在感染复数为20,作用48小时情况下,Ad-IL2-sTRAIL可诱导19.88%、Ad-KDRsvFv可诱导9.09%的HepGII细胞凋亡,同样条件下胃癌SGC-7901细胞的凋亡率分别为8.09%、5.75%。
     (4)三种腺病毒对人正常肝细胞LO2无明显凋亡诱导作用,与PBS对照及Ad-GFP载体对照组相比,结果无显著差别。
     (5)三种腺病毒感染肿瘤细胞后,在细胞培养上清及收集的细胞沉淀中均可检测到目的蛋白的表达。
     (6)体内实验中,瘤体内注射重组腺病毒,可明显抑制肿瘤体积增长,以Ad-IL-2-KDRscFv-sTRAIL腺病毒的作用最为明显,抑瘤率达75.60±4.8891%,而Ad-IL2-sTRAIL及Ad-IL2-KDRscFv的抑瘤率分别为63.69±6.6706%和56.17±7.3983%。
     (7)瘤体内注射重组腺病毒,可使肿瘤组织微血管密度减少,以Ad-IL2 -KDRscFv-sTRAIL腺病毒的作用最为明显,与其它治疗组及对照组相比,结果具显著统计学差异。
     (8)瘤体内注射腺病毒,仅在肝组织及肿瘤组织中检测到目的蛋白的表达,心、脾、肾、小肠、肺等组织为阴性表达。
     (9)各组裸鼠的肝脏组织及其他组织经病理切片观测,未见到明显的病理改变。
     [结论]:
     (1)重组腺病毒介导的IL2-KDRscFv、IL2-sTRAIL(114-281aa)及IL2-KDRscFv- sTRAIL对胃癌SGC-7901细胞、肝癌HepGII细胞及大肠癌SW480细胞均有杀伤作用,其中以Ad-IL2-KDRscFv-sTRAIL对肿瘤细胞的凋亡诱导能力最强。
     (2)体外实验证实,我们构建的三种腺病毒对人正常肝细胞株LO2是安全的。
     (3)瘤体内注射腺病毒,可明显抑制肿瘤生长及肿瘤微血管生成,以Ad-IL2-KDRscFv-sTRAIL的作用最为显著,说明KDRscFv融合sTRAIL基因既可杀伤肿瘤细胞,又可抗肿瘤血管生成,从不同方面发挥协同抗肿瘤作用。
     (4) Ad-IL2-KDRscFv-sTRAIL、Ad-IL2-sTRAIL及Ad-IL2-KDRscFv对心、肝、肾、脾、肺及小肠等组织无明显毒性,瘤体内注射是安全的。
Objective:To explore the lethal effect of adenovirus mediated IL2-sTRAILgene,IL2-KDRscFv gene and IL2-KDRscFv-sTRAIL gene (Ad-IL2-sTRAIL , Ad-IL2-KDRscFv and Ad-IL2-KDRscFv-sTRAIL) on gastric cancer cell line SGC-7901, hepatocellular carcinoma cell line HepGII , colon cancer cell line SW480 and normal human hepatocyte line LO2. Meanwhile, their effects on the growth and angiogenesis of established hepatocellular carcinoma nodules in nude mice were observed.
     Methods : Both TRAIL and IL-2 cDNA were cloned f rom PBMC by RT-PCR, and KDRscFv gene was synthesized by Shanghai Sangon Biological Engineering Technology & Services Co, Ltd.The signal peptide of IL-2 was cloned to the N tip of KDRscFv and sTRAIL respectively with SOE,and the fusion gene of IL2-KDRscFv and sTRAIL was obtained by using a polypeptide linker ( Gly4Ser).After sequencing, the IL2-KDRscFv gene,IL2-sTRAILgene and the fusion gene of IL2-KDRscFv-sTRAIL fragment was cloned respectively into the shuttle plasmid pAdTrack - CMV to form the transfer vector and then transformed to competent BJ5183 cells previously transformed with pAdEasy-1 to carrying out homogenous recombination in bacteria. Screening recombinant plasmid pAdEasy-sTRA IL、pAdEasy-IL2-KDRscFv and pAdEasy -IL2-KDRscFv-sTRAIL and transfected to 293 cells in mediation of Lipofectamine to preparing replication-deficient adenovirus Ad-IL2- sTRAIL,Ad-IL2-KDRscFv and Ad-IL2-KDRscFv-sTRAIL. The recombinant adenovirus vector was identified by restriction enzyme digestion and polymerase chain reaction (PCR). The prepared Ad-IL2-sTRAIL,Ad-IL2-KDRscFv and Ad-IL2-KDRscFv-sTRAIL virus particles were purified by density gradient centrifugation with cesium chloride and determining the titer by OD260. The transcription of interest gene in 293 cells was detected by PCR.After the virus particles were constructed successfully,they were transfected into gastric cancer line SGC7901, hepatocellular carcinoma cell line HepGII , colon cancer cell line SW480 and normal human hepatocyte line LO2 respectively and the apoptosis rate was determinded by MTT assasy and flow cytometry.In vivo,the adenovirus were injected into tumor in nude mice and the expressions of interest proteins were detected by western blot and immunohistochemistry assay.
