用户名: 密码: 验证码:
不同生态系统土壤呼吸与环境因子的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用LI-COR-6400便携式光合作用仪连接6400-09土壤叶室,对山西太原地区和丹麦哥本哈根地区不同生态系统的土壤呼吸进行了研究,其目的是:1)研究两个地区不同生态系统土壤呼吸的季节变化,了解两个区域不同生态系统土壤呼吸的差异;2)估计两个区域不同生态系统的土壤呼吸总量;3)量化不同生态系统中不同土地利用方式土壤呼吸的空间变化规律;4)研究两个区域不同土地利用方式的土壤呼吸时、空变化与土壤温度、土壤水分等环境因子之间的关系。
     论文分为5章。第1章为引言,第2-5章为主要研究内容。第2章以研究自然生态系统(森林、灌丛、草地等)条件下的土壤呼吸规律为目的,在太原天龙山国家自然保护区范围内对11个样地(不同位置、不同植被、不同立地条件)的土壤呼吸与环境因子关系进行了两年的研究;第3章以农业生态系统为研究对象,对4种土地利用类型的土壤呼吸与环境因子关系进行了为期一年的研究;第4章的研究对象仍然是农业生态系统,但是研究以比较中、小尺度农田与其他利用类型土壤呼吸的空间异质特点为主要目的,研究两个尺度下土壤呼吸的空间变化;第5章以丹麦哥本哈根地区的农业生态系统(农作物和牧草地等)为研究对象,比较了4种土地利用方式的土壤呼吸及其与土壤温度、水分的关系以及较大尺度的土壤呼吸空间变化特征。主要研究结果如下:
     1)太原天龙山地区的土壤呼吸具有明显的季节变化特点,冬、春季较低,夏秋季较高,11个样地土壤呼吸的季节变化与天数的关系均可用高斯3参数方程表示。2005年4-12月(部分样地为5-12月)样地1到样地11土壤呼吸的平均值分别为:3.92,4.66,4.40,3.01,3.70,3.88,4.00,4.72,5.21,4.52,2.57μmol CO_2 m~(-2)s~(-1);2006年11个样地的土壤呼吸平均值分别为:2.33,2.96,1.93,2.35,2.70,2.89,2.79,3.39,3.08,3.23,1.83μmol CO_2 m~(-2) s~(-1)。2005年和2006年11个样地的土壤呼吸总平均值分别为3.92和2.68μmol CO_2 m~(-2) s~(-1)。
     对大多数样地而言,土壤呼吸与10 cm深度土壤温度的关系显著。土壤呼吸与土壤温度之间的关系可用直线、指数和Lloyd & Taylor方程表达。土壤温度可以解释土壤呼吸变化的28-88%。土壤受干旱胁迫时,土壤温度的作用明显降低。土壤呼吸与0-10 cm深度土壤水分的关系次之,可用直线或指数关系表达。标准化后的土壤呼吸与土壤水分的相关性增加,土壤水分可解释土壤呼吸变化的比例在15-71%。土壤温度较低时,土壤水分的作用亦明显减小。大多数时段土壤温度和土壤水分对土壤呼吸的作用同时存在。但是,土壤温度和土壤水分对土壤呼吸的影响在11个样地不完全相同,在土壤持水能力较差的样地,土壤水分对土壤呼吸的作用大于土壤温度的作用。与单因子模型相比,把土壤水分和土壤温度结合在一起的复合模型可以更好的预测土壤呼吸。土壤温度和土壤水分一起可解释土壤呼吸变化的55-86%。
     11个样地土壤呼吸的温度敏感性指数(Q_(10))和土壤温度10℃时的基础土壤呼吸值(R_(10))不同,2005年Q_(10)值从1.80到4.94,2006年Q_(10)值从1.78到5.91;R_(10)在1.47-4.75μmol CO_2 m~(12)s~(-1)之间。Q_(10)、R_(10)的平均值分别为3.14和3.54μmol CO_2 m~(-2)s~(-1),在其他研究者报道的范围之内。11个样地的年土壤呼吸总量在654.9-1440.5 gC m~(-2)(2005年),581.2-1075.3 g C m~(-2)(2006年)之间。2005年和2006年天龙山自然生态系统11个样地的土壤呼吸总量平均值分别为1068.6和850 g C m~(-2)。
     2)太原盆地4种农田生态系统的土壤呼吸同样具有明显的季节变化特征,最小值出现在1、2、3以及11、12月份,在1μmol CO_2 m~(-2) s~(-1)附近,最大值超过10μmol CO_2 m~(-2) s~(-1),主要出现在夏季的7、8月份。受环境因子影响,土壤呼吸具有明显的波动特点,尤其是在夏季。4种土地利用方式土壤呼吸的加权平均值分别为,柠条林地3.54±2.61μmol CO_2 m~(-2) s~(-1),草地4.43±3.99μmol CO_2 m~(-2)s~(-1),药材地3.95±3.58μmol CO_2m~(-2)s~(-1),玉米地3.84±4-2.93μmol CO_2 m~(-2)s~(-1)。4种土地利用条件下土壤呼吸均值差异不显著。土壤呼吸与土壤温度的直线关系、指数关系以及Lloyd& Taylor函数关系均达显著水平,但是各拟合方程得到的R~2值不同,直线型R~2值最低,Lloyd & Taylor函数的R~2值最高。在没有土壤水分胁迫的条件下(土壤水分大于田间持水量的1/3为标准),土壤温度可以解释土壤呼吸变化的比重(%)柠条林地、草地、药材地和玉米地分别为,直线:40,23,33,29;指数方程:56,45,62,41;Lloyd & Taylor函数:60,56,69,44。
     与天龙山地区的结果相比,在农田生态系统中土壤水分对土壤呼吸有较大影响。土壤呼吸与土壤水分的直线关系好于指数关系。但是将土壤呼吸标准化到10℃时的土壤呼吸与土壤水分的关系分析表明,直线方程和指数方程的R~2值差异不大,分别在37-64%和39-61%之间。同样,用土壤温度和土壤水分的混合模型(双变量模型)预测土壤呼吸的准确性增加,土壤温度和土壤水分可以解释土壤呼吸变化的52-82%,明显大于单因子模型的R~2值。
     6、8和10月份3次24 h的土壤呼吸测定表明,4种土地利用方式的土壤呼吸均具有较明显的日变化特点,最大值出现在11:00-15:00之间,最低值在凌晨6:00左右。土壤呼吸的日变化与土壤温度的日变化的关系多数情况下不显著。8:00-12:00的土壤呼吸的平均值比24小时土壤呼吸的平均值大10%。用我们1-12月份共33次的测定数据计算,柠条地、草地、药材地、玉米地的年土壤呼吸总量依次为:1227、1732、1509和1477 g C m~(-2)。5-10月份土壤呼吸总量分别为柠条地996.3 gC m~(-2),草地1361.1 g C m~(-2),药材地1300.7 g C m~-2)和玉米地1191.4 g C m~(-2)。
     3)无论在区域尺度上还是在观测小区尺度上,土壤呼吸均存在明显的空间变化。2005年7月和10月份两次对太原盆地北部区域42个样地(其中玉米地23个,其他地类19个)的土壤呼吸测定结果表明,土壤呼吸具有明显的空间变化特点,变异系数在25-50%;土壤呼吸的空间变化与土壤温度和土壤水分的关系只是在土壤水分差异较大的7月份显著。在观测小区尺度内3个样地的2次测定(9月和11月份)中,3个样地土壤呼吸的变异系数都较大,9月份分别为21,32和39%,11月份分别为40,46和58%。9月份的变异系数小于11月的变异系数,但是9月份土壤呼吸的平均值和标准差显著大于11月。小区尺度内土壤呼吸与土壤温度和土壤水分的关系的相关性较差。对于土壤呼吸空间变异的原因仍有待进一步研究。
     4)丹麦农业生态系统的土壤呼吸同样具有明显的季节变化特点,夏季土壤呼吸较高、春冬季较低,土壤呼吸最低值在2月为0.22μmol CO_2 m~(-2) s~(-1),最大值在7月份为5.77μmol CO_2 m~(-2) s~(-1);与太原地区的土壤呼吸的季节变化相一致。土壤呼吸随日期变化的关系同样可以用高斯3参数方程表达。冬小麦地1-12月土壤呼吸18次测定的平均值为2.21±1.45μmol CO_2 m~(-2) s~(-1);4-10月为2.39±1.50μmol CO_2 m~(-2) s~(-1),小于天龙山地区的土壤呼吸平均值,接近于天龙山裸地的土壤呼吸平均值。在没有土壤水分胁迫情况下的土壤呼吸与土壤温度的关系非常明显,土壤温度可以解释土壤呼吸变化的68%。冬小麦地1-12月土壤CO_2释放量为655.5 g C m~(-2)a~(-1)。
     4-12月4种土地利用方式的土壤呼吸测定结果分别为:冬小麦地2.71±1.74μmol CO_2 m~(-2) s~(-1),休闲草地3.90±2.47μmol CO_2 m~(-2) s~(-1),牧草地2.65±1.24μmol CO_2m~(-2) s~(-1),花草地1.54±0.91μmol CO_2 m~(-2) s~(-1);4个样地土壤呼吸与土壤温度的关系显著,土壤温度可以解释土壤呼吸变化的比重分别为75%,82%,86%和45%;土壤呼吸的温度敏感性指数(Q_(10))分别为3.16,2.87,2.04和2.09;土壤温度10℃时的基础土壤呼吸值(R_(10))分别为2.02,3.53,2.11和1.23μmol CO_2 m~(-2) s~(-1),用Lloyd&Taylor函数计算的4个样地的R_(10)值分别为2.32,3.88,2.16和1.22μmol CO_2 m~(-2) s~(-1)。1-12月冬小麦地、休闲草地、牧草地和花草地的土壤CO_2释放量分别为655.5、1129、835.4和374.6 g C m~(-2)。用4个样地的全部数据计算得到的Q_(10)、R_(10)值分别为2.37和2.32μmol CO_2 m~(-2) s~(-1)。Q_(10)和R_(10)值均接近于我们在太原天龙山地区大多数样地的计算结果。本地区土壤呼吸同样存在明显的空间变化,8月份3天测定的冬小麦和草地土壤呼吸的变异系数从30%到70%,草地的变异系数小于冬小麦地的土壤呼吸的变异系数。
The soil respiration(R_s) in different ecosystems were measured,respectively,in Taiyuan,China, and in Copenhagen,Denmark,using LI-COR-6400 portable photosynthesis system(LI-COR, Environmental Division,Lincoln,NE,USA) connected to a LI-COR 6400-09 soil chamber with an area of 71.6 cm~2.The objectives of this study were to:(1) examine the seasonal patterns of soil CO_2 effiux in the two areas to understand whether there is any difference in soil respiration between the two areas;(2) estimate the amount of soil CO_2 effiux from the two areas;(3) characterize the spatial variation of soil CO_2 efflux across the different sites of the two areas,and(4) identify the relationships between soil CO_2 effiux and soil temperature(T_s) as well as soil water content(W_s) in the two areas.
