用户名: 密码: 验证码:
新型中空纤维膜式人工肺的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工肺,也称氧合器,具有调节血液内O_2和CO_2含量的功能,是治疗急性呼吸疾病和等待肺移植阶段必需的医疗设备,也是心血管手术的辅助医疗设备。作为当前已经临床应用和商业化的体外膜式人工肺,由于O_2和CO_2使用同一种通道,主要存在气体交换能力差、血液传输效率不足、使用时间短等问题。目前国内临床应用的人工肺使用的膜组件几乎全部依靠进口。为此,本论文设计和研究了一种O_2和CO_2分别具有各自通道的新型双通道中空纤维膜式人工肺。
     为了提高涂覆中空纤维的液晶/硅橡胶膜的透氧性、生物相容性和抗凝血性,采用高效酰化法和酰氯化法分别合成了丙烯酸胆甾醇酯、丁烯酸胆甾醇酯、戊烯酸胆甾醇酯、己烯酸胆甾醇酯和十一烯酸胆甾醇酯5种胆甾醇酯衍生物,并对其化学结构和液晶性能进行了表征。高效酰化催化剂法能明显提高产品的产率与纯度、简化操作、降低反应毒性。除丙烯酸胆甾醇酯外,其余4个胆甾醇酯样品均具有液晶性。使用硅橡胶、含氢硅油和胆甾醇酯液晶,首次制备了胆甾醇酯液晶/硅橡胶交联膜。研究了各种因素(压差、温度、取代基、交联时间、液晶含量、物理性能等)对交联膜的透气性能和分离性能的影响。结果表明,该膜具有良好的成膜性能、透气性能和分离性能。例如,在0.1 MPa压差和40℃下,透氧系数和氧氮分离系数分别高达为789 Barrer和3.40,其渗透性能明显优于普通改性的硅橡胶膜材料,可用作膜式人工肺中空纤维的涂覆膜。
     通过磺化、中和和络合反应制备了含钴离聚体膜。在测试中发现,处于低压侧的CO_2自发地透过离聚体膜向N_2或空气的高压侧反向渗透。这种CO_2反向渗透的现象,是一种新的气体渗透行为,至今未见有类似现象的报道。研究了离聚体膜的气体正向渗透性能和CO_2反向渗透行为,发现离聚体膜具有优越的CO_2渗透性能和相对较差的O_2渗透性能。例如,在25℃和0.1 MPa压差下,CO_2和O_2渗透系数分别为170 Barrer和28 Barrer。利用这一性能,可将其应用于通过壳体材料排除CO_2的新型膜式人工肺内表面的涂敷膜材料。
     通过动态凝血、溶血、血小板粘附和接触角等实验研究了液晶/硅橡胶交联膜和离聚体膜的生物相容性。作为对照,按照肝素化的离子键结合方式,制备了肝素化液晶/硅橡胶交联膜和离聚体膜。结果表明,硅橡胶交联膜、离聚体膜和肝素化膜都具有良好的生物相容性,能够满足膜式人工肺膜材料的基本要求。
     改进目前工业上中空纤维单组分涂敷工艺,设计了中空纤维双组分涂敷工艺。优化了涂敷工艺条件:液晶/硅橡胶溶液的浓度为5.0%,交联时间为10 min,固化温度在60℃以下。
     按照中空纤维双组份涂敷工艺,在中空纤维的外表面涂敷具有O_2促进输送的液晶/硅橡胶交联膜。将具有优越的CO_2渗透性能和较差的O_2渗透性能的离聚体膜涂敷于梯度陶瓷管的内壁。按照双组份涂敷工艺将具有O_2促进输送的液晶/硅橡胶交联膜涂覆于中空纤维的外表面,以梯度陶瓷管作为外壳材料、中空纤维膜为基质材料,首次设计了一种O_2和CO_2分别具有各自通道的新型双通道中空纤维膜式人工肺,未见国内外相关文献报道。作为对比,同时也设计了一种O_2和CO_2使用同一种通道的中空纤维膜式人工肺。以生理盐水和去离子水代替血液,测试了单通道中空纤维膜式人工肺组件的体外性能。实验结果表明,单通道中空纤维膜式人工肺具有具有较好的氧合效果。例如,当生理盐水的流速为450 ml/min时,氧气传输速率和压力降分别为48.3 ml/(min·m~2)和21.6 mmHg,其氧合效果接近于国际上通用优良膜式人工肺的性能。
     与单通道中空纤维膜式人工肺相比,双通道膜式人工肺的氧气传输速率更大,压力降更低,使用寿命更长。表明液晶/硅橡胶交联膜和离聚体膜有利于提高膜式人工肺的氧合效果。可以展望,双通道中空纤维膜式人工肺将具有很好的研究前景和应用价值。
Artificial lung, also called as oxygenator, which is to provide cardiopulmonary bypass during open-heart surgery, performs a function of exchanging O_2 and removing CO_2 from blood. It also serves as a bridge to lung transplant and a needed appliance for treatment patients with acute respiratory failure. Due to O_2 and CO_2 permeating through one-channel, the extracorporeal membrane oxygenators used in clinical and commercial application at present have still some disadvantages, such as lower gas exchange capability, more inadequate blood transport efficiency; shorter service time. In addition, membrane parts of oxygenators used in clinical application in China almost rely on importation. Therefore, the paper will design and study a novel two-channel hollow-fiber membrane oxygenator with different permeation channels for O_2 and CO_2.
     To improve permeability for O_2, biocompatibility and anticoagulation of hollow fibers coated liquid crystal/silicone rubber membrane, five kinds of olefine acid cholesteryl ester derivatives (such as acrylic acid cholesterol ester, vinylacetic acid cholesterol ester, pentenoic acid cholesterol ester, hexenoic acid cholesterol ester and 11-alkenoic acid cholesterol ester) were synthesized respectively by 2n acylation method and a super esterification method. Their chemical structures and liquid crystal behaviors were characterized by using FTIR, DSC and polarized microscopy with a hot stage. The research results showed that the super acylation catalyst method could improve obviously yield and purity, low toxicity and simplify operation process. Apart from crylic acid cholesterol ester, the other cholesterol esters showed cholesteryl liquid crystal behavior. Liquid crystal/silicone rubber crosslinked membranes were prepared firstly by using silicone rubber, silicone oil containing hydrogen and cholesterol ester liquid crystal as matrix materials. Some influential factors (such as difference pressure, testing temperature, substituent group, vulcanizing time, liquid crystal content, mechanics property) on permeability and permselectivity for the crosslinked membranes were studied. The results showed that the crosslinked membranes had better membrane-forming, permeability and permselectivity, especially better permeability for oxygen than normal modified silicon rubber membranes. For example, at pressure difference of 0.1 MPa and testing temperature of 40℃, the permeability coefficient and separation factor of the crosslinked membrane were up to 789 Barrer and 3.40, respectively. So, the crosslinked membrane can be used as coating membrane material of hollow fiber for membrane artificial lung.
     An ionomer membrane containing cobalt was prepared by sulfonated reaction, neutralization reaction and complex reaction. We discovered a peculiar behavior of gas permeation that CO_2 could permeate spontaneously through the membrane from the downstream side toward the upstream side of N_2 gas or air. The CO_2 reverse permeation behavior is a novel gas permeation behavior and has not been reported so far. The permeability and CO_2 reverse permeation behavior of the ionomer membrane were investigated. The results showed the ionomer membrane had better permeability for CO_2 and relatively poorer permeability for O_2. For example, at 25℃and the pressure difference of 0.1 MPa, the permeability coefficients for CO_2 and O_2 were 170 Barrer and 28 Barrer, respectively. Based on these properties, the ionomer membrane can be used as coating membrane material for a novel membrane artificial lung, which can exclude CO_2 from blood by a shell material.
     The biocompatibility of the crosslinked membrane and the ionomer membrane were studied by measurement of the haemolysis ratio, the dynamic blood clotting test and the platelet adhesion test. By contrast, the heparinized crosslinked membrane and ionomer membrane were prepared by an ionic linkage method. The results showed that these membranes exhibited better biocompatibility to satisfy the needs of membrane materials of membrane artificial lung.
     A self-assembled dip-coating technology using double-components was designed firstly to improve currently industrialized dip-coating technology using one-component for hollow fiber. The dip-coating conditions of the double-components technology were optimized: the concentration of liquid crystal/silicone rubber solution was 5.0%; the vulcanizing time was 10 minutes; curing temperature was under 60℃.
     According to the double-components dip-coating technology, the liquid crystal/silicone rubber crosslinked membranes with facilitated transportation for O_2 were coated on the surface of hollow fiber. And the ionomer membranes with better permeability for CO_2 and relatively poorer permeability for O_2 were coated on the wall of gradient ceramic. By using the gradient ceramic as an out-housing material and the hollow fiber membrane as a matrix material, a novel two-channel hollow-fiber membrane oxygenator with different permeation channels for O_2 and CO_2 was designed firstly. The membrane oxygenator has not been reported in the world. In contrast, a one-channel hollow-fiber membrane oxygenator with one permeation channel for O_2 and CO_2 was assembled. The properties of the one-channel membrane oxygenator in vitro were measured by using normal saline and deionized water as a substitute for blood. The results showed the one-channel membrane oxygenator had better oxygenation performance which was close to that of commercial membrane oxygenator in the world. For example, when the flow rate of normal saline was 450 ml/min, O_2 transfer rate and pressure drop were 48.3 ml/(min·m~2) and 21.6 mmHg, respectively.
     By comparison of the one-channel membrane oxygenator, the two-channel hollow-fiber membrane oxygenator had higher O_2 transfer rate, lower pressure drop and longer service time. These suggested that the liquid crystal/silicone rubber crosslinked membrane and the ionomer membrane were benefit to improve oxygenation performance of membrane artificial lung. Therefore, it is speculated that the two-channel hollow-fiber membrane oxygenator will posses better research prospect and greater value in application.
引文
[1] Gibbon J H. Artificial maintenance of circulation during experimental occlusion of pulmonary artery[J]. Arch. Surg., 1937,34:1105-1131.
    
