用户名: 密码: 验证码:
猪干扰素a和γ在杆状病毒/昆虫细胞系统中表达及重组蛋白初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、为获得猪干扰素α(Porcine interferon alpha,PoINF-α)和干扰素γ(Porcine interferon gamma,PoINF-γ)基因,本研究参照Genebank已发表的猪干扰素α和干扰素γ基因序列,分别设计一对引物,应用反转录多聚酶链式反应,从有丝分裂原刀豆素(ConA)诱导的猪脾淋巴细胞总RNA中扩增出猪干扰素α和干扰素γ基因,将扩增片段通过T-A策略连接到克隆质粒pGEM-T载体上,经PCR鉴定、酶切鉴定和序列测定,证明克隆片段为猪干扰素α和干扰素γ基因。与网上公布的猪干扰素α和干扰素γ基因序列进行比较,其序列同源性分别99.8%和100%。从而为进一步应用该基因在杆状病毒/昆虫细胞表达系统中进行表达奠定了基础。
     二、杆状病毒/昆虫细胞是被广泛用来表达外源基因的表达系统,但许多表达的外源蛋白存在于细胞内,不能分泌到细胞上清。Tessier研究发现蜂素信号肽能够介导外源基因进行分泌表达,但又有该信号肽无效的报道,因此本课题的目的是研究蜂素信号肽对猪干扰素α在昆虫细胞中表达是否产生影响。根据蜂素信号肽序列,设计二条部分重叠的引物,通过PCR扩增出蜂素信号肽基因,然后与编码成熟猪干扰素α的基因片段通过PCR进行连接获得嵌合体基因片段,同时扩增出即不包含蜂素信号肽又不包含原有信号肽的仅编码成熟猪干扰素α的基因片段,将二个片段分别插入pFastBacTMDual载体,置于pH启动子控制下,酶切和测序验证正确后,转化到DH10Bac宿主菌,在三个抗性和IPTG、X-gal的共同作用下,通过定点转位获得穿梭载体bacmid。重组bacmid经电泳和PCR鉴定,然后转染昆虫细胞,获得重组杆状病毒。间接免疫荧光和Western blot鉴定重组蛋白的表达,结果表明,带有蜂素信号肽的猪干扰素α在昆虫细胞中实现分泌表达,而不带蜂素信号肽的猪干扰素α重组蛋白主要分布在昆虫细胞内。从而证明蜂素信号肽能够介导猪干扰素α在昆虫细胞中的分泌表达。通过猪水泡性口炎病毒(VSV)在猪肾细胞(PK-15)致病变抑制作用检测其抗病毒活性,表明带有蜂素信号的重组杆状病毒感染昆虫细胞获得的重组蛋白对VSV表现出较高的抑制活性,上清的抗病毒效价达到1.07×106 U/mL。昆虫细胞裂解液的抗病毒效价为3.15×105 U/mL。上清中抗病毒活性为细胞中的抗病毒活性近3.4倍。不带蜂素信号肽的重组杆状病毒感染昆虫细胞获得的重组蛋白,细胞中的抗病毒活性为3.82×105 U/mL,上清中的抗病毒活性为9.67×104 U/mL。细胞中的抗病毒活性高于上清中的抗病毒活性。对比带蜂素信号肽和不带蜂素信号肽对猪干扰素α在昆虫细胞中的表达,蜂素信号肽能够介导猪干扰素α在昆虫细胞中达到分泌型表达,并且对表达具有增强作用,增强能力达到近3倍。
     三、为获得重组猪γ干扰素,本研究应用Bac-to-Bac杆状病毒/昆虫细胞表达系统,将编码成熟猪干扰素γ基因插入供体质粒pFastBacTMDual多克隆位点,置于pH启动子控制下,为实现分泌型表达,昆虫细胞可识别的蜂素信号肽取代猪α干扰素原有信号肽构建嵌合体基因,并在C端融合6个组氨酸标签以便于纯化。将构建质粒转化DH10Bac感受态细胞,在三个抗性作用下,通过蓝白斑筛选,获得重组Bacmid穿梭质粒,转染对数生长期的Sf9昆虫细胞获得重组杆状病毒。猪γ干扰素重组蛋白通过间接免疫荧光、Western-blot证明在重组杆状病毒感染的昆虫细胞中获得分泌表达。通过在猪肾细胞(PK-15)上抑制水泡性口炎病毒(VSV)致病变作用检测重组蛋白的抗病毒活性,结果表明:昆虫细胞上清的抗病毒效价达到6.67×105 U/mL。重组猪γ干扰素的获得为进一步作为免疫佐剂对各种疫苗的增强作用,以及用作治疗剂在临床上治疗病毒性疫病等方面的研究奠定了基础。
     四、猪干扰素包含有α、β和γ三种,其中α、β属于Ⅰ型,具有较强的抗病毒作用,是由受病毒感染的多种体细胞产生,γ属于Ⅱ型干扰素,除具有较强的抗病毒作用外,还具有较强的免疫调节作用,主要是由被激活的T细胞和NK细胞产生。Ⅰ型干扰素和Ⅱ型干扰素联合使用,具有协同作用,比单独使用其中一种具有更强的抗病毒效果。为获得Ⅰ型和Ⅱ型复合型干扰素重组蛋白,本研究利用Bac-to-Bac杆状病毒表达系统将PoINF-α和PoINF-γ基因克隆到杆状病毒转移载体pFastBacTMDual中,分别置于pH和p10启动子控制下,为达到分泌型表达,二个基因的原有信号肽通过PCR技术替换为昆虫细胞可以识别并剪切的蜂素信号肽。获得重组转移载体后,再将其转化进含穿梭载体Bacmid的感受态细胞DH10Bac中,经蓝白菌落筛选获得含有二个外源基因的重组穿梭载体rBacmid,经脂质体介导转染昆虫细胞Sf9,获得包含二个外源基因的重组杆状病毒。SDS-PAGE和Western-Blotting分析可见大小约为19kDa-21kDa的特异性条带及其它不同糖基化异构体。间接免疫荧光发现荧光信号主要分布在细胞膜上,证明是分泌型表达。抗病毒活性检测发现重组蛋白具有极强的抑制VSV病毒在PK-15细胞上增殖活性,上清抗病毒达到3.24×107 U/mL,细胞中抗病毒活性为5.86×106 U/mL。
     五、猪繁殖与呼吸综合征(Porcine Reproductive and Respiratory Syndrome,PRRS)是由猪繁殖与呼吸综合征病毒引起的主要导致怀孕母猪后期流产、早产、死胎和木乃伊胎产弱仔增多,仔猪出现咳嗽、呼吸困难、呼吸急促等呼吸道症状和断奶前死亡率增高的一类疾病,在世界范围内广泛存在,给养猪业创成巨大的经济损失。许多报道证明干扰素对猪蓝耳病病毒具有抑制作用。本研究制备的复合型干扰素在Marc-145细胞上对猪蓝耳病病毒是否具有抑制作用。通过致病变抑制作用进行检测,结果表明复合型干扰素具有较强的抗病毒作用,干扰素粗制品经210稀释后,在Marc-145细胞上能够抑制猪蓝耳病病毒100TCID50的致细胞病变作用。
1: Clone of Porcine Interferon-αand Interferon-γGenes