     Results:
     (1) Recombinant adenovirus Ad-IL2-sTRAIL , Ad-IL2-KDRscFv and Ad-IL2 -KDRscFv-sTRAIL were successfully constructed, and the titer of purified adenovirus particles was 1012 VP /ml .
     (2) All the three adenovirus have killing effect on cancer cells and the one bearing the fusion gene of IL2-KDRscFv-sTRAIL had the most powerful effect. When the tumor cells were treated with adenovirus in concentration of 20 MOI for 48 hours ,Ad- IL2-KDRscFv-sTRAIL could induce the apoptosis of 39.16 % in HepGII cells ,which was significantly higher than that in the control group of PBS and the vector control group of GFP(p<0.05).
     (3) Among the three cancer cell lines, hepatocellular carcinoma cell line HepGII had the most distinguished sensitivity to adenovirus.In concentration of 20 MOI for 48 hours, Ad-IL2-sTRAIL could kill 19.88% while Ad-IL2-KDRsvFv killed 9.09% HepGII cells.At the same condition, the apotosis rate of gastric cancer cell line SGC-7901was 8.09% and 5.75% respectively.
     (4) All the three adenovirus had no killing effect on normal human hepatocyte line LO2 and there had no statistic distinction compared with the control group of PBS and the vector control group of Ad-GFP.(p>0.05).
     (5) The interest proteins could be detected both in the culture supermatant and cell precips after the tumor cells were incubated with adenovirus.
     (6) In vivo,injection of adenovirus into hepatocellular carcinoma nodules in nude mice could shrink its volume significantly. Ad-IL2-KDRscFv-sTRAIL had the most powerful lethal effect, and the tumor volume suppression rate was 75.60±4.8891%, while that of Ad-IL2-sTRAIL and Ad-IL2-KDRscFv was 63.69±6.6706% and 56.17±7.3983% respectively.
     (7) The microvessel density( MVD) was significantly lower in the experiment groups than those in the control group ( P < 0. 01 ) and Ad-IL2-KDRscFv-sTRAIL had the most powerful inhibited effct.
     (8) The interest proteins could only be detected in hepatic tissues and tumor tissues when the nude mice were treated with adenovirus.
     (9) There had no obvious pathological change in the hepatic tissues and other tissues after treated with adenovirus.
     Conclusions:
     (1) Recombinant adenovirus Ad-IL2-sTRAIL , Ad-IL2-KDRscFv and Ad-IL2- KDRscFv-sTRAIL all have killing effect on cancer cells and among them IL2- KDRscFv- sTRAIL had the most powerful tumoricidal effect.
     (2) In vitro, all the three adenovirus are safe to normal human hepatocyte line.
     (3) In vivo studies, injection of adenovirus into tumor significantly inhibited the growth of the hepatocellular carcinoma nodules in nude mice, and the MVD were significantly lower too in the experiment groups than those in the control group and Ad-IL2-KDRscFv-sTRAIL had the most powerful role.
     (4) The adenovirus mediated KDRscFv-sTRAIL fusion gene have double lethal effect on tumor cells and tumor angiogenesis and presented synergia effect.
     (5) In vivo and vitro studies, all the three adenovirus are safe to normal cells and tissues.
引文
1. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995; 3:673-682.
    2. Scott W. Lowe, Enrique Cepero and Gerard Evan. Intrinsic tumour suppression. Nature, 2004;432: 307-315.
    3. Fabio Manzo, Angela Nebbioso, Marco Miceli, Mariarosaria Conte, Floriana De Bellis, Vincenzo Carafa, Gianluigi Franci and Francesco P. Tambaro and Lucia Altucc. TNF-related apoptosis-inducing ligand: Signalling of a‘smart’molecule.Int J Biochem Cell Biol ,2007(available on line).
    4. David A. Sallman, Xianghong Chen, Bin Zhong, Danielle L. Gilvary, Junmin Zhou, Sheng Wei and Julie Y. Djeu. Clusterin mediates TRAIL resistance in prostate tumor cells. Molecular Cancer Therapeutics, 2007;6:2938-2947.
    5. Yang LQ, Fang DC, Wang RQ and Yang SM. Effect of NF-KB,surviving,Bcl-2 and Caspase 3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World Journal of Gastroenterology, 2004; 10(1):22-26.
    6. Karashima T, Inoue K, Fukata S, et al. Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice[J]. Int J Oncol , 2007; 30(4):937-945.