    [2] Gibbon J H. Application of a mechanical heart and lung apparatus to cardiac surgery[J]. Minn. Med., 1954,37:171-185.
    
    [3] Kloff W J, Blazer R R. Artificial coil lung[J]. Trans. Am. Soc. Artif. Intern. Organs., 1955,1: 39-42.
    
    [4] Vishnevskii M E; Pronina N P; Mikhailov A A. Potentiometric method of analyzing CO_2 transfer in ablood membrane oxygenator[J]. Meditsinskaia tekhnika, 1987, (2): 22-27.
    
    [5] Gu Y J, Boonstra P W, Graaff R, et al. Pressure drop, shear stress, and activation of leukocytes duringcardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators[J].Artif. Organs, 2000,24(1): 43-48.
    
    [6] Maeda T, Iwasaki A, Kawahito S, et al. Preclinical evaluation of a hollow fiber silicone membraneoxygenator for extracorporeal membrane oxygenator application[J].ASAIO J., 2000,46: 426-430.
    
    [7] Gu Y J, Boonstra P W, Akkerman C, et al. Blood compatibility of two different types of membraneoxygenator during cardiopulmonary bypass in infants[J]. The International journal of artificial organs,1994,17(10): 543-548.
    
    [8] Haworth W S. The development of the modern oxygenator[J]. The Annals of thoracic surgery, 2003,76(6): 2216-2221.
    
    [9] Wickramasinghe S R, Goerke A R, Garcia J D, et al. Designing blood oxygenators[J]. Ann. N. Y. Acad.Sci., 2003, 984: 502-514.
    
    [10] Akif (?), Nancy H, George B. et al. The Effects of Pulsatile Versus Nonpulsatile Perfusion on Blood Viscoelasticity Before and After Deep Hypothermic Circulatory Arrest in a Neonatal Piglet Model[J]. Artif. Organs, 1999,23(8): 717-721.
    
    [11] Matsuda N, Sakai K, Yamamoto K, et al. Effects of hollow fiber packing fraction on blood flow pattern and gas transfer rate of an intravascular oxygenator (IVOX)[J]. J. Membr. Sci., 2000, 179(1-2): 231-241.
    
    [12] Hattler B G; Federspiel W J. Progress with the development of the intravenous membrane oxygenator[J].Perfusion, 1999,14(4): 311-315.
    
    [13] Federspiel W J, Golob J F, Merrill T L,et al. Ex vivo testing of the intravenous membrane oxygenator[J].ASAIOJ. (American Society for Artificial Internal Organs), 2000,46(3): 261-267.
    
    [14] Mortensen J D. Afterword: bottom-line status report: CAN current trends in membrane gas transfertechnology lead to an implantable intrathoracic artificial lung?[J]. Artif. organs, 1994,18(11): 864-869.
    
    [15]龙村,胡小琴.膜肺——新一代的氧合器[J].国外医学:生物医学工程分册,1991,14(5):261-267.
    
    [16] Reed C C. Cardiopulmonary bypass[M]. Texas Medical Press, 1985, Houston USA.
    
    [17] 谭小苹,裴觉民.膜式人工肺及其应用[J].中国胸心血管外科临床杂志,1994,(1):59-61.
    
    [18] Gaylor J D S. Membrane oxygenators: current development in design and application[J]. J. Biomed. Eng., 1988,10: 541-547.
    
    [19] 阳建勋.介绍体外膜肺氧合(ECMO)技术[J].医疗装备,2002,15(10):6-7.
    
    [20]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005年第一版.
    
    [21] Clowes G H, Hopkins A L, Neville W E. An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes[J].J. thoracic surgery, 1956,32(5): 630-637.
    
    [22] Kolobow T, Bowman R L. Construction and evaluation of an alveolar membrane artificial heart-lung[J]. Transactions-American Society for Artificial Internal Organs, 1963,9: 238-243.
    
    [23] Bramson M L, Osborn J J, Main F B, et al. A new disposable membrane oxygenator with integral heat exchange[J].J. Thorac. Cardiovasc. Surg., 1965,50(3): 391-400.
    
    [24]谭小苹,王建,王利春,等.采用微孔聚丙烯纤维材料的“四川联大Ⅰ型”管外流式(ELF)中空纤 维膜式氧合器的研制[J].生物医学工程学杂志,1998,15(2):136-141.
    
    [25] 叶宏深,丁伟,柳仓生,等.膜式人工肺研究的紧张[J].透析与人工器官,1999,10(3):12-13.
    
    [26] 孙俊芬,王庆瑞.新型膜式人工脏器的研究进展[J].产业用纺织品,2001(8):9-13.
    
    [27] 张海玲,张永富,张君奎.中空纤维在人工器官上的应用[J].国外医学生物医学工程分册,2000, 23(6):358-362.
    
    [28] 吕晓龙.复合中空纤维超滤膜的研制[J].水处理技术,1997,23(1):27-32.
    
    [29] Campbell T G. Changing criteria for the artificial lung. Historic controls on the technology of ECMO[J]. ASAIO J., 1994, 40(2): 109-120.
    
    [30] 解立新,刘又宁.血管内氧合器在治疗重症呼吸衰竭方面的应用[J].河北医药,2002,24(7): 585-587.
    