     Two pairs of RT-PCR primers were designed and synthesized based on the published gene sequence of porcine interferon-α(PoIFN-α)and interferon-γ(PoIFN-γ).The two about 500bp target DNA sequences were amplified by reverse transcription polymerase chain reaction depending on the template of total RNA which isolated from ConA-stimulated porcine spleen cell,and cloned into pGEM-T vector.The two gene fragment were identified to be interferon-αand interferon-γwith the methods of restriction enzyme digestion,polymerase chain reaction,and sequencing.Comparing with the sequences of porcine that deposited in NCBI.There are completely consensus with these. That will allow us to explore this cytokine as a poteintial therapeutic agent for porcine diseases using a baculovirus/insect cell expression system.
     2: Effects of the honeybee melittin signal peptide on expression of porcine interferon-αin insect cells
     The baculovirus-insect cell system is a valuable tool for the expression of heterologous proteins. Due to limitations in the intracellular processing environment, however, heterologous secreted and membrane proteins are often insoluble.Many attempts to modify the insect cell secretory pathway by overexpressing processing factors have demonstrated the potential to overcome these limitations.Report by Tessier and his co-worker showing that secretion of a plant protein in the baculovirus system was enhanced when its signal peptide was replaced with an insect-derived signal peptede: the honeybee melittin signal peptide(HBM).However, There are studies showed that insect-derived signal peptides and/or prosequences cannot always enhance the expression and/or secretion of foreign secretory pathway proteins in the baculovirus system. The aim of this study was to investigate the effects of the honeybee melittin signal peptide on baculovirus-mediated expression and secretion of porcine interferon-α.The HBM gene was amplified by PCR using a pair of primers with partial overlapping sequence.The synthetic chimaera was obtained by ligation the sequence coding mature porcine interferon-αwith HBM by PCR.The other fragment without HBM was amplificated also.Each gene was cloned into the baculovirus transfer vector pFastBacTMDual,under the control of pH promoter. Constructs were transformed into DH10BacTM E.coli,the site-specific transposition occurs between the mini-Tn7 element on the pFastBacTMDual vector and the mini-attTn7 target site on the bacmid to generate a recombinant bacmid ,then introduced to Spodoptera frugiperda.Immunofluorescence assay and western blot analysis confirmed the secretory expression of recombinant baculovirus with HBM.Overxpression of the porcine interferon-αform has also been achieved using recombinant baculovirus without HBM but mostly in an aggregated form with no secretion. Using the honeybee melittin signal peptides in baculovirus expression vectors is enable to aid in increasing expression and yield of heterologous secreted proteins in insect cells.