    7. Hoffmann S, Glaser S, Wunderlich A, et al. Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors—a novel antiproliferative/ antiangiogenic strategy in thyroid cancer[J]. Langenbecks Arch Surg , 2006; 391(6):589-596.
    8. Busby JE, Kim SJ, Yazici S, et al. Therapy of multidrug resistant human prostate tumors in the prostate of nude mice by simultaneous targeting of the epidermal growth factor receptor and vascular endothelial growth factor receptor on tumor-associated endothelial cells[J].Prostate , 2006 ;66(16):1788-1798.
    9. Wajant H, Moosmayer D, Wuest T, et al. Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene, 2001; 20:4101-4106.
    10. A. Ashkenazi, R. C. Pai, S. Fong, S. Leung, D. A. Lawrence, S. A. Marsters, C. Blackie, L.Chang, A. E. McMurtrey, A. Hebert, L. DeForge, I. L. Koumenis, D. Lewis, L. Harris, J.Bussiere, H. Koeppen, Z. Shahrokh, and R. H. Schwall. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest,1999; 104: 155-162.
    11. F. C. Kischkel, D. A. Lawrence, A. Chuntharapai, P. Schow, K. J. Kim, and A. Ashkenazi. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5.Immunity,2000; 12: 611-620.
    12. L. Zhang, and B. Fang. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther,2005; 12: 228-237.
    13. Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol,2006;26(19):7046-7055.
    14. A. Eggert, M. A. Grotzer, T. J. Zuzak, B. R. Wiewrodt, N. Ikegaki, and G. M. Brodeur. Resistance to TRAIL-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Med Pediatr Oncol,2000; 35: 603-607.
    15. K. Kim, M. J. Fisher, S. Q. Xu, and W. S. el-Deiry. Molecular determinants of response to TRAIL in killing of normal and cancer cells.Clin Cancer Res ,2000;6: 335-346.
    16. M. Stacey Ricci, Seok-Hyun Kim, Kazuhiro Ogi, John P. Plastaras, Jianhua Ling, Wenge Wang, Zhaoyu Jin, Yingqiu Y. Liu, David T. Dicker, Paul J. Chiao, Keith T. Flaherty, Charles D. Smith and Wafik S. El-Deiry. Reduction of TRAIL-Induced Mcl-1 and cIAP2 by c-Myc or Sorafenib Sensitizes Resistant Human Cancer Cells to TRAIL-Induced Death. Cancer Cell, 2007; 12(1):66-80.
    17. S. Kreuz, D. Siegmund, P. Scheurich, and H. Wajant. NF-kappaB inducers upregulate cFLIP,a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol,2001; 21: 3964-3973.
    18. A. Nesterov, X. Lu, M. Johnson, G. J. Miller, Y. Ivashchenko, and A. S. Kraft. Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem ,2001;276: 10767-10774.
    19. Ganten TM, Aravena E, Sykora J, Koschny R, Mohr J, Rudi J, Stremmel W, Walczak H. Helicobacter pylori-induced apoptosis in T cells is mediated by the mitochondrial pathway independent of death receptors.Eur J Clin Invest, 2007;37(2):117-125.
    20. Di Pietro R, Mariggio MA, Guarnieri S, Sancilio S, Giardinelli A, Di Silvestre S, Consoli A, Zauli G, Pandolfi A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) regulates endothelial nitric oxide synthase (eNOS) activity and its localization within the human vein endothelial cells (HUVEC) in culture.J Cell Biochem,2006;97(4):782-794.
    21. Cantarella G, Risuglia N, Dell'eva R, Lempereur L, Albini A, Pennisi G, Scoto GM, Noonan DN, Bernardini R.TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells. Br J Cancer, 2006 ;94(10):1428-1435.
    22. Jiang Y, Chen K, Tang Z, Zeng Z, Yao W, Sun D, Ka W, He D, Wen Z, Chien S. TRAIL gene reorganizes the cytoskeleton and decreases the motility of human leukemic Jurkat cells.Cell Motil Cytoskeleton, 2006;63(8):471-482.
    23. P. Secchiero, C. Zerbinati, E. Rimondi, F. Corallini, D. Milani, V. Grill, G. Forti, S. Capitani,and G. Zauli. TRAIL promotes the survival, migration and proliferation of vascular smooth muscle cells.Cell Mol Life Sci ,2004;61:1965-1974.
    24. J. Morel, R. Audo, M. Hahne, and B. Combe.Tumor necrosis factor-related apoptosisinducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast proliferation through mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt. J Biol Chem,2005; 280: 15709-15718.
    25. S. Ehrlich, C. Infante-Duarte, B. Seeger, and F. Zipp. Regulation of soluble and surfacebound TRAIL in human T cells, B cells, and monocytes. Cytokine,2003; 24: 244-253.