    [31] Hattler B G, Reeder G D, Sawzik P J. Development of an intravenous membrane oxygenator:Enhanced intravenous gas exchange through convective mixing of blood around hollow fibermembranes[J]. Artif. Organs, 1994, 18:806-812.
    
    [32] Hattler B G, Federspiel W J. Progress with the development of the intravenous membraneoxygenator(IMO)[J]. Perfusion, 1999, 14:311-315.
    
    [33] Federspiel W J, Hewitt T J, Hattler B G. Experimental evaluation of a model for oxygen exchangein a pulsating intravascular artificial lung[J]. Ann. Biomed. Engin., 2000, 28(2): 160-167.
    
    [34] Lund L W, Hattler B G, Federspiel W J. A comparative in vitro hemolysis study of a pulsatingintravenous artificial lung[J].ASAIO J., 2002, 48(6): 631-635.
    
    [35] Makarewicz A J, Mockros L F, Anderson R W. A dynamic intravascular artificial lung[J]. ASAIO J.,1994, 40(3): 747-750.
    
    [36] Makarewicz A J, Mockros L F, Anderson R W. A pumping intravascular artificial lung with active mixing[J].ASAIO J., 1993,39(3): 466-469.
    [37] Lynch W R, Haft J W, Montoya J P, et al. Partial respiratory support with an artificial lung perfused by the right ventricle: chronic studies in an active animal model[J]. ASAIO J., 2000, 46: 202-209.
    [38] Lick S D, Zwiscenberger J B, Alpard S K. Development of an ambulatory artificial lung in an ovine survival model[J].ASAIO J., 2001, 47: 486-491.
    [39] Boschetti F, Perlman C E, Cook K E. Hemodynamic effects of attachment modes and device design of a thoracic artificial lung[J]. ASAIO J., 2000, 46: 42-48.
    [40] Cook K E, Makarewicz A J, Backer C L. Testing of an intrathoracic artificial lung in a pig model[J]. ASAIO J., 1996, 42: 604-609.
    [41] Lee S C. Flow-dependent friction loss in an implantable artificial lung[J]. KSME International Journal, 2002,16(11): 1470-1476.
    [42] Shimono T, Shomura Y, Tahara K. Experimental evaluation of a newly developed ultrathin silicone layer coated hollow fiber oxygenator[J].ASAIO J., 1996,42:451-454.
    [43] Funakubo A, Higami T, Tayama E, et al. Development of a membrane oxygenator for ECMO novel fine silicone hollow fiber[J].ASAIO J., 1996, 42: 827-840.
    [44] Nimi Y, Yamane S, Ohashi Y, et al. Protein adsorption and platelet adhension on the surface of an oxygenator membrane[J]. ASAIO J., 1997,43: 706-710.
    [45] Yamane S, Ohashi Y, Sueoka A, et al. Development of a silicone hollow fiber membrane oxygenator for ECMO application[J].ASAIO J ., 1998, 42: 384-387.
    [46] Watanabe H, Hayashi J, Ohzeki H, et al. Biocompatibility of a silicone-coated polypropylene hollow fiber oxygenator in an vitro model[J].Ann. Thorac. Surg., 1999,67(5): 1315-1319.
    [47] Kawahito S, Maeda T, Tanaka K, et al. Gas transfer performance of a hollow fiber silicone membrane oxygenator: Ex vivo study[J]. Aritif. Organs, 2001,25: 498-502.
    [48] Kawahito S, Maeda T, Motomura T, et al. Gas transfer performance of a hollow fiber silicone membrane oxygenator: In vivo study[J].Aritif Organs, 2001,25:494-498.
    [49] Kawahito S, Maeda T, Motomura T, et al. Feasibility of a new hollow fiber silicone membrane oxygenator for long-term ECMO application[J]. J. Med. Invest., 2002,49:156-162.
    [50] Kawahito S, Maeda T, Motomura T, et al. Preclinical evaluation of a new hollow fiber silicone membrane oxygenator for pediatric cardiopulmonary bypass: Ex-vivo study[J]. Ann. Thorac. Cardiovasc Surg., 2002,8: 7-11.
    [51] Motomura T, Maeda T, Kawahito S, et al. Development of silicone rubber hollow fiber membrane oxygenator[J]. Aritif. Organs, 2003, 27:1050-1056.
    [52] Shomono T, Shomura Y, Tani K, et al. Clinical evaluation of a silicone coated hollow fiber oxygenator[J].ASAIO J., 1997,43: 735-739.
    [53] Morimoto T. Development of a silicone hollow fiber membrane oxygenator for long term extracorporeal membrane oxygenation. Nippon Kyobu Geka Gakkai Zassi, 1982,30:1351-1366.
    [54] Gemmell C H, Ramirez S M, Yeo E L, et al. Platelet activation in whole blood by artificial surface: Identification of plateletderived microparticles and activation platelet binding to leukocytes as material-induced activation events[J]. J. Lab. Clin. Med., 1995,125: 276-287.
    [55] Yoshinari M, Shingo Y, Ken Y, et al. Protein adsorption and platelet adhesion on the surface of an oxygenator membrane[J].ASAIO J., 1997,43(5): 710-713.
    [56] Montoya J P, Shanley C J, Merz S I, et al. Plasma leakage through microporous membranes: role of phospholipids[J]. ASAIO J, 1992,38: 399-405.
    [57] Mottaghy K, Oedekoven B, Starmmans H, et al. Technical aspects of plasma leakage prevention in microporous capillary membrane oxygenator[J]. Trans. ASAIO, 1989,35: 640-643.
    [58] Ghosh M K, Mittal K I. Polymides: Fundamentals and applications[M]. Marcel Dekker, New York, 1996.
    [59] Kawakami M, Nagaoka S. Synthesis of aromatic polymides with sulfone diamine moieties for a novel membrane oxygenator[J]. ASAIO J., 1995,41:379-383.
    [60] Kawakami M, Nagaoka S, Kubota S. Gas transfer and in vitro and in vivo blood compatibility of a fluorinated polymide membrane with an ultrathin skin layer[J]. ASAIO J., 1996, 42: 871-876.
    [61] Kanno M, Kawakami M, Nagaoka S, et al. Biocompatibility of fluorinated polymide[J]. J. Biomed. Mater. Res., 2002, 60: 53-60.
    [62] Motohiro N, Hiroyoshi K, Shoji N. Development of a novel polyimide hollow-fiber oxygenator[J]. Artif. Organs, 2004,28(5): 487-495.
    [63] Campbell T G. Changing criteria for the artificial lung. Historic controls on the technology of ECMO[J]. ASAIO J., 1994, 40(2): 109-120.
    [64] Pesenti Antonio M D, Patroniti Nicolo M D. Herapeutic targets in acute respiratory distress syndrome: Role of the artificial lung[J]. Critical care medicine, 2001, 29(10): 2034-2035.
    [65] Kawahito S, Maeda T, Motomura T. Feasibility of a new hollow fiber silicone membrane oxygenator for long-term ECMO application [J]. Journal of Medical Investigation, 2002, 9: 156-162.
    
    [66] Kawahito S, Maeda T, Takano T. Gas transfer performance of a hollow fiber silicone membrane oxygenator: Ex vivo study[J]. Artif. Organs, 2001, 25(6): 498-502.
    [67] Kawahito S, Maeda T, Motomura T. Development of a new hollow fiber silicone membrane oxygenator: In vitro study [J]. Artif. Organs, 2001, 25(6): 494-498.
    [68] Kawahito S, Motomura T, Kitahata H. Feasibility of a New Hollow Fiber Silicone Membrane Oxygenator for ECMO Application[C]. Anesthesiology Abstracts of Scientific Papers Annual Meeting, 2001.
    [69] Maeda T, Iwasaki A, Kawahito S. Preclinical evaluation of a hollow fiber silicone membrane oxygenator for extracorporeal membrane oxygenator application [J]. ASAIO J., 2000, 46(4):
    ??426-430.
    