     The dissertation consists of five chapters.The chapter one is literature review,and the chapter two through chapter five mainly are research results.The chapter two is the study results mainly on natural ecosystems including forest,shrub and grass lands and so on,and the soil respiration in 11 sites ranging in altitude from 829 to 1443 m with different soil properties,vegetation covers and slop orientation etc. in the Tianlong Mountain,one of the national natural reserve areas(N37°44′19″;E112°22′49″),was measured over two years from 2005 to 2006.The chapter three is on agricultural ecosystems(crop), and we measured the soil respiration over 1 year for 4 different land use covers to identify the relationships between soil respiration and environmental factors.The object of research in the chapter four is also on agricultural ecosystems,but the purpose is to understand the spatial variation in soil respiration in two different scales,middle and small scale.The chapter five is the study results we made in Copenhagen area for agricultural ecosystems whenⅠwas a visiting scholar in University of Copenhagen in 2003.In this chapter the soil respiration in different vegetation conditions was measured from February to December in 2003,with an aim to make comparison of soil respiration for different covers and the relationships between soil respiration and soil temperature,and to understand the spatial variation in soil respiration in different vegetation covers.The main results are as follows:
     1) The soil respiration in the Tianlong Mountain area showed a distinct seasonal variation with the low values in winter and spring and the high values in middle summer,and the seasonal variation of soil respiration in 11 sites could be described by a three-parameters Gaussian equation.The soil respiration rate was,3.92,4.66,4.40,3.01,3.70,3.88,4.00,4.72,5.21,4.52,2.57μmol CO_2 m~(-2)s~(-1) in 2005,and 2.33,2.96,1.93,2.35,2.70,2.89,2.79,3.39,3.08,3.23,1.83μmol CO_2 m~(-2) s~(-1) in 2006.The overall means of soil respiration across 11 sites were 3.92 and 2.68μmol CO_2 m~(-2) s~(-1),in 2005 and 2006, respectively,and were different between two years.
     For most of the sites,the correlation between soil respiration(R_s) and soil temperature(T_s) over 10 cm depth was significant,which could be described by linear,exponential and Lloyd & Taylor equations.T_s explained 28-88%of the seasonal changes of R_s using the three kinds of equations.When the soils were in the drought-affected condition,the controlling of T_s over R_s was less.The correlation parameters of R_s to W_s increased when the measured R_s were normalized to 10℃T_s,and the W_s explained 15-71%of seasonal changes of R_s.When the soil temperature was low the controlling of W_s over R_s was less than that of T_s.In most of the time over the season the combined controlling of T_s and W_s over R_s was existed.The effect of both the T_s and W_s on R_s was different for the 11 sites,and there were more effect of W_s on R_s than that of T_s on R_s for these sites at which water holding capacity(WHC) is low.In compared with the soil temperature-based or soil water-based one variable model the twovariable models integrating T_s and W_s into one equation were better to predict their relation between R_s with both the T_s and W_s,the both variables could explain 55-86%of soil respiration variation over the season.
     The Q_(10),which is called temperature sensitivity of R_s,and R_(10),which represents the respiration rate at a soil temperature of 10℃was different for the 11 sites.The Q_(10) values ranged from 1.80 to 4.94 and the R_(10) from 1.47 to 4.75μmol CO_2 m~(-2) s~(-1).The mean values of Q_(10) and R_(10) in our studied sites are 3.14 and 3.54μmol CO_2 m~(-2) s~(-1),respectively,and are in the range of published values by other researchers.The overall annual mean soil CO_2 efflux,which is the daily-weighted monthly mean R_s multiplied by the respective day numbers of the month,was from 654.9 to 1440.5 g C m~(-2) among 11 sites in 2005 from April to December,and 581.2 to 1075.3 g C m~(-2) in 2006 from March to December. The mean CO_2 efflux across the 11 sites was 1068.6 g C m~(-2) in 2005 and 850 g C m~(-2) in 2006, respectively.
     2) The soil respiration of agricultural ecosystems in 4 kinds of land cover in Taiyuan basin showed a clear seasonally changes over the season,with the lower values about 1μmol CO_2 m~(-2) s~(-1) in January, February,March,as well as in November and December,with the higher values more than 10μmol CO_2 m~(-2) s~(-1) in July and August.The higher values during the summer months showed a fluctuation because of the influence of environmental factors.The daily-weighted mean soil respiration from January to December was 3.54±2.6,4.43±3.99,3.95±3.58,3.84±2.93μmol CO_2 m~(-2) s~(-1),respectively,in shrub plantation,grass land,medicinal herb land and crop land.There was no difference of soil respiration among 4 sites.The correlation of linear,exponential and Lloyd & Taylor equations of R_s to T_s was all significant(P<0.05),but the R~2 from different equation was different,the highest one is from Lloyd & Taylor equation and the lowest is from linear equation.When the soil water is in no drought-stress condition(here the definition criteria is that soil water content is more than 1/3 of WHC) the soil temperature explained 40,23,33,29%of the soil respiration variation,respectively,for shrub plantation,grass land,medicinal herb land and crop land,for linear equation;56,45,62,41%for exponential equation and 60,56,69,44%for Lloyd & Taylor equation.