    26. H. Ehrhardt, S. Fulda, I. Schmid, J. Hiscott, K. M. Debatin, and I. Jeremias. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene,2003; 22: 3842-3852.
    27. D. Milani, G. Zauli, E. Rimondi, C. Celeghini, S. Marmiroli, P. Narducci, S. Capitani, and P. Secchiero. Tumour necrosis factor-related apoptosis-inducing ligand sequentially activates pro-survival and pro-apoptotic pathways in SK-N-MC neuronal cells. J Neurochem,2003; 86 : 126-135.
    28. A. Trauzold, D. Siegmund, B. Schniewind, B. Sipos, J. Egberts, D. Zorenkov, D. Emme, C.Roder, H. Kalthoff, and H. Wajant. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma.Oncogene,2006; 25 : 7434-7439.
    29. J. H. Li, N. C. Kirkiles-Smith, J. M. McNiff, and J. S. Pober.TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells.J Immunol,2003; 171 :1526-1533.
    30. T. Abdollahi, N. M. Robertson, A. Abdollahi, and G. Litwack. Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res,2003; 63: 4521-4526.
    31. D. Siegmund, S. Klose, D. Zhou, B. Baumann, C. Roder, H. Kalthoff, H. Wajant, and A.Trauzold. Role of caspases in CD95L- and TRAIL-induced non-apoptotic signalling in pancreatic tumour cells. Cell Signal ,2007;19 : 1172-1184.
    32. Barajas M,Mazzolini G,Genove G.Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin-12[J].Hepatology, 2001;33:52-61.
    33. Tong-CHUAN HE,SHIBIN ZHOU,LUIS T,DA COSTA,JIAN YU,KENNETH W,KINZIER,BERT V OGELS TEIN. A simplified system for generating recombinant adenoviruses. Proc NatL Acad Sci, 1998;95:2509-2514.
    34. Yang LQ,Fang DC,Wang RQ,et al. Effect of NF-KB,surviving,Bcl-2 and Caspase 3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World Journal of Gastroenterology, 2004;10(1):22-26.
    35.杨柳芹,房殿春。凋亡相关蛋白在胃癌细胞凋亡中的作用研究。中华消化杂志,2004;24(1):4-7.
    36.杨柳芹房殿春。硝普钠对TRAIL诱导的胃癌细胞凋亡的影响。中华微生物与免疫学杂志,2006; 26(3):246-247.
    37. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med, 2000; 6: 564-567.
    38. Held J, Schulze-Osthoff K. Potential and caveats of TRAIL in cancer therapy.Drug Resist Updat, 2001;4(4):243-252.
    39. Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia, 2001;3(6):535-546.
    40. Pettersen I, Figenschau Y, Olsen E, Bakkelund W, Smedsrod B, Sveinbjornsson B. Tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in humanarticular chondrocytes in vitro. Biochem Biophys Res Commun, 2002; 296: 671-676.
    41. Nagata S. Steering anti-cancer drugs away from the TRAIL. Nat Med , 2000; 6: 502-503.
    42. Gura T. Cancer research Caution raised about possible new drug. Science,2000; 288: 786-787.
    43. Qin J, Chaturvedi V, Bonish B, Nickoloff BJ. Avoid-ing premature apoptosis of normal epidermal cells. Nat Med, 2001; 7: 385-386.
    44. Jacob D, Davis J, Zhu H, Zhang L, Teraishi F, Wu S, Marini FC 3rd, Fang B. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clin Cancer Res, 2004; 10(10):3535-3541.
    45. Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, Micheau O, Lagadic-Gossmann D, Dimanche-Boitrel MT. TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions.Cancer Res, 2007; 67(1):218-226.
    46. Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LF, Helfrich W. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7.Cancer Res,2005;65(8):3380-3388.
    47. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem, 2005 ;280(11):10025-10033.
    48. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A. Differen-tial hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med , 2001; 7: 383-385.
    49. Armeanu S, Lauer UM, Smirnow I, Schenk M, Weiss TS, Gregor M, Bitzer M. Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligandovercomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res, 2003; 63: 2369-2372.
    50. Mundt B, Kuhnel F, Zender L, Paul Y, Tillmann H, Trautwein C, Manns MP, Kubicka S. Involvement of TRAIL and its receptors in viral hepatitis. FASEB J, 2003; 17: 94-96.
    51. Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimoto R, El-Deiry W, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem ,2001; 276: 38610-38618.
    52. Higuchi H, Bronk SF, Taniai M, Canbay A, Gores GJ. Cholestasis increases tumor necrosis factor-related apoptotis-inducing ligand (TRAIL)-R2/DR5 expression and sensitizes the liver to TRAIL-mediated cytotoxicity. J Pharmacol Exp Ther , 2002; 303: 461-467.