    [70] Motomura T, Maeda T, Kawahito S. Extracorporeal membrane oxygenator compatible withcentrifugal blood pumps[J].Artif. Organs, 2002, 26(11): 952-958.
    
    [71] Okamoto T, Tashiro M, Sakanashi Y. A New Heparin-Bonded Dense Membrane Lung Combinedwith Minimal Systemic Heparinization Prolonged Extracorporeal Lung Assist in Goats[J]. Artif.Organs, 1998, 22(10): 864-872.
    
    [72] Tashiro M, Okamoto T, Sakanashi Y. Experimental evaluation of the V-point heparin-bondingsystem applied to a dense-membrane artificial lung during 24-hour extracorporeal circulation inbeagles[J].Artif. Organs, 2001, 25(8): 655-663.
    
    [73] Nishinaka T, Tatsumi E, Taenaka Y. At least thirty-four days of animal continuous perfusion by anewly developed extracorporeal membrane oxygenation system without systemic anticoagulants[J].Artif. Organs, 2002, 26(6): 548-551.
    
    [74] Crotti S, Tubiolo D, Pelosi P. Long-term evaluation of gas exchange and hydrodynamicperformance of a heparinized artificial lung: comparison of two different hollow fiber pore sizes[J].Intern. J Artif. Organs, 1997, 20(1): 22-28.
    
    [75] Wiesenack C, Wiesner G, Keyl C. In vivo uptake and elimination of isoflurane by differentmembrane oxygenators during cardiopulmonary bypass[J]. Anesthesiology, 2002, 97(1): 133-138.
    
    [76] Yasuhiko 1, Uchiyama S, Kimio K. A nonthrombogenic gas-permeable membrane composed of aphospholipid polymer skin film adhered to a polyethylene porous membrane[J]. Biomaterials, 2002,23(16): 3421-3427.
    
    [77] 庞婉,陶铮,张辉.交叉流微孔聚丙烯中空纤维膜式氧合器研究[J].复旦学报(自然科学版), 2001,40(4):381-386.
    
    [78] Tomohiko I, Kazuhiko T. Oxygenator of hollow fiber membrane type[P]. US Patent, 6503451,2003.
    
    [79] Hout M S, Hattler B G, Federspiel W J. Validation of a model for flow-dependent carbon dioxideexchange in artificial lungs[J]. Artif. organs, 2000, 24(2): 114-118.
    
    [80] Kolobow T H, Gattinoni L, Tomlinson T A. Control of breathing using an extracorporealmembrane lung[J]. Anesthesiology, 1977, 46: 138-141.
    
    [81] Zwischenberger J B, Conrad S A, Alpard S K. Percutaneous extracorporeal arteriovenous CO_2removal for severe respiratory failure[J]. Ann. Thorac. Surg., 1999, 68: 181-187.
    
    [82] Reng M, Philipp A, Kaiser M. Pumpless extracorporeal lung assist and adult respiratory distresssyndrome[J]. Lancet, 2000,356: 219-220.
    
    [83]立花太郎等著,谈漫琪,丁学泉编译.液晶知识[M].北京:科学普及出版社,1984.
    
    [84] 王良御,寥松生编著.液晶化学[M].北京:科学出版社,1988.
    
    [85]松本正一,角田市良合著,王殿福,孙红军译.液晶的最新技术-物性、材料、应用[M].北京:化 学工业出版社,1991.
    
    [86] Kajiyama T, Najata Y, Maemura E, et al. Molecular motion-permeability relationships in a polycarbonate/liquid crystal (EBBA) composite membrane[J]. Chem. Lett, 1979, (6): 679-682.
    
    [87]棍山千里.高分子/液晶复合膜[J].膜,1979,4:229-233.
    
    [88] Kajiyama T, Washisu S, Kumano A, et al. Permselective characteristics of polymer/liquid crystalcomposite membrane[J]. J. Appl. Polym. Sci., 1985,41: 327-346.
    
    [89] Kajiyama T. Molecular filtration of hydrocarbon isomers through polymer/(liquid crystal) compositemembranes[J]. Journal of Macromolecular Science, Chemistry, 1988, 25(5): 583-600.
    
    [90] Kajiyama T, Kikuchi H, Kattayose M, et al. Photo-driven active transport of metal cations throughpolymer/(liquid crystal)/ (azobenzene crown ether) ternary composite thin films[J]. New PolymericMaterials, 1988, 1(2):99-105.
    
    [91] Kajiyama T, Kikuchi H, Shinkai S. Novel polymer/liquid crystal composite membrane with uniquepermselective characteristics[J]. J. Membr. Sci., 1988,36:243-255.
    
    [92] 王良御,燕银发.液品复合膜对H_2、N_2、CO及CO_2气体分离性能的研究[J].膜科学与技术,1992, 12(1):37-41.
    
    [93] Loth H, Euschen A. Diffusion flux control by liquid-crystalline side-chain polysiloxane elastomerfoils[J]. Macromol. Chem. Rapid Commun., 1988,9: 35-38.
    
    [94] Shinkai S, Torigoe K, Manabe O, et al. Temperature regulation of crown- mediated ion transportthrough polymer/liquid crystal composite membranes. Remarkable transport ability offluorocarbon-containing crown ethers[J]. J. Americ. Chem. Soc, 1987,109(15): 4458-4464.
    
    [95] Kajiyama T, Kikuchi H, Miyamoto A, et al. Aggregation states and bistable light switching of (liquidcrystalline polymer)/(low molecular weight liquid crystal) mixture systems[J]. Chemistry Letters, 1989,(5): 817-820.
    
    [96] 乔利军,王良御.液品(EBBA)高分子(PVC)复合材料对O_2渗透性能的研究[J].膜科学与技术, 1987,7(1):1-7.
    
    [97] Kajiyama T, Miyamoto A, Kikuchi H, et al. Aggregation states and electrooptical properties based onlight scattering of polymer/(liquid crystal) composite films[J]. Chemistry Letters, 1989, (5): 813-816.
    
    [98] Kajiyama T, Nagato Y, Washizu S, et al. Characterization and gas permeation of polycarbonate/liquidcrystal composite Membrane[J]. J. Memb. Sci., 1982,11: 39-45.
    
    [99] Kajiyama T, Washizu S, Ohomori Y. Oxygen permselectivity characteristics of a poly(vinylchloride)/liquid crystal/fluorocarbon ternary composite membrane[J]. J. Membr. Sci., 1985, 24(1):73-81.
    
    [100]陈观文.富氧分离膜[J].现代化工,1988,8(3):19-24.
    
    [101] Ratto J A, Ristori S, Escoubes M, et al. Investigation of a liquid crystal dispersed in an ionic polymeric membrane[J]. Polymeric Materials Science and Engineering, 1991, 65: 242-247.
    
    [102]Lin S A(林尚安),Sun Q H(孙群辉).新型液晶/高聚物复合富氧膜的富氧性能及结构表征Ⅰ.液晶 /高聚物复合膜的富氧性能研究[C].Chiha-UK Bilateral Conference on Polymer Science,Beijing,??China,1992,4.
    
    [103]Lin S A(林尚安),Zhou C R(周长忍).聚丁二烯/液晶复合膜的富氧性能研究[C].China-UK Conference on Polymers,Robinson College Cambridge,1994,4.
    
    [104]李新贵,杨溥臣.液晶膜的制备及液体分离研究进展[J].水处理技术,1991,17(1):13-23.
    