     3: Secretory Expression of Porcine Interferon-γusing a baculovirus system and its antiviral activity detection
     Cytokines, such as porcine interferon-gamma(PoIFN-γ) have been shown to have antiviral and adjuvant activity in livestock and have the potential to be used as alternatives to antibiotics. This part aimed to the expression of PoIFN-γin a baculovirus system to generate a fully functional recombinant protein. Porcine interferon-γcDNA was cloned from mitogen stimulated spleen lymphocytic total RNA utilizing the reverse transcription-polymerase chain reaction (RT-PCR). The sequences encoding for a mature 145 amino acid protein in frame with a C-terminal 6×Histidine tag,was cloned and expressed into baculovirus transfer vector pFastBacTMDual,under the control of pH promoter.The authentic signal sequences of porcine interferon-γwere substituted with the honeybee melittin signal sequence, allowing efficient entrance into the secretory pathway of the insect cell.The recombinant proteins were successfully detected in expressing cells by immunofluorescence assay and in the culture medium by western blot analysis.The recombinant PoIFN-γis verified to be of high cytokine activity by inhibiting the cytopathic effect of vesicular stomatitis virus in PK-15 cells, which is about 6.67 x 10(5) U/mL in supernatant.
     4: Co-expression of porcine interferon-α&γusing a baculovirus system and its antivirus activity detection
     Porcine interferon(interferon,IFN) comprises IFN-α, IFN-βand IFN-γ.Type I IFNs (IFN-αand IFN-β) and type II IFN (IFN-γ) are important components of the host immune response to viral infections. IFN-αand IFN-βare produced by most cells as a direct response to viral infection, while IFN-γis synthesized almost exclusively by activated NK cells and activated T-cells in response to virus-infected cells.Like type I IFNs,IFN-γhas antiviral activity,but in addition it also posses immunomodulatory activity. Combination of type I and type II interferons act synergistically such a mixture of the two has much greater activity than that expected from the separate contribution of each type. Baculovirus/insect cell system was used for such mixture recombinant proteins production.Porcine interferon-αgene and interferon-γgene were cloned into pFastBacTMDual vector that has two promoters and cloning sites,allowing simultaneous expression of these two genes.The two proteins in frame with a C-terminal hexahistidine(His6) tag to facilitate purification of the secreted protein on nickel-containing resins. The authentic signal sequences of the two genes were substituted with the honeybee melittin signal sequence, allowing efficient entrance into the secretory pathway of the insect cell.Both genes were cloned into the baculovirus transfer vector pFastBacTMDual,under control of pH promoter and p10 promoter,respectively.A recombinant baculovirus,Bac-PoIFN-α&γ, involving two heterogenous genes, was generated by transfecting pBac-PoIFN-α&γto bacmid inside DH10Bac Escherichia coli by site-specific transposition,followed by transfection into the sf9 cells.The expressed recombinant glycoproteins were successfully detected in expressing cells by SDS-PAGE and by western blot analysis. Secretory expression of the recombinant protein was verified by immunofluorescence assay that indicating immunofluorescence signal mainly locate at cytomembrane.The bioactivity was confirmed to be of high cytokine activity by inhibiting the cytopathic effect of vesicular stomatitis virus in PK-15 cells, which is about 3.24×107 U/mL in supernatant and 5.86×106 U/mL in insect cells, respectively.
     5: Inhibition of porcine reproductive and respiratory syndrome virus in Marc-145 cells by compound of recombinant porcine interferon.