    53. Higuchi H, Yoon JH, Grambihler A, Werneburg N, Bronk SF, Gores GJ. Bile acids stimulate cFLIP phosphorylation enhancing TRAIL-mediated apop-tosis. J Biol Chem, 2003; 278: 454-461.
    54. Zhu Z, Hattori K, Zhang H, et al . Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2 Correlation between antibody affinity and biological activity[J].Leukemia , 2003;17(3):604-611.
    55. Kuroki M , Arakawa F , Khare PD . Specific targeting strate2 gies of cancer gene therapy using a single2chain variable f ragment( scFv) wit h a high affinity for CEA[J]. Anticancer Res , 2000 ;20(6A) : 4067-4071.
    56. Helguera G, Morrison SL, Penichet ML. Antibody-cytokine fusion proteins: harnessing the combined power of cytokines and antibodies for cancer therapy. Clin Immunol, 2002; 103:233-246.
    57. Dela Cruz JS, Lau SY, Ramirez EM, et al. Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine, 2003; 21:1317-1326.
    58. Gillies SD, Lan Y, Brunkhorst B, et al. Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother, 2002; 51:449-460.
    59. Zhong YW, Cheng J , Wang G, et al. Preparation of human single chain Fv antibody against hepatitis C virus E2 protein and it sidentification in immunohistochemistry[J]. World J Gast roenterol , 2002 ; 8 (5) : 863-867.
    60. Di Pietro R, Mariggio MA, Guarnieri S, Sancilio S, Giardinelli A, Di Silvestre S, Consoli A, Zauli G, Pandolfi A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) regulates endothelial nitric oxide synthase (eNOS) activity and its localization within the human vein endothelial cells (HUVEC) in culture. J Cell Biochem, 2006;97(4):782-794.
    61. Cantarella G, Risuglia N, Dell'eva R, Lempereur L, Albini A, Pennisi G, Scoto GM, Noonan DN, Bernardini R. TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells.Br J Cancer,2006;94(10):1428-1435.
    62. Jiang Y, Chen K, Tang Z, Zeng Z, Yao W, Sun D, Ka W, He D, Wen Z, Chien S. TRAIL gene reorganizes the cytoskeleton and decreases the motility of human leukemic Jurkat cells.Cell Motil Cytoskeleton, 2006;63(8):471-482.
    63. Van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies.Int J Cancer, 2005; 117(6):883-888.
    64. Hao C, Song JH, Hsi B, Lewis J, Song DK, Petruk KC, Tyrrell DL, Kneteman NM. TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res , 2004; 64: 8502-8506.
    65. Dev IK, Dornsife RE, Hopper TM, et al. Antitumour efficacy of VEGFR2 tyrosine kinase inhibitor correlates with expression of VEGF and its receptor VEGFR2 in tumour models.Br J Cancer,2004;91(7):1391-1398.
    66. Zhu Z, Hattori K, Zhang H, et al.Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia,2003; 17(3):604-611.
    67. Karashima T, Inoue K, Fukata S, et al. Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice. Int J Oncol, 2007;30(4): 937-945.
    68. Manley PW, Bold G, Bruggen J, et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis.Biochim Biophys Acta, 2004;1697(1-2):17-27.
    69. Hoffmann S, Glaser S, Wunderlich A, et al. Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors—a novel antiproliferative/ antiangiogenic strategy in thyroid cancer[J]. Langenbecks Arch Surg , 2006; 391(6):589-596.
    70. Busby JE, Kim SJ, Yazici S, et al. Therapy of multidrug resistant human prostate tumors in the prostate of nude mice by simultaneous targeting of the epidermal growth factor receptor and vascular endothelial growth factor receptor on tumor-associated endothelial cells[J].Prostate , 2006; 66(16):1788-1798.
    71. Pandya N M, Dhalla N S, Santani D D. Angiogenesis-a new target for future therapy[J]. Vascul Pharmacol , 2006 ;44(5):265-274.
    72. Yazici YD, Kim S, Jasser SA, et al. Antivascular therapy of oral tongue squamous cell carcinoma with PTK787[J].Laryngoscope , 2005;115(12):2249-2255.
    73. van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies[J]. Int J Cancer , 2005; 117(6):883-888.
    74. Dev IK, Dornsife RE, Hopper TM, et al . Antitumor efficacy of VEGFR2 tyrosine kinase inhibitor correlates with expression of VEGF and its receptor VEGFR2 in tumor models[J].Br J Cancer , 2004; 91(7):1391-1398.
    75. Posey JA, Ng TC, Yang B, et al . A phase I study of anti-kinase insert domain- containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma[J] .Clin Cancer Res , 2003;9(4):1323-1332.
    76. Posey JA, Ng TC, Yang B, et al. A phase I study of anti-kinase insert domain- containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma.Clin Cancer Res, 2003;9(4):1323-1332.