    [105]张世民,朱秀昌,后晓淮,等.聚氯乙烯/液晶共混复合膜的氧、氮透过行为研究[J].水处理技术, 1986,12(6):322-328.
    
    [106] Kajiyama T, Washisu S, Takayanagi. Membrane structure and permeation properties of poly(vinyl chloride)/liquid crystal composite membrane[J]. J. Appl. Polym. Sic., 1984,29(12): 3955-3964.
    
    [107] Washizu S, Terada I, Kajiyama T, et al. Gas permeation through polymer/ liquid crystal composite membrane[J]. Polym. J., 1984,16(4): 307-316.
    
    [108] Zhou C R, Lin S A. Gas permeation through cis-polybutadiene/liquid crystal composite membranes[J]. Eur. Polym. J., 1998,34(11): 1663-1668.
    
    [109] 周长忍,林尚安.聚丁二烯/液晶复合膜的富氧性能研究[J].高分子材料科学与工程,1997, 13(6):110-113.
    
    [110] 周长忍,林尚安.聚丁二烯/液晶复合膜的结构形态研究[J].高分子材料科学与工程,1998,14(1): 62-65.
    
    [111] 张子勇,林尚安.分子中部含齐聚氧化乙烯单元的酯-醚液晶[J].高等学校化学学报,1999,20(8): 1307-1311.
    
    [112] 张子勇,林尚安.顺丁橡胶/酯-醚液晶复合膜的富氧性能研究[J].高等学校化学学报,1996, 17(4):659-662.
    
    [113] Zhang Z Y, Lin S A. Oxygen enrichment properties of a family of polymer composite membranes blended with a liquid crystal with dual-mesophase[J]. Polymer, 1996,37(15): 3455-3459.
    
    [114]张子勇.顺丁橡胶与液晶共混复合膜的CO_2渗透性能[J].高分子材料科学与工程,2000,16(4): 96-99.
    
    [115] Zhang Z Y. Permeability and morphology of poly(cis-butadiene)/ester-ether liquid crystal composite membranes[J]. J. Polym. Sci., PartB: Polym. Phys., 2000,38(14): 1833-1840.
    
    [116] 孙群辉,林尚安.新型液晶/高聚物复合富氧膜的富氧性能及结构表征Ⅰ.液晶/高聚物复合膜的富 氧性能研究[J].高分子学报,1995,(5):554-559.
    
    [117] 友池和浩,寺田一郎,山田宪二,等.高分子论文集[C],1986,43(5):285-286.
    
    [118] Chiou J S, Paul D R. Gas transport in a thermotropic liquid-crystalline polyester[J]. Journal of PolymerScience Part B: Polymer Physics, 1987,25(8): 1699-1707.
    
    [119] Weinkauf D H, Paul D R. Gas transport properties of liquid-crystalline poly(ethylene terephthalate-co-p- oxybenzoate)[J]. Journal of Polymer Science Part B: Polymer Physics, 1991,29(3): 329-340.
    
    [120] DE 3,505,744[P], 1986.
    
    [121] Kajiyama T, Takahara A, Kikuchi H. Aggregation state-permeation characteristic relationships of??self-supported liquid-crystalline membranes[J]. Polymer J. (Tokyo, Japan), 1991, 23(5): 347-356.
    
    [122] 日本公开特许公报[P].昭59-213403;昭59-213406.
    
    [123]李新贵,杨溥臣.功能液晶膜的新进展[J].高分子通报,1990,(3):142-148.
    
    [124]傅秀城,金熹高,棍山千里.中国化学会高分子学术论文报告会预印集[C],武汉,1987:880-881.
    
    [125] 王良御,乔利军.液晶分子取向对含液晶膜气体渗透性的影响[J].清华大学学报(自然科学版), 1988,28(3):102-104.
    
    [126] 王良御,燕银发.全国反渗透、超滤、微滤、渗透蒸发和膜蒸馏论文预印集[C],天津,1990: 249-250.
    
    [127] Matsuda N, Sakai K. Blood flow and oxygen transfer rate of an outside blood flow membraneoxygenator[J]. J. Membr. Sci., 2000,170(2): 153-158.
    
    [128] Kenichi N, Fukashi K, Kiyotaka S. Oxygen transfer performance of a membrane oxygenator composedof crossed and parallel hollow fibers[J]. Biochemical Engineering Journal, 2005, 24:105-113.
    
    [129] Segesser V, Ludwig K, Tkebuchava T, et al. Intravascular gas transfer: membrane surface area andsweeping gas flows are of prime importance[J].ASAIO J., 1997,43(5): 455-459.
    
    [130] Bellhouse B J, Bellhouse F H, Curl C M, et al. A high efficiency membrane oxygenator and pulsatilepumping system, and its application to animal trials[J]. Transactions-American Society for ArtificialInternal Organs., 1973,19:72-79.
    
    [131 Krantz W B, Bilodeau R R, Voorhees M E, et al. Use of axial membrane vibrations to enhance masstransfer in a hollow tube oxygenator[J]. J. Membr. Sci., 1997,124(2): 283-299.
    
    [132] Shimono T, Shomura Y U, Tani K, et al. Clinical evaluation of a silicone coated hollow fiberoxygenator[J].ASAIO J., 1997,43(5): 735-739.
    
    [133] Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent bindingof heparin via a modified reducing terminal residue[J]. Biomaterials, medical devices, and artificialorgans, 1983,11(2): 161-173.
    
    [134] Takewa Y, Tatsumi E, Taenaka Y, et al. Long-term evaluation of a heparin bonded artificial lung-Continuous use up to 36 days[J]. Jpn. J.Artif. organs, 1998,27: 379-383.
    
    [135] Iwasaki Y, Uchiyama S, Kurita K, et al. A nonthrombogenic gas-permeable membrane composed of a phospholipid polymer skin film adhered to a polyethylene porous membrane[J]. Biomaterials, 2002, 23(16): 3421-3427.
    
    [136] Cioci F, Lavecchia R, Mazzocchi P. An enzymatic membrane reactor for extracorporeal bloodoxygenation[J]. Chem. Engin. Sci., 1999,54(15): 3217-3427.
    
    [137] Montoya J P, Nakano S, Kadoba K, et al. Evaluation of the biocompatibility of a new method forheparin coating of a cardiopulmonary bypass circuit[J]. ASAIO J., 1992,38(3): 399-405.
    
    [138] Mottaghy K, Mottaghy K, Oedekoven B, et al. Technical aspects of plasma leakage prevention inmicroporous capillary membrane oxygenators[J].ASAIO transactions, 1989,35(3): 640-643.
    
    [139] Lund L W, Hauler B G, Federspiel W J. Is condensation the cause of plasma leakage in microporous??hollow fiber membrane oxygenators[J].J. Membr. Sci., 1998,143(1): 87-93.
    
    [140] Kamo J U, Uchida M, Hirai T, et al. A new multilayered composite hollow fiber membrane forartificial lung[J]. Artif Organs, 1990,14(5): 369-372.
    
    [141] Goldsmith H L. The effects of flow and fluid mechanical shear on red cells and platelets[J]. Trans.ASAIO XX, 1974: 21-23.
    
    [142] Zydney A L. Cross-flow membrane plasmapheresis: an analysis of flux and hemolysis[D]. Cambridge,MA: Massachusetts Institute of Technology, 1985.
    
    [143] Tanishita K, Ujihira M, Watabe A, et al. Design features of serpentine tube membrane lung forECCO2R[J]. Transactions -American Society for Artificial Internal Organs, 1985,31: 622-627.
    
    [144] Lida M, Shiono M, Orime Y, et al. A newly developed silicone-coated membrane oxygenator forlong-term cardiopulmonary bypass and cardiac support[J]. Artif. Organs, 1997; 21(7): 755-759.
    