     Comparison with the results from Tianlong mountain area,soil water content has more influence on soil respiration.The correlation of R_s to W_s for linear equation was better than that for exponential one,but when the soil respiration was normalized to 10℃the R~2 from both the equation showed less difference,ranging from 37 to 64%for linear one and 39 to 61%for exponential one.Furthermore,the two-variable models including both T_s and W_s variable could be used accurately to explain the R_s variation over the season,with the R~2 ranging from 52 to 82%,an obvious increment comparing with those values from single-variable models.
     The 24-h measurement of soil respiration in June,August and October showed a diurnal variation of R_s,with the higher values occurring between 11:00-15:00,and the lower values at about 6 o'clock in the morning.The correlation of the diurnal R_s and Ts was not significant on most of measurement days for 4 kinds of land use.When the mean value of R_s measured between 8 h-12 h was used to represent the 24-h mean value the error is about 10%larger than actual R_s.According to all measurements the annual CO_2 efflux from the soils were,1227,1732,1509 and 1477 g C m~(-2) a~(-1) for shrub plantation, grass land,medicinal herb land and crop land respectively.The amount of CO_2 effiux from May to October was 996.3,1361.1,1300.7 and 1191.4 g C m~(-2),which were larger than the values we measured in Tianlong mountain area.
     3) Significantly spatial variations of R_s existed at different scales,either between-sites or withinsite. In the northern Taiyuan basin,the measurements of soil respiration of 42 sites(among them including 23 crop fields and the others being grass land,waste land etc.) in July and October showed that spatial variation in R_s in this area existed.The variation of R_s indicated by the coefficent of variation(CV) ranged from 25-50%.The correlation of R_s to T_s at spatial scale was significant only in June when the soil moisture was changed greatly among the all measurement sites.The CVs within-site spatial variation of R_s for two-time measurements in 3 measurement sites were,respectively,21,32, 39%in September and 40,46,58%in November.The CV was higher in November than those in September.The correlation of R_s to T_s,or to W_s was not significant for the measurements.Further studies are needed to understand the relations of soil respiration to soil variables,such as microbial population,root density and so on.
     4) The soil respiration of agricultural ecosystem in Copenhagen area of Denmark also showed a seasonal variation with the highest value of 5.77μmol CO_2 m~(-2) s~(-1) occurring in July and the lowest value of 0.22μmol CO_2 m~(-2) s~(-1) appearing in February.The trend was in accordance with the seasonal changes in soil respiration in our above research areas.The correlations of seasonal variation in soil respiration to day number of the year in winter wheat could be described by a three-parameter Gaussian equation.The mean CO_2 efflux for 18 measurements between February and December from the soil in winter wheat was 2.21±1.45μmol CO_2 m~(-2) s~(-1),and 2.39±1.50μmol CO_2 m~(-2) s~(-1) from April to October. The CO_2 efflux values were less than the values we observed in most of the sites in our study area,but nearly equalled the value in the site of bare land in Tianlong maintain area.When there was no water stress in the soil,the soil temperature explained 68%of soil respiration variation.The annual amount of soil CO_2 efflux from the winter wheat was 655.5 g C m~(-2) a~(-1).
     The soil CO_2 efflux between April and December under 4 different kinds of land cover showed that the soil CO_2 efflux were,2.71±1.74μmol CO_2 m~(-2) s~(-1) for winter wheat land,3.90±2.47μmol CO_2 m~(-2) s~(-1) for fallow grass land,2.65±1.24μmol CO_2 m~(-2) s~(-1),for forage grass land and 1.54±0.91μmol CO_2 m~(-2) s~(-1) for flower land.The correlation of R_s to T_s for 4 separate sites was significant,and the temperature explained 75%,82%,86%and 45%of variation in soil respiration in winter wheat land, fallow grass land,forage grass land and flower land,respectively.The Q_(10) values calculated from the soil respiration measurements of the 4 sites were 3.16,2.87,2.04 and 2.09 in winter wheat land,fallow grass land,forage grass land and flower land,respectively,and the R_(10) were 2.32,3.88,2.16 and 1.22μmol CO_2 m~(-2) s~(-1),respectively.The amount of soil CO_2 efflux between April to December was 655.5, 1129,835.4 and 374.6 g C m~(-2),respectively,in winter wheat land,fallow grass land,forage grass land and flower land.Both Q_(10) and R_(10) were in a range comparable with those measured in our other research sites.There were a spatial variation of soil respiration in winter wheat and grassland in Copenhagen area of Denmark,and the CVs of soil respiration in Auguest ranged from 30 to 70%,with the lager ones of CV appearing in winter wheat rather than in grassland.
引文
1. Aiken, R.M., Jawson, M.D., Grahmmer, K., Polymenopoulos, A.D., 1991. Potential spatially correlated and random components of variability in carbon dioxide. Journal of Environmental Quality, 20, 301-308
    