    77. Koizumi N , Mizuguchi H , Sakurai F , et al . Reduction of natural adenovirus tropism to mouse liver by fiber2shaft exchange in combination with both CAR2 and alphav integrin2 binding ablation. J Virol ,2003; 77 :130622-13072.
    1. Pitti RM, Marsters SA, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem ,1996; 271: 12687-90.
    2. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity,1995; 3:673-82.
    3. Wajant H, Moosmayer D, Wuest T, et al. Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene ,2001;20:4101-6.
    4. Trabzuni D, Fammlski KS, Ahmad M. Functional analysis of tumor necrosis factor alpha-related apoptosis-inducing ligand ( TRAIL) : cystein 230 plays a critical role in the homotrimerization and biological activity of the novel tumoricidal cytokine[J]. Biochem J, 2000; 350: 505-10.
    5. Bodmer J L, Meier P, Tschopp J , et al. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL[J]. J Biol Chem, 2000;275:20632-37.
    6. Hymowit SG, Connell MP, Ultsch MH, et al. A unique zinc-binding site revealed by a high resolution X-ray structure of homotrimeric Apo-2L/TRAIL[J]. Biochemistry, 2000;39: 633-40.
    7. Green DR, Droin N, Pinkoski M. Activation-induced cell death in T cells. Immunol Rev , 2003; 193:70-81.
    8. Simon AK, Williams O, Mongkolsapaya J, et al. Tumor necrosis factorrelated apoptosis-inducing ligand in T cell development: sensitivity of human thymocytes. Proc Natl Acad Sci , 2001; 98:5158-63.
    9. Jo M, Kim TH, Seol DW, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor- related apoptosis-inducing ligand. Nat Med .2000; 6:564-7.
    10. Zheng SJ, Wang P, Tsabary G, Chen YH Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest .2004; 113:58-64.
    11. Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel antihuman DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med .2001; 7:954-60.
    12. Pan G, O'Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligandTRAIL. Science ,1997; 276:111-3.
    13. Strater J, Hinz U, Walczak H, et al. Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res .2002; 8:3734-40.
    14. Mitsiades N, Poulaki V, Mitsiades C, et al. Ewing's sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosis-inducing ligand and express death receptor 4 and death receptor 5. Cancer Res, 2001; 61:2704-12.
    15. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis- mediating receptor for TRAIL. Embo J. 1997; 16:5386-97.
    16. Screaton GR, Mongkolsapaya J, Xu XN, et al. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol ,1997; 7:693-6.
    17. MacFarlane M, Ahmad M, Srinivasula SM, et al. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem ,1997; 72:25417-20.
    18. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med ,1997; 186:1165-70.
    19. Mongkolsapaya J, Cowper AE, Xu XN, et al. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol ,1998; 160:3-6.
    20. Degli-Esposti MA, Dougall WC, Smolak PJ, et al. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity, 1997; 7:813-20.
    21. Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain- containing receptor for TRAIL. Science, 1997; 277: 815-8.
    22. Pan G, Ni J, Yu G, et al. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett, 1998; 424:41-5.
    23. Meng RD, McDonald ER 3rd, Sheikh MS, et al. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther, 2000; 1:130-44.
    24. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem ,1998; 273:14363-7.
    25. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell ,1997; 89:309-19.
    26. Sedger LM, Glaccum MB, Schuh JC, et al. Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol ,2002; 32:2246- 54.
    27. Pritzker LB, Scatena M, Giachelli CM. The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival. Mol Biol Cell ,2004; 15:2834-41.
    28. Zauli G, Rimondi E, Nicolin V, et al. TNF-related apoptosis inducingligand (TRAIL) blocks osteoclastic differentiation induced by RANKL+MCSF. Blood ,2004; 104(7):2044-50.
    29. Le Minh Thai,Agatha Labrinidis, Shelley Hay .Apo2/Tumor Necrosis Factor Realted Apoptosis–Inducing Ligand Prevents Breast Cancer-Induced Bone Destruction in a Mouse Model.Cancer Res,2006;66(10):5363-69.
    30. Heath DJ, Vanderkerken K, Cheng X, et al.An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res, 2007 ;67(1):202-8.
    31. Sandra F, Hendarmin L, Nakamura S. Osteoprotegerin (OPG) binds with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): suppression of TRAIL-induced apoptosis in ameloblastomas. Oral Oncol,2006;42(4):415-20.
    32. Davis R J. Signal transduction by the JNK group of MAPkinases[J] .Cell, 2000;103:239-52.
    33. Zhang XD, Franco AV,Nguyen T, et al. Differential localization and regulation of death and decoy recep tors for TNF-related apoptosis-inducing ligand( TRA IL) in human melanoma cells[J]. Immunol, 2000; 164: 3961-70.