    [145] Kagisaki K, Masai T, Kadoba K, et al. Biocompatibility of heparin-coated circuits in pediatriccardiopulmonary bypass[J].Artif Organs, 1997; 21(7): 836-840.
    
    [146] Usui A, Murakami F, Ooshima H, et al. A clinical study for the durability of oxygenators oncardiopulmonary support[J].Artif. Organs, 1997; 21(7): 772-778.
    
    [147] Baksaas S T, Videm V, Fosse E, et al. In vitro evaluation of new surface coatings for extracorporealcirculation[J].Perfusion, 1999,14:11-19.
    
    [148] Mockros L F, Cook K E. Engineering aspects of intracorporeal artificial lungs, in Vaslef SN, AndersonRW(eds), the artificial lung, Austin, Landes Bioscience, 2000,5:653-657.
    
    [149]吴大诚.高分子液晶[M].成都:四川教育出版社,1989.
    
    [150] 李立华,屠美,莫文军,周长忍.聚硅氧烷/液晶复合膜的制备及其血液相容性研究[J].功能高分 子学报,2000,13(6):133-136.
    
    [151]顾汉卿.生物医学材料学[M].天津科技翻译出版社,1993.
    
    [152] 莫文军.新型液晶化合物的合成及其在抗凝血材料中应用的研究[D].暨南大学硕士学位论文, 2000.
    
    [153] 周长忍,林尚安.几种含不饱和键类热致液晶化合物的合成与表征[J].暨南大学学报(自然科学 版),1995,16(1):75-79.
    
    [154] Galli G, Laus M, Annino S. Angeloni Synthesis and thermotropic properties of new mesogenicdiacrylate monomer[J]. Die Makromolekulare Chemie., 1986: 289-296.
    
    [155] Percec V, Shaffer T D, Navce H. Functional polymer and sequential copolymer by phase transfercatalysis[J].J. Polym. Sci. Polym. Lett. Ed., 1984,22: 637-641.
    
    [156] Buglione J A, Roviello A, Sirigu A. Mesophasic properties of low molecular weight model compoundscontaining two rigid group connected by a flexible spacer[J]. Mol. Cryst. Liq. Cryst., 1984, 106:169-174.
    
    [157] Urigu Toshiguki. Polymeriziable diacrylate[P]. JP 01: 272,551,1989.
    
    [158]陈燕琼,张子勇.胆甾型液晶的合成及显色示温液晶组成[J].化学世界,2003,(7):373-376.
    
    [159]顾树珍,杨新浩,华曦,等.胆甾醇酯类液晶的合成[J].化学世界,1990,(7):308-311.
    
    [160]李全,刘复初.几种胆甾型冶金材料的合成[J].云南化工,1994,(2):3-5.
    
    [161]赵可清,胡平,万文,等.对甲基苯甲酸胆甾醇酯的合成及品体结构[J].四川师范大学学报(自然 科学版),1998,21(3):315-319.
    
    [162]朱鸣岗,张其震,王大庆,等.热致型胆甾醇酯液晶的合成与表征[J].山东化工,2002,31(2):1-3.
    
    [163]李报庆.高效酰化催化剂4-二甲氨基吡啶的合成研究[J].化学世界,1992,8:344-347.
    
    [164]陈锡敏,闻建勋.端基为氰基的四氟联苯甲酸酯类新型液晶的合成及相变研究[J].液晶与显示, 1997,12(1):1-6.
    
    [165]廖联安,李正名,方红云,等.5-阿维菌素B-(1a)酯的合成及生物活性[J].高等学校化学学报, 2002,23(9):1709-1714.
    
    [166]陈经佳,汪朝阳,郑绿茵,等.DCC法合成胆甾醇酯[J].浙江化工,2005,36(2):17-19.
    
    [167]张子勇,饶华新,陈燕琼.胆甾相液晶的制备及其显色示温混合液晶的配制[J].化学世界,2006, (11):643-646.
    
    [168] Vorbruggen H, Schering AG Process for the preparation of aminopyridines[P]. US Patent 4140853, 1979.
    
    [169]王良御,廖松生编著.液品化学[M],科学出版社,1988年第一版.
    
    [170]黄辉,雷光东,刘勇.胆甾型液品的应用及其制作工艺[J].内江师范高等专科学校学报,1999, 14(4):34-38.
    
    [171] 支俊格,张宝砚,臧宝岭,等.一类具有光学活性胆甾液晶聚合物的合成与表征[J].东北大学学 报(自然科学版),2002,23(6):606-609.
    
    [172]黄征青.对-10-十一烯羰氧基苯甲酸胆固醇酯的合成[J].沈阳化工学院学报,2001,15(3): 186-189.
    
    [173] Litvinenko L M, Kirichenko A I. Doklady Akademii Nauk S.S.S.R., Seriia Khimiia, 1967,176(1): 97-101.
    
    [174]黄量,吴克美,孟佳克,等.高效酰化催化剂-4-二甲氨基吡啶的合成[J].化学试剂,1982,4(4): 193-195.
    
    [175] Gilon C, Klausner Y, Hassner A. A novel method for the facile synthesis of depsipeptides[J], Tetrahedron Lett., 1979,40: 3811-3814.
    
    [176]佘志刚,陈育平,张歧荣,等.DMAP催化合成苯甲酸苯酯的研究[J].化学试剂,2001,23(2): 110-111.
    
    [177] Hofle G, Steglish W, Vorbruggen H. 4-Dialkylaminopyridines as highly active acylation catalysts[J]. Angew. Chem., Int. Ed. Engl., 1978,17(8): 569-583.
    
    [178]周天锡,鲁英.高效酰化催化剂——4-二甲氨基吡啶的简易制备法[J].医药工业,1983,10: 21-23.
    
    [179] Bailey, Thomas D, Charles K, et al. Process for substituting and dequaternizing pyridylethylquaternary salts of pyridine and bypyridine bases[P]. US Patent 4158093,1979.
    
    [180] Evans R F, Brownl H C, van der Plas H C. 4-Pyridinesulfonic acid[J]. Organic Synthesis Coll., 1973,(5): 977-979.
    
    [181] Vorgbuggen H. 4-Dialkylaminopyridines: super acylation and alkylation catalysts[J]. AngewandteChemie, International Edition in English, 1973,12(4): 301-306.
    
    [182] Vorbruggen H, Schering AG Process for the preparation of aminopyridines[P]. US Patent 4140853,1979.
    
    [183]奚关根,孙杰,肖繁花.4-二甲氨基吡啶合成方法的改进[J].化学试剂,1998,20(2):119-120.
    
    [184]郑嗣华,施志荣,张嘉琪,等.N,N'-二甲基-4-氨基吡啶的合成及应用[J].天津理工学院学报, 1998,14(1):26-28.
    
    [185]周天锡,鲁英.高效酰化催化剂——4-二甲氨基吡啶的简易制备法[J].医药工业,1983,10: 21-23.
    
    [186]盛永莉,朱正方.4-二甲氨基吡啶的合成与应用研究[J].化学世界,1997,10:528-529.
    
    [187]郑其煌,曾陇梅.4-二甲胺基吡啶的合成[J].中国医药工业杂志,1991,22(7):318-319.
    
    [188]陈育平,余志刚,张友链,等.4-二甲氨基吡啶的改进合成[J].湖北师范学院学报(自然科学版), 1999,19(4):69-70.
    
    [189] 曾昭钧,张伟,王辉.‘一勺烩’工艺合成4-二甲氨基吡啶[J].中国药物化学杂志,1995,5(1):63-64.
    
    [190]陈锡敏,闻建勋.端基为氰基的四氟联苯甲酸酯类新型液晶的合成及相变研究[J].液晶与显示, 1997,12(1):1-6.
    