    2. Baath, E., Wallander, H., 2003. Soil and rhizosphere microorganism have the same Q_(10) for respiration in a model system. Global Change Biology, 9,1788-1791
    
    3. Baldocchi, D.D., Meyers, T.P., 1991. Trace gas exchange above the floor of a deciduous forest: I, Evaporation and CO_2 efflux. Journal of Geophysical Research. 96 (D4), 7171-7285
    
    4. Bekku, Y., Koizumi, H., Nakadai, T., Iwaki, H., 1995. Measurement of soil respiration using closed chamber method, an IRGA technique. Ecological Research, 10, 369-373
    
    5. Bekku, Y.S., Nakatsuba, T., Kume, A., Adachi, M., Koizumi, H., 2003. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperature and tropical soils. Applied Soil Ecology, 22,205-210
    
    6. Billings, S.A., Richter, D.D., Yarie, J., 1998. Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Canadian Journal of Forest Research, 28, 1773- 1783
    
    7. Birch, H.F., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10, 9-31
    
    8. Boone, R.D., Nadelhoffer K.N., Canary J.D., Kaye J.P., 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572
    
    9. Borken, W, Xu, Y. Davidson, E.A., Beese, F., 2002. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8,1025-1216
    
    10. Borken, W. Savage, K. Davidson, E.A., Trumbore, S.E., 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12,177-193
    
    11. Borken, W., Xu, Y.J., Brumme, R., Lamersdorf, N., 1999. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects. Soil Science Society of American Journal. 63, 1848- 1855
    
    12. Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration in Picea abies stands. Soil Biology and Biochemistry, 32, 1625-635
    
    13. Burton, A.J., Pregitzer, K.S., Zogg, G.P., Zak, D.R., 1998. Drought reduces root respiration in sugar maple forests. Ecological Application, 8, 771-778.
    
    14. Cao M., Tao B., Li K., Shao X., Stephen, D., Prinence, 2003. Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998. Acta Botanica Sinica, 45(5), 552-560
    
    15. Cao M., Woodward F., 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393,249-252
    
    16. Cao, G.M., Tang, Y.H., Mo, W.H., Wang, Y.S., Li, Y.N., Zhao, X.Q., 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry, 36, 237-243
    
    17. Conant, R.T., Dalla-Bett, P., Klopatek, C.C., Klopatek, J.M., 2004. Controls on soil respiration in semiarid soils. Soil Biology and Biochemistry, 36, 945-951
    18. Conant, R.T., Klopatek, J.M., Klopatek, C.C., 2000. Environmental factors controlling soil respiration in three semiarid ecosystems. Soil Science Society of America Journal, 64, 383-390
    
    19. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408,184-187
    
    20. Crill, P.M., 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochemical Cycles, 5, 319-341
    
    21. Curiel Yuste, J., Janssens, I.A., Carrara A., Ceulemans, R., 2004. Annual Q_(10) of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology, 10,161-169
    
    22. Curiel Yuste, J., Janssens, I.A., Carrara, A., Meiresonne, L., Ceulemans, R., 2003. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 23,1263-1270
    
    23. Dantec, V.L., Epron, D., Dufrene, E., 1999. Soil CO_2 efflux in a beech forest: comparison of two closed dynamic systems. Plant and Soil, 214,125-132
    
    24. Davidson, E.A., Belk, E., Boone, R.D, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4,217-227
    
    25. Davidson, E.A., Savage, K., Verchot, L.V., Navarrro, R., 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113,21-37
    
    26. Davidson, E.A., Verchot, L. V., Cattanio, J.H., Ackerman, I. L., Carvalho, J.E.M., 2000. Effects of soil water on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69
    
    27. De jong, E., Schappert, H.J.V., 1972. Calculation of soil respiration and activity from CO_2 profiles in the soil. Soil Science, 113, 328-333
    
    28. Dilustro, J., Collins, B., Duincan, L., Crawford, C, 2005. Moisture and soil texture effects on soil CO_2 effects on soil CO_2 efflux components in southeastern mixed pine forests, Forest Ecology and Management, 204, 85-95
    
    29. Dong, Y., Scharffe, D., Lobert, J., Crutzen, P., Sanhueza, E., 1998. Fluxes of CO_2, CH_4 and N_2O from a temperate forest soils: the effect of leaves and humus layers. Tellus, 50B, 243-252.
    