    34. Suliman A, Lan A, Datta R, et al. Intracellular mechanisms of TRA IL: apoptosis through mitochondrial-dependent and -independent pathsays[J]. Oncogene, 2001;20 : 2122-33.
    35. Ravi R,Bedi GC, Engstrom LW, et al. Regulation of death receptor expression andTRAIL/APO-2L induced apoptosis by NF-Kappa B[J]. Nat Cell Biol,2001;3: 409-16.
    36. Truneh A, Sharma S, Silverman C, et al. Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem, 2000; 275:23319-25.
    37. Kurbanov BM, Geilen CC, Fecker LF,et al. Efficient TRAIL-R1/DR4-mediated apoptosis in melanoma cells by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).J Invest Dermatol, 2005; 125(5):1010-9.
    38. Mongkolsapaya J, Grimes JM, Chen N, et al. Structure of the TRAILDR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol ,1999; 6:1048-53.
    39. Cha SS, Sung BJ, Kim YA, et al. Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem ,2000; 275:31171-7.
    40. Hymowitz SG, Christinger HW, Fuh G, et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell ,1999; 4:563-71.
    41. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas pre-association required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science, 2000; 288:2354-7.
    42. Chan FK, Chun HJ, Zheng L, et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science ,2000; 288:2351-4.
    43. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J, 1995; 14:5579-88.
    44. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J, 1997; 16:2794-804.
    45. Chinnaiyan AM, O'Rourke K, Tewari M, et al. FADD, a novel death domain- containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell ,1995; 81:505-12.
    46. Boldin MP, Mett IL, Varfolomeev EE, et al. Self-association of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNFand Fas/APO1 effects. J Biol Chem, 1995; 270:387-91.
    47. Eugene Varfolomeev, Heather Maecker, Darcie Sharp, et al. Molecular Determinants of Kinase Pathway Activation by Apo2Ligand/Tumor Necrosis Factor-related Apoptosis- inducing Ligand[J]. Biol Chem, 2005; 280(49):40599-608.
    48. Kabra NH, Kang C, Hsing LC, et al. T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci ,2001; 98:6307-12.
    49. Walsh CM, Wen BG, Chinnaiyan AM, et al. A role for FADD in T cell activation and development. Immunity, 1998; 8:439-49.
    50. Bouillet P, Purton JF, Godfrey DI, et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002; 415:922-6.
    51. Chaudhary PM, Eby M, Jasmin A, et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD- dependent apoptosis and activate the NF-kappaB pathway. Immunity ,1997; 7:821-30.
    52. Schneider P, Thome M, Burns K, et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity, 1997; 7:831-6.
    53. Kuang AA, Diehl GE, Zhang J, Winoto A. FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADDdeficient mouse embryonic fibroblasts. J Biol Chem, 2000; 275:25065-8.
    54. Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity, 2000; 12:599-609.
    55. Bodmer JL, Holler N, Reynard S, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol ,2000; 2:241-3.
    56. Thomas LR, Henson A, Reed JC, et al. Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosisinducing ligand receptor DR5 is regulated by the death effector domain of FADD. J Biol Chem, 2004; 279:32780-5.
    57. Miyazaki T, Reed JC. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol ,2001; 2:493-500.
    58. Kischkel FC, Lawrence DA, Chuntharapai A, et al. Apo2L/TRAILdependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 2000; 12:611-20.
    59. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem ,2001; 276:46639-46.
    60. Sprick MR, Rieser E, Stahl H, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. Embo J ,2002; 21, 4520-30.
    61. Ganten TM, Haas TL, Sykora J, et al. Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL- induced apoptosis by chemotherapeutic drugs. Cell Death Differ, 2004; 11:S86-96.
    62. Harper N, Farrow SN, Kaptein A, et al. Modulation of tumor necrosis factor apoptosis-inducing ligand-induced NF-κB activation by inhibition of apical caspases. J Biol Chem ,2001; 276: 34743-52.
    63. Sprick MR, Walczak H. The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta, 2004; 1644:125-32.
    64. Davis R J. Signal transduction by the JNK group of MAPkinases[J].Cell, 2000; 103:239-52.
    65. Jin H, Axtell M, Dahlbeck D.NPK1,an MEKK1 like mitogen activated protein kinase kinase kinase,regulates innate immunity and development in plants[J].Dev ell,2002; 3(2):291.
    66. Kolch W. The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions [J] .Biochem J,2000;351:289-305.
    67. Yang LQ, Fang DC, Wang RQ, Yang SM. Effect of NF-KB,surviving,Bcl-2 and Caspase 3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World Journal of Gastroenterology, 2004; 10(1):22-6.