    [191] 董力川,李国震.华东化工学院学报,1987,3(4):419-426.
    
    [192]张其震,王艳.光致变色液晶高分子的研究(1)——含胆甾介晶基无侧链聚硅氧烷及其单体的 液晶行为[J].高等学校化学学报,1994,15(6):928-931.
    
    [193]化工百科全书[M].北京:化学工业出版社,1998.
    
    [194] 王静梅,姚松年.生物材料及其仿生学的研究进展与展望[J].材料研究学报,2000,14(4): 337-343.
    
    [195] 李立华,屠美,周长忍,等.聚硅氧烷/液晶复合膜的制备及血液相容性研究[J].功能高分子 学报,2000,13(2):133-136.
    
    [196] 屠美,牟善松,周长忍,等.液晶性能对聚氨酯复合膜抗凝血性能的影响[J].高分子材料科 学与工程,2001,117(3):38-41.
    
    [197] 屠美,牟善松,周长忍.基材与液晶种类对液晶复合膜血液相容性的影响[J].材料科学与工 程学报,2005,23(3):358-360.
    
    [198] Zhang Z Y. Facilitated oxygen transport in a novel silicone polymer membrane containing carboxyliccobalt groups[J].J.Appl. Polym. Sci., 2003,90(4): 1038-1044.
    
    [199] Stern S A, Krishnakumar B, Charati S G, et al. Performance of a bench-scale membrane pilot plant??for the upgrading of biogas in a wastewater treatment plant[J]J. Membr. Sci., 1998, 151(1): 63-74.
    
    [200] Ward W J, Browall R, Salemme R M. Ultrathin silicone/polycarbonate membranes for gasseparation processes[J]. J. Membr. Sci., 1976, 1(1): 99-108.
    
    [201] Stern S A, Shan V M. Structure-permeability relationships in silicone polymers[J]. J. Polym. Sci.PartB: Polym. Phys., 1987, 25(6): 1263-1298.
    
    [202] 杨继萍,朱鹤孙,黄鹏程.钴卟啉络合物第五配位对富氧性能的影响[J].高分子材料科学与 工程,1998,14(6):41-43.
    
    [203] Stern S A. Sinclair T F. Gareis P. An improved permeability apparatus of the variable - volumetype[J].J. Mod. Plast., 1964, 42:154-158.
    
    [204] Rao H X, Liu F N, Zhang Z Y. Oxygen-enriching properties of silicone rubber crosslikedmembrane containing cobalt[J].J. Membr. Sci., 2007, 296(1-2): 15-20.
    
    [205] Rubber, vulcanized-Determination method of swelling index, UDC 678.43: 620.179.7, GB7763-787.
    
    [206] Rubber, vulcanized-Determination of tensile properties, UDC 675.43/44.017, GB 528-582.
    
    [207] Stern S A, Shan V M, Hardy B J. Structure-permeability relationships in silicone polymers[J].Polym. Sci., ParB: Polym. Phys., 1987, 25(6): 1263-1298.
    
    [208] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J.Membr. Sci., 1991, 62(2): 165-185.
    
    [209] van Amerongen G J. Diffusion in elastomers[J]. Rubber Chem. Technol., 1964, 37: 1065-1152.
    
    [210] Kajiyama T, Takahara A, Kikuchi H. Aggregation state-permeation characteristic relationships ofself-supported liquid-crystalline membranes[J]. Polym. J., 1991,23(5): 347-356.
    
    [212] Masuda T, Isobe E, Higashimura T. Poly[1-(trimethylsilyl)-1-propyne]: a new high polymersynthesized with transition-metal catalysts and characterized by extremely high gas permeability[J]. J.Amer. Chem. Soc, 1983, 105(25): 7473-7474.
    
    [213] Takada K, Matsuga H, Masuda T, et al. Gas permeability of polyacetylenes carrying substituents[J].J. Appl. Polym. Sci., 1985, 30(4): 1605-1616.
    
    [214] Higashimura T. Gas permeability of polyacetylenes with bulky substituents[J]. Polymer Bulletin,1983,10(1): 114-117.
    
    [215]刘宗华,张子勇.小分子添加剂在气体分离膜中的应用进展[J].高分子通报,2001,(4):61-68.
    
    [216] 张子勇,林尚安.有机金属络合物用于高分子富氧膜的研究进展[J].高分子通报,1994,(4): 200-208.
    
    [217] Zhang Z Y, Lin S A. Facilitated oxygen transport in an ionomer membrane containing cobaltous ions[J]. Macromol. Rapid Commun., 1995, 26(12): 927-933.
    
    [218] 张子勇,林尚安.乙丙三元橡胶磺酸钴离聚体膜的富氧性能研究[J].高分子学报,1997,(1): 55-61.
    
    [219]张子勇,刘宗华.新型含钴硅橡胶膜的富氧性能[J].高等学校化学学报,2003,24(3):562-564.
    
    [220] Zhang Z Y. Facilitated oxygen transport in a novel silicone polymer membrane carboxylic cobaltgroups[J].J.Appl. Polym. Sci., 2003,90:1038-1044.
    
    [221] Nishide H, Ohyanagi M, Okada, et al. Highly selective transport of molecular oxygen in a polymercontaining a cobalt porphyrin complex as a fixed carrier[J]. Macromolecules, 1986,19(2): 494-496.
    
    [222] Tsuchide E, Nishide H, Ohyanagi M, et al. Facilitated transport of molecular oxygen in the membranesof polymer-coordinated cobalt Schiff base complexes[J]. Macromolecules, 1987,20(8): 1907-1912.
    
    [223] Nishide H, Kawakami H, Suzuki A, et al. Enhanced stability and facilitation in oxygen transportthrough cobalt porphyrin polymer membranes[J]. Macromolecules, 1990,23(15): 3714-3716.
    
    [224] Yang J M, Hsiue G H. Modified styrene-butadiene-styrene block copolymer membranes complexedwith (N,N'-disalicylideneethylenediamine)cobalt(Ⅱ) for oxygen permeation: polymeric axial ligandeffect[J].J. Membr. Sci., 1994 87:233-244.
    
    [225] Paul D R, Koros W J. Effect of partially immobilizing sorption on permeability and the diffusion timelag[J]. J. Polym. Sci., Polym. Phys. Ed., 1976,14(4): 675-685.
    
    [226] Koros W J, Paul D R, Rocha A A. Carbon dioxide sorption and transport in polycarbonate[J]. J. Polym.Sci., Polym. Phys. Ed., 1976,14(4): 687-702.
    
    [227] Han K, Williams H L. Ionomers: two formation mechanisms and models[J]. J. Appl. Polym. Sci., 1991,42(7): 1845-1859.
    
    [228] Inoue S, Yamazaki N. Organic and Inorganic Chemistry of Carbon dioxide[M]. Kodansha Ltd.,1982-1983.
    
    [229] Rokicki A, Kuran W. The application of carbon dioxide as a direct material for polymer syntheses inpolymerization and polycondensation reactions[J]. J. Macromol. Sci., Rev. Macromol. Chem., 1981,C21:135-186.
    
    [230] Chen L B, Chen H S, Lin J. Copolymerization of carbon dioxide and propylene oxide with zinccatalysts supported on carboxyl-containing polymers[J]. J. Macromol. Sci., Chem., 1987, A24(3-4):253-260.
    
    [231] Akihiko U, Manabu H, Mitsuo K. Heparin coating extends the durability of oxygenators used forcardiopulmonary support[J].Artif. Organs, 1999,23(9): 840-844.
    