    30. Dong, Y., Zhang, S., Qi, Y., Chen, Z., Geng, Y., 2000. Fluxes of CO_2, N_2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation, Chinese Science Bulletin, 45(17), 1590-1594
    
    31. Edwards, N.T., 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Science Society of America Proceeding, 39, 361-365
    
    32. Edwards, N.T., 1982. The use of soda lime for measuring respiration rates in terrestrial systems. Pedobiologia, 23, 321-330
    
    33. Epron, D., Dantec V., Dufrene, E., Granier, A., 2001. Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beach forest. Tree Physiology, 21,145-152
    
    34. Fang, C., Moncrief, J.B., 1996. An improved dynamic chamber technique for measuring CO_2 efflux from the surface of soil. Functional Ecology, 10,297-305
    35. Fang, C., Moncrief, J.B., 1998. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO_2 efflux measurement. Functional Ecology, 12,319-325
    
    36. Fang, C., Moncrieff, J.B., 2001. The dependence of soil efflux on temperature. Soil Biology and Biochemistry, 33, 155-165
    
    37. Fang, C., Moncrieff, J.B., Gholz, H.L., Clark, K., 1998. Soil CO_2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205, 135-146
    
    38. Field, C.B., Behrenfeld M.J., Randerson J.T. and Falkowski P., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281,237-240
    
    39. Flanagan, L. B., Johnson, B. G., 2005. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130, 237-253
    
    40. Frank, A. B. Liebig, M. A., Hanson J. D., 2002. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology and Biochemistry, 34,1235-1241
    
    41. Frank, A. B., Liebig, M. A., Tanaka, D.L., 2006. Management effects on soil CO_2 efflux in northern semiarid grassland and cropland, Soil and Tillage Research, 89, 78- 85
    
    42. Gardenas, A. I., 2000. Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden (Skogaby). Plant and Soil, 221, 273-280
    
    43. Gaumont-Guay, D., Andrew Black T., Griffis T.J., Barr A.G., Jassal, R.S., Nesic Z., 2006a. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 140, 220-235
    
    44. Gaumont-Guay, D., Andrew Black, T., Griffis, T.J., Barr, A.G., Morgensten, K., Jassal, R.S., Nesic, Z., 2006b. Influence of temperature and drought on seasonal and interannual variation of soil, bole and ecosystem respiration in a boreal aspen stand. Agricultural and Forest Meteorology, 140,203-219
    
    45. Goulden, M.L., Crill, P.M., 1997. Automated measurements of CO_2 exchange at the moss surface of a black spruce forest. Tree Physiology, 17, 537-542
    
    46. Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C., Wolfsy, S.C., 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and critical evaluation of accuracy, Global Change Biology, 2, 169-182
    
    47. Grogan, P., 1988. CO_2 flux measurement using soda lime: Correction for water formed during CO_2 adsorption. Ecology, 79 (4), 1467-1468
    
    48. Gulledge, J., Schimel, J.P., 2000. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems, 3, 269-282
    
    49. Han, G., Zhou, G., Xu., Z., Yang., Y., Liu, J., Shi., K., 2007. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and soil, 291,15-26
    
    50. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48,115-146
    
    51. Hanson, P.J., Wullschleger, S.D., Bohlman, S.A., Todd, D.E., 1993. Seasonal and topographic patterns of forest floor CO_2 efflux from upland oak forest. Tree Physiology, 13,1-15
    
    52. Healy, R.W., Striegl, R.G., Russell, T.F., Hutchinson, G.L., Livingston, G.P., 1996. Numerical evaluation of static chamber measurements of soil-atmosphere gas exchange, Identification of physical processes. Soil Science Society of America Journal, 60,740-747
    
    53. Hollinger, D.Y., Kelliher, F.M., Byers, J.N., Hunt, J.E., McSeventy, T.M., Weir, P.L., 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75,134-150
    
    54. Holt, J.A., Hodgen, M.J., Lamb, D., 1990. Soil respiration in the seasonally dry tropics near Townsville, North Queensland. Australia Journal Soil Research, 28, 737- 747
    
    55. Houghton, R.A., Goodale, C.L., 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. Ecosystems and Land Use Change, Geophysical Monograph Series 153,10.1029/153GM08
    
    56. Howard, D.M., Howard, P.J.A., 1993. Relationships between CO_2 evolution, moisture content, and temperature for a range of soil types. Soil Biology and biochemistry, 25, 1537-1546
    
    57. Howard, P.J.A., 1966. A method for estimation of carbon dioxide evolved from surface of soil in the field. Oikos, 17 (2), 267-271
    
    58. IPCC, 2000. http://www.grida.no/climate/ipcc/spmpdf/sres-e.pdf. Land USE, Land- USE CHANGE, and FORESTRY
    
    59. Iritz, Z., Lindroth, A, Gardenas, A., 1997. Open ventilated chamber system for measurements of H_2O and CO_2 fluxex from the soil surface. Soil Techniques, 10,169-184
    
    60. Janssens, I.A., Ceulemans, R., 1998. Spatial variability in forest soil CO_2 efflux assessed with a calibrated soda lime technique. Ecology Letters, 1,95-98
    
    61. Janssens, I.A., Pilegaard, K., 2003. Large seasonal changes in Q_(10) of soil respiration in a beech forest. Global Change Biology, 9, 911-918
    
    62. Jia, B., Zhou, G., Wang, Y., Wang, F., Wang, X., 2006. Effects of temperature and soil water content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67,60-76
    
    63. Johnson, L.C., Matchett, J.R., 2000. Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology, 81,453-469
    
    64. Kanemasu, E.T., Powers, W.L., Sij, J.W., 1974. Field chamber measurements of CO2 flux from soil surface. Soil Science, 118,233-237
    
    65. Kang, S., Doh, S., Lee, D., Lee, D., Jin, V.L., Kimball J, 2003. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9,1427-1437
    
    66. Keith, H., Jacobsen, K.L., Raison, R.J., 1997. Effect of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and soil, 190,127-141
    
    67. Kellman, L., Beltrami, H., Risk, D., 2007. Changes in soil respiration with pasture conversion to forest in Atlantic Canada. Biogeochemistry, 82,101-109
    
    68. Khomik, M., Arain, M., McCaughey, J.H., 2006. Temporal and spatial variability of soil respiration in a boreal mixedwood forest. Agricultural and Forest Meteorology, 140,244-256
    
    69. Kimbal, B.A., Lenon, E.R., 1991. Air turbulence effects upon soil gas exchange. Soil Science Society of America Proceeding, 35,16-21
    
    70. Kirschbaum, M.U.F., 1995. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 27, 753-760
    
    71.Kosugi, Y., Mitani, T., itoh, M., Noguchi, S., Tani, M., Matsuo, N., Takanashi, S., Ohkubo, S., Nik, A.R., 2007. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35-47
    
    72. Kucera, C.L., Kirkham, D.R., 1971. Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52, 912-915
    
    73. Kursar, T.A., 1989. Evaluation of soil respiration and soil CO_2 concentration in a lowland moist forest in Panama. Plant and Soil, 113,21-29
    
    74. Kuzyakov Y., 2006. Sources of CO_2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38,425-448
    
    75. Lamersdorf, N.P., Borken, W., 2004. Clean rain promotes fine root growth and soil respiration in a Norway spruce forest. Global change Biology, 10,1351-1362
    
    76. Landi L., Valori, F., Ascher, J., Renella, G., Falchini, L., Nannipieri, P., 2006. Root exudate effects on the bacterial communities, CO_2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry, 38, 509-516
    
    77. Lashof, A.D., DeAngelo, B.J., Saleska, S.R., Harte, J., 1997. Terretrial ecosystem feedbacks to global change. Annual Review of Energy and the Environment, 22, 75- 118
    
    78. Law, B.E., Kirkham, F.M., Baldocchi, D.D. Anthoni, P.M, Irvine, J., Moore, D., Van Tuyl, S., 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology, 110, 27- 43
    
    79. Le Dantec, V., Epron, D., Dufrene, E., 1999. Soil CO_2 efflux in a beech forest: comparison of two closed dynamic systems. Plan and Soil, 214,125-132.
    