    68.杨柳芹,房殿春,罗元辉。凋亡相关蛋白在胃癌细胞凋亡中的作用研究。中华消化杂志,2004;24(1),4-7.
    69. Muhlenbeck F, Haas E, Schwenzer R, et al. TRAIL/Apo2L activates c-Jun NH2-terminal kinase JNK) via caspase- dependent and caspase-independent pathways. J Biol Chem ,1998; 273: 33091-8.
    70. Herr I, Wilhelm D, Meyer E, et al. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ, 1999; 6:130-35.
    71. Muhlenbeck F, Schneider P, Bodmer JL, et al. The tumor necrosis factorrelated apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are nonredundant in JNK activation. J Biol Chem ,2000; 275:32208-13.
    72. Weldon CB, Scandurro AB, Rolfe KW, et al. Identification of mitogen-activated protein kinase kinase as a chemoresistant pathway in MCF-7 cells by using gene expression microarray. Surgery, 2002; 132(2):293-01.
    73. Meng XW, Chandra J, Loegering D, et al.Central role of Fas-associated death domain protein in apoptosis induction by the mitogen-activated protein kinase kinase inhibitor CI-1040 (PD184352) in acute lymphocytic leukemia cells in vitro. J Biol Chem, 2003;278(47):47326-39.
    74. Jin CY, Moon DO, Lee JD, et al.Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis, 2007; 28(5):1058-66.
    75. Ortiz-Ferrón G, Tait SW, Robledo G, et al.The mitogen-activated protein kinase pathway can inhibit TRAIL-induced apoptosis by prohibiting association of truncated Bid with mitochondria.Cell Death Differ, 2006;13(11):1857-65.
    76. Bei Zheng, Paolo Fiumara, Yang V. Li, et al.MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood, 2003; 102(3):1019-27.
    77. Morel J, Audo R, Hahne M, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast proliferation through mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt.J Biol Chem, 2005;280(16):15709-18.
    78. Toshiaki Ohtsuka and Tong Zhou. Bisindolylmaleimide VIII Enhances DR5-mediated Apoptosis through the MKK4/JNK/p38 Kinase and the Mitochondrial Pathways. J. Biol. Chem, 2002; 277(32): 29294-303.
    79. Ganten TM, Aravena E, Sykora J,et al. Helicobacter pylori-induced apoptosis in T cells is mediated by the mitochondrial pathway independent of death receptors.Eur J ClinInvest, 2007;37(2):117-25.
    80. Di Pietro R, Mariggio MA, Guarnieri S, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) regulates endothelial nitric oxide synthase (eNOS) activity and its localization within the human vein endothelial cells (HUVEC) in culture.J Cell Biochem, 2006;97(4):782-94.
    81. Cantarella G, Risuglia N, Dell'eva R, et al.TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells.Br J Cancer, 2006;94(10):1428-35.
    82. Jiang Y, Chen K, Tang Z, et al. TRAIL gene reorganizes the cytoskeleton and decreases the motility of human leukemic Jurkat cells.Cell Motil Cytoskeleton, 2006;63(8): 471-82.
    83. Baader E, Toloczko A, Fuchs U, et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated proliferation of tumor cells with receptor-proximal apoptosis defects.Cancer Res, 2005;65(17):7888-95.
    84. Jo,M, Kim TH,Seol DW,Esplen JE,Dorko K,Billiar TR,Strom SC. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis inducing ligand. Nature Med,2000; 6:564-7.
    85. Hao C, Song JH, Hsi B,et al。TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res, 2004 ;64(23):8502-6.
    86. Mori E, Thomas M, Motoki K, et al. Distinct function of monoclonal antibody to TRAIL-R2 as potentiator or inhibitor of the ligand TRAIL-induced apoptosis. FEBS Lett. 2005, 10;579(24):5379-84.
    87. Mori E, Thomas M, Motoki K, et al.. Human normal hepatocytes are susceptible to apoptosis signal mediated by both TRAIL-R1 and TRAIL-R2. Cell Death Differ, 2004;11(2):203-7.
    88. Yin XM, Ding WX. Death receptor activation-induced hepatocyte apoptosis and liver injury. Curr Mol Med, 2003;3(6):491-08.
    89. Janssen HL,Higuchi H, Abdulkarim A, et al. Hepatitis B virus enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity by increasing TRAIL-R1/death receptor 4 expression. J Hepatol, 2003 ;39(3):414-20.
    90. Meurette O, Rebillard A, Huc L, et al. TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellularconditions.Cancer Res, 2007 ;67(1):218-26.
    91. Jacob D, Davis J, Zhu H, et al. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clin Cancer Res, 2004 ;10(10):3535-41.
    92. Bremer E, Samplonius DF, Peipp M, et al. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis- inducing ligand fusion protein with specificity for human CD7.Cancer Res, 2005 ;65(8):3380-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700