     Porcine reproductive and respiratory syndrome (PRRS) is caused by an enveloped positive-stranded RNA virus placed in the family Arteriviridae,Infection of adult pigs generally produces a nonfatal disease characterized by flu-like symptoms, including mild interstitial pneumonia, elevated temperature, and inappetance. In sharp contrast, the infection of pregnant gilts and sows results in abortion and the birth of dead and weak-born piglets.Surviving piglets exhibit the severest form of respiratory distress with mortality often approaching 100% within 3 weeks after farrowing. Surviving pigs continue to suffer the negative effect of PRRSV by exhibiting increased susceptibility to secondary infection. Pigs surviving acute PRRS support a long-term asymptomatic infection, which has contributed to the worldwide spread of the disease. The persistent infections result large economics loss in pig raising.Rowland reported that pretreatment of MARC-145 cells with IFN-γinhibited wild-type (SDSU-23983 P6) and culture-adapted (SDSU-23983 P136) PRRS viruses in a dose-dependent manner and at relatively low concentrations. The effect of IFN-γon virus replication included reductions in the number of infected cells, virus yield, and RNA content in single cells.The purpose of this part is to investigate the inhibited effect of recombinant compound IFN on PRRSv in Marc-145 cells with the cytopathic effect.The result show that the dilution of 210 of crude recombinant supernant can protect the Marc-145 from the cytopathic effect cause by 100TCID50 of Porcine reproductive and respiratory syndrome virus.
引文
[1] Isaacs, A., and J. Lindenmann. Virus interference. I. The interferon.Proc. R. Soc. London Ser. 1957.B 147:258–267.
    [2] Nagano, Y., and Y. Kojima. Inhibition de I’infection vaccinale par le virus homologue. C. R. Seances Soc. Biol. Fil. 1958.152:1627–1630.
    [3] Biron, C. A., and G. C. Sen. Interferons and other cytokines[M], p.321–351. In D. M. Knipe, P. M. Howley, D. E. Griffin, M. Martin, B.Roizman, and S. E. Straus (ed.), Fields virology, 2001.4th ed. Lippincott-Raven,Philadelphia, Pa.
    [4] Finter, N. B. The naming of cats—and alpha-interferons. Lancet 1996. 348:348–349.
    [5] Samuel, C. E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 1991. 183:1–11.
    [6] Bach EA, Aguet M, Schreiber RD. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 1997;15:563-591.
    [7] Young, H. A. Regulation of interferon-? gene expression. J. Interferon Cytokine Res. 1996. 16:563–568.
    [8] Vilcek J,Sen GC. Interferon and other cytokines[M].In Fields Virology, 1996.ed.BN Fields,DM Knipe,PM Howley,pp.375-99.Philadelphis:Lippincott-Raven
    [9]毕英佐,傅伟龙.动物科学进展[M].北京:中国农业科技出版社,2000,165-178.
    [10] Chinsangaram J, Piccone ME, Grubman MJ.Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon[J].J Virol. 1999,73(12):9891-9898.
    [11] David M, Petricoin E 3rd, Benjamin C, et al. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins[J].Science. 1995 Sep 22:269(5231):1721-1723.
    [12] Pfeffer LM, Mullersman JE, Pfeffer SR, et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor[J].Science. 1997 May 30:276(5317):1418-1420.
    [13] Chang, Y. J. E., and L. A. Laimins. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31[J]. J. Virol. 2000. 74:4174–4182.
    [14] Knipe, D. M., C. E. Samuel, and P. Palese. Virus-host cell interactions, 2001. p. 133–170. In D. M. Knipe, P. M. Howley, D. E. Griffin, M. Martin,B. Roizman, and S. E. Straus (ed.), Fields virology, 4th ed. Lippincott-Raven, Philadelphia, Pa.
    [15] Hiscott, J., P. Pitha, P. Genin, H. Nguyen, et al. Triggering the interferon response: the role of IRF-3 transcription factor[J]. J. Interferon Cytokine Res. 1999. 19:1–13.
    [16] Weaver, B. K., K. P. Kumar, and N. C. Reich. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1[J]. Mol. Cell. Biol. 1998. 18:1359–1368.
    [17] Yoneyama, M., W. Suhara, Y. Fukuhara, et al. Direct triggering of the type I interferon system by virusinfection: activation of a transcription factor complex containing IRF-3 and CBP/p300[J]. EMBO J. 1998. 17:1087–1095.
    [18] Kumar, K. P., K. M. McBride, B. K. Weaver,et al. Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1[J].Mol. Cell.Biol. 2000.20:4159–4168.
    [19] Servant, M. J., B. ten Oever, C. LePage, L. Conti, S. Gessani, et al. Identification of distinct signaling pathwaysleading to the phosphorylation of interferon regulatory factor 3[J].J. Biol.Chem. 2000. 276:355–363.