    80. Lee, M.S., Nakane, K., Nakataubo,T., Mo, W.H., Koizumi, H., 2002. Effects of rainfall events on soil CO_2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 17,401-409
    
    81. Lee, M.S., Nakane, K., Nakatsubo, T., Koizumi, H., 2003. Seasonal changes in the contribution of root respiration to soil respiration in a cool-temperate deciduous forest. Pant and Soil, 255, 311-318
    
    82. Lee, X., Wu, H., Sigler, J., Oishi, C., Siccama, T., 2004. Rapid and transient response of soil respiration to rain. Global Change Biology, 10,1017-1026
    
    83. Li, H., Yan, J., Yue, X., Wang, M., 2008. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology, 148,409-503
    
    84. Li, Y., Xu, M., Zou, X., 2006. Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two tropical forests. Plant and Soil, 281,193-201
    
    85. Li, Y.Q, Xu, M., Sun, O.J., Cui, W.C., 2004. Effects of root and littler exclusion on soil CO_2 efflux and microbial biomass in wet tropical forests. Soil Biology and Biochemistry, 36, 2111-2114
    
    86. Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., Inoue, G., 2004. In situ comparison of four approaches to estimating soil CO_2 efflux in a northern larch (Larix kaempferi Sarg) forest. Agricultural and Forest Meteorology, 123, 97-117
    87. LI-COR, Inc. 2003,6400-09 soil CO_2 flux chamber instruction manual.
    
    88. Liu, X.Z., Wan, S.Q., Su, B., Hui, D.F., Luo, Y.Q., 2002. Response of soil CO_2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240,213-223
    
    89. Liu, Y., Han, S. Li, x., Zhou, Y., Zhang, J., Jia, X., 2004. The contribution of root respiration of Pinus koraiensis seedlings to total soil respiration under elevated CO_2 concentrations. Journal of Forestry Research, 15(3), 187-191
    
    90. Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323
    
    91. Longdoz, B., Yernaux, M., Aubinet, M, 2000. Soil CO_2 efflux measurements in a mixed forest: Impact of chamber disturbance, spatial variability and seasonal evolution. Global Change Biology, 6,907-917
    
    92. Lund, C.P., Roley W.J., Pierce, L.L., Field C.B., 1999. The effects of chamber pressurization on soil-surface CO_2 flux and the implications for NEE measurements under elevated CO_2. Global Change Biology, 5,269-281
    
    93. Luo, Y. Wan, S., Hui, D., et al., 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625
    
    94. Luo, Y., Zhou, X., 2006. Soil respiration and the environment. Academic Press Elsevier Inc.
    
    95. Ma, S., Baldocchi, D.D., Xu, L., Hehn, T., 2007. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology, 147,157-171
    
    96. Maestre, F.T., Cortina, J., 2003. Small-scale spatial variation in soil CO_2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23,199-209
    
    97. Maier, C.A., Kress, L.W., 2000. Soil CO_2 evolution and root respiration in 11 year-old loblolly pine (Pinus teada) plantations as affected by moisture nutrient availability. Canadian Journal of Forest Research, 30, (3), 347-359
    
    98. Maljanen, M., Martikainen, P., Walden, J., Silvola, J., 2001. CO_2 exchange in an organic field growing barley or grass in eastern Finland, Global Change Biology, 7, 679-692
    
    99. Matthews, E., 1997. Global litter production, pools, and turnover times: Estimates from measurement data and regression models. Journal of Geophysics Research, 102, 18771-18800
    
    100.Melling, L. Hatano, R., Goh, K. J., 2005. Soil CO_2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus, 57B, 1-11
    101.Merino, A., Perez-Batallon, P., Macias, F., 2004. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry, 36,917-925
    102.Mielnick, P.C., Dugas, W.A., 2000. Soil CO_2 flux in a tall grass prairie. Soil Biology and Biochemistry, 32,221-228
    
    103.Monteith, J.L., Sceicz, G., Yabuky, K., 1964. Crop photosynthesis and the flux of carbon dioxide below the canopy. Journal of Applied Ecology, 1, 321-337
    
    104.Moren A-S., Lindroth A., 2000. CO_2 exchange at the floor of a mixed boreal pine and spruce forest. Agricultural and Forest Meteorology, 101,1-14
    105.Mosier, A.R., 1990. Gas flux measurement techniques with special reference to techniques suitable for measurements over large ecologically uniform areas. In Soils and the Greenhouse Effect. Eds. A.F. Bouwman. Joun Wiley & Sons Ltd., Chichester, UK, pp 289-301
    106.Moyano, F., Kutsch, W.L., Rebmann, C, 2008. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 148, 135-143
    
    107.Nakadai, T., Yokozawa, M., Ikeda H., Koizumi H., 2002. Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Applied Soil Ecology, 19, 161-171
    
    108.Norman, J.M., Garcia R., Verma S.B., 1992. Soil surface CO_2 fluxes and the carbon budget of a grassland. Journal Geophysical Research, 97,18845-18853
    
    109.Norman, J.M., Kucharik C.J., Gower S.T., Baldocchi, D.D., Crill, P.M., Rayment M., Savage, K., Striegl, R.G., 1997. A comparison of six methods for measuring soil- surface carbon dioxide fluxes. Journal Geophysical Research, 102, 28771-28777
    
    110.O'Connell, A.M., 1990. Microbial decomposition (respiration) of litter in eucalypt forests of south-western Australia. Australia Journal of Ecology, 12, 31-40
    
    111 .Oberbauer, S.F., Gillespie, C.T., Cheng, W., Gebauer, R., Sala Serra, A., Tenhunen, J.D., 1992. Environmental effects on CO_2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, U.S.A.. Oecologia, 92, 568-577
    