    [232] Roel V, Rien H, Wim V O, et al. The impact of heparin-coated circuits on hemodynamics during andafter cardiopulmonary bypass[J].Artif. Organs, 2005, 29(6): 490-497.
    
    [233] Yokoyama K, Anzai T, Okumura A, et al. Hollow fiber membrane oxygenator[P]. JP 168105, 2002.
    
    [234] 冯品珍,鲁剑涛.肝素化聚甲基丙烯酸的合成及其抗凝血性研究[J].功能高分子学报,1995, 18(1):35-40.
    
    [235] Nogawa A. The future of artificial lungs: an industry perspective[J]. The Japanese for Artificial Organs,2002,5: 211-215.
    
    [236] Schiel L, Burns S, Nogawa A, et al. X-coating: a new biopassive polymer coating[J]. Canadian??perfusion canadienne, 2001,11: 8-17.
    
    [237] Suhara H, Sawa Y, Nishimura M, et al. Efficacy of a new coating material, PMEA, forcardiopulmonary bypass circuits in a porcine model[J].Ann. Thorac. Surg., 2001, 71:1603-1608.
    
    [238] Shimono T, Shomura Y, Hioki I, et al. Silicone-coating polypropylene hollow-fiber oxygenator:experimental evaluation and preliminary clinical use[J]. Ann. Thorac. Surg., 1997, 63:1730-1736.
    
    [239] Nojiri C, Hagiwara K, Yokoyama K, et al. Evaluation of a new heparin bonding process in process inprolonged extracorporeal membrane oxygenation[J].Asaio J., 1995,41: 561-567.
    
    [240] Kido T, Yokoyama K, Nojiri C, et al. Analysis of adsorbed proteins on the heparin-coatedcardiopulmonary bypass circuits in vitro[J]. The Japanese for Artificial Organs, 1997, 27: 519-523.
    
    [241] Tayama E, Hayashida N, Akasu K, et al. Biocompatibility of heparin-coated extracorporeal bypasscircuits: new heparin bonded bioline system[J].Artif. Organs, 2000,24: 618-623.
    
    [242] Palatianos G M, Foroulis C N, Vassili M I, et al. A prospective double-blind study on the efficacy ofthe bioline surface-heparinized extracorporeal perfusion circuit[J]. Ann. Thorac. Surg., 2003, 76:129-135.
    
    [243] de Vroege R, van Oeveren W, van Klarenbosch J, et al. The impact of heparin-coated cardiopulmonarybypass circuits on pulmonary function and the release of inflammatory mediators[J]. Anesth Analg,2004, 98:1586-1594.
    
    [244] 陈勇,王从厚,吴鸣.气体分离膜技术与应用[M].化学工业出版社,2004年第一版:302-303.
    
    [245]郑领英,王学松.膜技术[M].化学工业出版社,2002年第四版:187-189.
    
    [246] Kapantaidakis G C, Koops G H, Wessling M. Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone/polyimide miscible blends[J]. Desalination, 2002,145: 353-357.
    
    [247] Qin J J, Cao Y M, Li Y Q. Hollow fiber ultrafiltration membranes made from blends of PAN andPVP[J]. Separation and Purification Technology, 2004, 36: 149-155.
    
    [248] Jiang L Y, Chung T S, Li DF. Fabrication of Matrimid/polyethersulfone dual-layer hollow fibermembranes for gas separation [J]. J. Membr. Sci., 2004, 204(1-2): 91-103.
    
    [249] Li D F, Chung T S, Wang R. Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layerasymmetric hollow fiber membranes for gas separation[J]. J. Membr. Sci., 2002, 198: 211-223.
    
    [250] 郭勇,华曼,杨立明.硅橡胶-聚砜中空纤维复合膜的制备及性能研究[J].膜科学与技术, 2002,22(5):12-16.
    
    [251] Tadashi M, Tomohiro M, Shiniji K. Development of Silicone Rubber Hollow Fiber Membrane Oxygenator for ECMO[J]. Artif. Organs, 2003, 27(11): 1050-1056 .
    
    [252] 嬿婉,王伟,杜强国.交叉流聚丙烯中空纤维膜式氧合器的传质研究[J].功能高分子学报, 1999,12(1):44-48.
    
    [253]张炳东.国产膜肺的临床应用[J].广西医科大学学报,2000,17(1):69-70.
    
    [254]吴华,刘亚湘,姚丽.希健-Ⅰ型膜肺的临床应用[J].第一军医大学学报,2001,21(1):78-79.
    
    [255] 刘茉娥.膜分离技术应用手册[M].化学工业出版社,2001年第一版:194-195.
    
    [256] 朱思君,王庆瑞.聚醚砜中空纤维膜的成形条件与形态结构研究[J].合成纤维工业,2004, 27(4):1-3.
    
    [257] Mockros L F, Leonard R. Compact cross-flow tubular oxygenators[J]. Trans. Am. Soc. Artif. Intern. Organs, 1985, 31: 628-633.
    
    [258]谭小苹,王利春,裴觉民.四川联大-Ⅰ型膜式人工肺的实验室(in vitro)测试与数学模型 计算[J].生物医学工程学杂志,1998,15(3):209-213.
    
    [259] 沈良,谢为,庞燕婉.内置式膜式氧合器模型氧合效果的评价[J].复旦学报(自然科学版), 2003,42(6):979-982.
    
    [260]张问,周津,夏俊娣.血管内置入型人工肺的传质计算与in vitro模拟实验对比分析[J].中国 生物医学工程学报,2001,20(4):346-350.
    
    [261] Wickramasinghe S R. Mass and momentum transfer in hollow fibre blood oxygenators[J]. J.Membr. Sci., 2002, 208(1/2): 247-250.
    
    [262] Dierickx P W, Wachter D S, Somer F D, et al. Mass transfer characteristics of artificial lungs[J]. ASAIOJ., 2001,47(6): 628-633.
    
    [263]贾绍义.化工原理及实验[M].高等教育出版社,2004年第一版:267-268.
    
    [264]王学松.现代膜技术及其应用指南[M].化学工业出版社,2005年第一版:480-481.
    
    [265] Goerke A R, Leung J, Wickramasinghe S R. Mass and momentum transfer in blood oxygenators[J].Chem. Eng. Sci., 2002,57(11): 2035-2046.
    
    [266] Cussler E L. Diffusion: Mass transfer in fluid systems[M]. Cambridge University Press, New York,1984.
    
    [267] Yang M C, Cussler E L. Designing hollow fiber contactors[J]. AIChE J., 1986,32(11): 1910-1916.
    
    [268] Prasad R, Sirkar K K. Dispersion free solvent extraction with microporoous hollow fiber modules[J].AIChE J., 1988,34(2): 177-188.
    
    [269] Qi Z, Cussler E L. Microporoous hollow fiber for gas separation: Ⅰ. Mass transfer in the liquid[J]. J.Membr. Sci., 1985, 23(3): 321-332.
    
    [270] Qi Z, Cussler E L. Microporoous hollow fiber for gas separation: Ⅱ. Mass transfer in the Iiquid[J]. J.Membr. Sci., 1985, 23(3): 333-345.
    
    [271] Kenfield C F, Qin R, Semmens M J, et al. Cyanide recovery across hollow fiber gas membranes[J].Environ. Sci. Technol., 1988,22(10): 1151-1155.
    
    [272] Yang M C, Cussler E L. Artificial gills[J]. J. Membr. Sci., 1989,42(3): 273-284.
    
    [273] 张子勇,饶华新,余祥正.含钴离聚体膜对CO_2的促进输送[J].暨南大学学报,2005,26(3): 369-373.
    
    [274]隋贤栋,黄肖容.硅藻土梯度陶瓷微滤膜的饮用水净化[J].膜科学与技术,2004,24(2):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700