    112.0hashi, M., Gyokusen, K., Saito, A., 2000. Contribution of root respiration to total soil respiration in a Japanese cedar {Cryptomeria japonica D. Don) article forest. Ecological Research, 15, 323-333
    113.Orchard, V.A., Cook, F., 1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15,447-453
    114.Parfitt, R.L., Scott, N.A., Ross, D.J., Salt, D.J., Tate, K.R., 2003. Land-use change effects on soil C and N transformations in soil of high N status: comparisons under indigenous forest, pasture and pine plantation. Biochemistry, 66,203-221
    115.Pumpanen, J., Kolari, P., Ilvesniemi, H, Minkkinen, K., et al., 2004, Comparison of different chamber techniques for measuring soil efflux. Agricultural and Forest Meteorology, 123,159-176
    
    116.Qi, Y., Ming, X., 2001. Separating the effects of moisture and temperature on soil CO_2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant and Soil, 237, 15-23
    
    117.Raich, J. W., Tufekcioglu, A., 2000. Vegetation and soil respiration: Correlation and controls. Biogeochemistry, 48, 71-90
    
    118.Raich, J.W., Potter, C.S., 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36
    
    119.Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99
    
    120.Rayment, M.B., Jarvis, P.G., 2000. Temporal and spatial variation of soil CO_2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 32, 35-45
    
    121.Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G., Valentini R., 2002. Annual variation in the soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8, 851-866
    122.Rochette, P., Gregorich, E.G., Desjardins, R.L., 1992. Comparison of static and dynamic closed chamber for measurement of soil respiration under field conditions. Canadian Journal of Soil Science, 72,605-609
    123.Russell, C. A., Voroney, R. P., 1998. Carbon dioxide efflux from the floor of a boreal aspen forest: I, Relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science, 78, 301-310
    124.Saiz, G., Green, C, Butterbach-Bahl, K., Kiese, R., Avitabile, V., Farrell, E., P., 2006. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287,161-176
    
    125.Sanchez, M.L., Ozores, M.I., Lopez, M.J., Coll, B., Torre, B.De, Garcia, M.A., Perez, I., 2003. Soil CO_2 fluxes beneath barley on the Spanish plateau. Agricultural and Forest Meteorology, 118, 85-95
    
    126.Savage, K.E., Davidson, E.A., 2001. Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 15, 337-350
    
    127.Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1,77-91
    
    128.Schlesinger, R.E., Van Cleve, K., 1985. Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Canadian Journal of Forest Research, 15, 97-106
    
    129.Schlesinger, W.H., 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology Systematics, 8, 51-81
    130.Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20
    
    131.Schlesinger, W.H., Van Cleve, K., 1985. Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Canadian Journal of Forest Research, 15, 97-10
    
    132.Shibistova, O., Llody J., Evgrafova S., Savushkina N., Zrazhevskaya, G., Arneth A., knohl A., Kolle O., Schulze E., 2002. Seasonal and spatial variability in soil efflux rates for a central Siberian Pinus sylvestis forest. Tellus, 54B, 552-567
    
    133.Sims, P.L., Bradford, J.A., 2001. Carbon dioxide fluxes in a southern plains prairie. Agricultural and Forest Meteorology, 109,117-134
    
    134.Skopp, J., Jawson, M.D., Doran, J.W., 1999. Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54, 1619- 1625
    
    135.Soegaard, H., Jensen, N.O., Boegh, E., Hasager, C.B., Schelde, K., Thomsen, A., 2003. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agricultural and Forest Meteorology, 114,153-173
    
    136.Sotta, E.D., Meik, P., Malhi, Y., Nobre, A.D., Hodnett, M., Grace J., 2004. Soil CO_2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10,601-617
    
    137.Stoyan, H., De-polli, H., Bohm s., Robertson G.P., Paul E.A., 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil, 222,203-214
    
    138.Subke, J., Reichstein, M., Tenhunen, J., 2003. Explaining temporal variation in soil CO_2 efflux in a mature spruce forest in southern Germany. Soil Biology and Biochemistry, 35,1467-1483
    
    139.Sykes, M.T., Prentice, I.C., Laarif F., 1999. Quantifying the impact of global climate change on potential natural vegetation. Climatic Change, 41, 37-52
    
    140.Tang, J., Baldocchi, D.D., 2005. Spatial-temporal variation in soil respiration in an oakgrass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73,183-207
    
    141.Thierron, V., Laudelout, H., 1996. Contribution of root respiration to total CO_2 efflux from the soil of deciduous forest, Canadian Journal of Forest Research, 24,1711-1716
    
    142.Thierron, V., Laudelout, H., 1996. Contribution of root respiration to total CO_2 efflux from the soil of a deciduous forest. Can. J. For. Res. 26,1142-1148
    143.Tjoelker, M.G., Oleksyn, J., Reich P.B., 2001. Modelling respiration of vegetation: evidence for a general temperature-dependence Q10. Global Change Biology. 7, 223- 230
    144.Trumbore, S., 2006. Carbon respired by terrestrial ecosystems - recent progress and challenges. Global Change Biology, 12,141-153
    
    145.Tufekcioglu, A., Raich, J.W., Isenhart, T.M., Schultz, R.C., 2001. Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 229,117-124
    
    146.Valentini, R., Matteucchi, G., Dolman, H., Schuze, E.-D., Rebmann, C., Moors E.J., et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865
    147.Van't Holf, J.H., 1898. Lectures on the theoretical and physical chemistry, in Part I: Chemical dynamics, translated from German by R.A. Lehfeldt, 224-229, Edward Arnold, London
    
    148.Vincent, G., Shahriari, A. R., Lucot, E., Badot P., Epron, D., 2006. Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biology and Biochemistry. 38, 2527-2535
    
    149.Wang, W.J., Dalai, R.C., Moody, P.W., Smith, C.J., 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry, 35, 273-284
    
    150.Wen, X., Yu, G., Sun, X., Li, Q., Liu, Y., Zhang, L., Ren, C, Fu, Y., Li, Z., 2006. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology, 137,166-175
    
    151.Wichern, F., Luedeling, E., Muller, T., Joergensen, R. G., Buerkert, A., 2004. Field measurements of the CO_2 evolution rate under different crops during an irrigation cycle in a mountain oasis of Oman. Applied Soil Ecology, 25, 85-91
    
    152.Wildung, R.E., Garl, T.R., Buschbom, R.L., 1975. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biology and Biochemistry, 7, 373-378
    
    153.Wiseman, P.E., Seiler J.R. 2004. Soil CO_2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. Forest Ecology and Management, 192, 297-311
    154.Witkamp, M., 1966. Rates of carbon dioxide evolution from forest floor. Ecology, 47 (3), 492
    155.Witkamp, M., Frank, M.L., 1969. Evolution of CO_2 from litter, humus, subsoil of a pine stand. Pedobioligica, 9, 358-365
    
    156.Wu, J., Guan, D., Wang, M., Pei, T., Han, S., Jin, C., 2006. Year-round soil and ecosystem respiration in a temperature broad-leaved Korea Pine forest, Forest Ecology and Management, 223, 35-44
    157.Xu,M.,Qi Y.,2001b.Spatial and seasonal variations of Q_(10) determined by soil respiration measurements at a Sierra Nevadan forest.Global Biogeochemical Cycles,15,687-696
    158.Xu,M.,Qi,Y.,2001a.Soil-surface CO_2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California.Global Change Biology,7,667-677
    159.中国科学院植被图编辑委员会,2001。1:1000000中国植被图,科学出版社
    160.刘允芬,欧阳华,曹广民,罗辑,张宪州,赵新全,杨清伟,2001。青藏高原东部生态系统土壤碳排放。自然资源学报,16(2):152-160
    161.刘纪远,于贵瑞,王绍强,岳天祥,高志强,2003。陆地生态系统碳循环及其机理研究的地球信息科学方法初探。地理研究,22(4):397-405
    162.刘纪远,王绍强,陈镜明,刘明亮,庄大方,2004。1990-2000年中国土壤碳氮蓄积量与土地利用变化。地理学报,25(4):483-495
    163.刘绍辉,方精云,1997。土壤呼吸的影响因素及全球尺度下温度的影响。生态学报,17(5):469-476
    164.刘颖,韩士杰,胡艳玲,戴冠华,2005。土壤呼吸和温度对长白松林土壤呼吸速率的影响。应用生态学报,16(9):1581-1585
    165.吴仲民,1997。尖峰岭热带森林草原土壤C储量和CO_2排放量的初步研究。植物生态学报,21(5):416-423
    166.吴建国,张小泉,徐德应,2003。六盘山林区几种土地利用方式土壤呼吸时间格局。环境科学,24(6):23-32
    167.吴建国,张小泉,徐德应,2004。土地利用变化对土壤有机碳贮量的影响。应用生态学报,15(4):593-599
    168.周玉荣,于振良,赵士洞,2000。我国主要森林生态系统碳贮量和碳平衡。植物生态学报,24(5):518-522
    169.宋长春,杨文燕,徐小锋,娄彦景,张金波,2004。沼泽湿地生态系统土壤CO_2和CH_4排放动态及影响因素。环境科学,25(4):1-6
    170.山西省史志研究院,1996。山西通志(二)地理志。中华书局
    171.山西省土壤普查办公室,1990。山西省1:500000土壤图
    172.崔晓勇,王艳芬,杜占池,1999。内蒙古典型草原植物群落土壤呼吸的初步研究。草地学报,7(3):245-250
    173.崔晓勇,陈四清,陈佐忠,2000。大针茅典型草原土壤CO_2排放规律的研究。应用生态学报,11(3):390-394
    174.张宪州,刘允芬,钟华平,欧阳华,2003。西藏高原农田生态系统土壤呼吸的日变化和季节变化特征。资源研究,25(5):103-107
    175.易志刚,蚁伟民,周国逸,周丽霞,张德强,丁明懋,2003。鼎湖山三种主要植被类型土壤碳释放研究。生态学报,23(8):1674-1678
    176.李凌浩,刘先华,陈佐忠,1998。内蒙古锡林河流域羊草草原生态系统碳素循环研究。植物学报,40(10):955-961
    177.李凌浩,王其兵,白永飞,周广胜,邢雪荣,2000。锡林河流域羊草草原群落土壤呼吸及其影响因子的研究。植物生态学报,24(6):680-686
    178.李长生,肖向明,S.Frolking,B.Moore Ⅲ,W.Salas,邱建军,张宇,庄亚辉,王效科,戴韶华,刘纪远,秦小光,廖柏寒,R.Sass,2003。中国农田的温室气体排放。第四纪研究,23(5):493-503
    179.杨景成,韩兴国,黄建辉,潘庆民,2003。土地利用变化对陆地生态系统碳贮量的影响。应用生态学报,14(8):1385-1390
    180.杨晶,黄建辉,詹学明,李鑫,杜丽华,李林浩,2004。农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较。植物生态学报,28(3):318-325
    181.王娓,郭继勋,2002。东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO_2贡献量。生态学报,22(5):655-660
    182.王孟本,李洪建,2001。黄土高原人工林水分生态研究。中国林业出版社,18-25
    183.王孟本,柴宝峰,李洪建,冯彩平,1999。黄土区人工林的土壤持水力与有效水状况。林业科学,35(2):7-14
    184.王立刚,邱建军,李维炯,2002。黄淮海平原地区夏玉米农田土壤呼吸的动态研究。土壤肥料,6:13-17
    185.王绍强,刘纪远,2002。土壤碳蓄积量变化的影响因素研究现状。地球科学进展,17(4):528-534
    186.王绍强,周成虎,李克让等,2000。中国土壤有机碳库及空间分布特征分析。地理学报,55(5):533-543
    187.程占红,张金屯,陈廷贵.2000。山西天龙山植被及植物资源。山地学报,18(3):226-230
    188.纪宝明,王艳芬,李真香,王跃思,陈佐忠,郑循华,2001。内蒙古锡林河流域主要类型草原土壤中CH_4和CO_2浓度的变化。植物生态学报,25(3):371-374
    189.贾丙瑞,周广胜,王风玉,王玉辉,2004。放牧与围栏羊草草原生态系统土壤呼吸作用比较。应用生态学报,15(9):1611-1615
    190.陈全胜,李凌浩,韩兴国,阎志丹,2003。水分对土壤呼吸的影响及机理。生态学报,23(5):972-978
    191.陈全胜,韩兴国,阎志丹,王艳芳,张焱,熊小刚,陈世平,张丽霞,高英志,唐芳,杨晶,董云社,2004。典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系。生态学报,24(4):831-836
    192.陈四清,崔晓勇,周广胜,李凌浩,1999。内蒙古锡林河流域大针茅草原土壤和凋落物分解的CO_2排放速率的研究。植物学报,41(6):645-650
    193.鲁如坤,1999。土壤农业化学分析方法。中国科学技术出版社,北京,30-194
    194.鲍士旦主编,2000。土壤农化分析,中国农业出版社,北京,42-109
    195.黄承才,1999,中亚热带东部3种主要木本群落土壤呼吸的研究。生态学报,19(3):324-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700