    [20] Wathelet, M. G., C. H. Linc, B. S. Parekh, L. V. Ronco, P. M. Howley, and T. Maniatis. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol. Cell 1998.1:507–518.
    [21] Heim, M. H. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus[J]. J. Receptor Signal Transduction Res. 1999. 19:75–120.
    [22] Mogensen, K. E., M. Lewerenz, J. Reboul, G. Lutfalla, et al. The type I interferon receptor: structure, function, and evolution of a family business. J. Interferon Cytokine Res. 1999. 19:1069–1098.
    [23] Lefevre F, Guillomot M, D'Andrea S,et al. Interferon-delta: the first member of a novel type I interferon family[J]. Biochimie. 1998 Aug-Sep:80(8-9): 779-788.
    [24] La Bonnardiere C, Lefevre F, Charley B. Interferon response in pigs: molecular and biological aspects[J].Vet Immunol Immunopathol. 1994 Oct:43(1-3):29-36.
    [25] Lefevre F, La Bonnardiere C. Molecular cloning and sequencing of a gene encoding biologically active porcine alpha-interferon[J].J Interferon Res. 1986 Aug:6(4):349-360.
    [26] Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon[J].Curr Opin Immunol.2002 Aug:14(4):432-436.
    [27] Jiang CL, Son LX, Lu CL, et al. Analgesic effect of interferon-alpha via mu opioid receptor in the rat[J].Neurochem Int. 2000 Mar:36(3):193-196.
    [28] Boehm, U., T. Klamp, M. Groot, et al. Cellular responses to interferon-gamma[J]. Annu. Rev. Immunol. 1997. 15:749–795.
    [29] Chakraborty, N. G., L. Li, J. R. Sporn, et al. Emergence of regulatory CD4 T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines[J]. J. Immunol 1999.162:5576–5583.
    [30] Mason, D., and F. Powrie. Control of immune pathology by regulatory T cells[J]. Curr. Opin. Immunol. 1998. 10:649–655.
    [31] David, M., H. E. Chen, S. Goelz, et al. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1[J].Mol. Cell. Biol. 1995.15:7050–7058.
    [32] Abendroth, A., B. Slobedman, E. Lee, et al. Modulation of major histocompatibility class II protein expression by varicella-zoster virus[J]. J. Virol. 2000. 74:1900–1907.
    [33] Abraham, N, D. F. Stojdl, P. I. Duncan, et al. Characterization of transgenic mice with targeteddisruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR[J]. J. Biol. Chem. 1999. 274:5953–5962.
    [34]潘烨,郑起.干扰素在肿瘤治疗中应用的研究进展[J].国外医学:外科学分册,2005,32(1):10-13.
    [35]杨吉成,李丽娥,盛伟华,等.基因工程IFNα2a和IFNα2b对肿瘤细胞生长的抑制作用[J].实用癌症杂志,1999,14(3):164-166.
    [36] Borden EC.Interferon[J].In:Cancer Medicine ED.5.Toronto:B.C.Decker,Inc,2000;815-824.
    [37] Prejean, C., and O. R. Colamonici. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling[J]. Semin. Cancer Biol. 2000.10:83–92.
    [38] Balachandran, S., C. N. Kim, W.-C. Yeh, T. W. Mak, et al. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling[J]. EMBO J. 1998.23:6888–6902.
    [39] Shors, T., K. V. Kibler, K. B. Perkins, et al. Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L[J]. Virology 1997.239:269–276.
    [40] Hwang, S. Y., P. J. Hertzog, K. A. Holland, et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses[J]. Proc. Natl. Acad. Sci. USA 1995.92:11284–11288.
    [41] Ryman, K. D., W. B. Klimstra, K. B. Nguyen,et al. Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism[J].J. Virol. 2000. 74:3366–3378.
    [42] Cantin, E, B. Tanamachi, and H. Openshaw. Role for gamma interferonin control of herpes simplex virus type 1 reactivation[J]. J. Virol. 1999. 73:3418–3423.
    [43] Huang S, Hendriks W, Althage A, et al.Immune response in mice that lack the interferon-gamma receptor[J]. Science1993;259:1742-1745.
    [44] Muèller U, Steinhoff U, Reis LF, et al.Functional role of type I and type II interferons in antiviral defense[J]. Science 1994;264:1918-1921.
    [45] Cantin, E., B. Tanamachi, H. Openshaw,et al. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice[J]. J. Virol. 1999.73:5196–5200.
    [46] Huang, S., W. Hendriks, A. Althage, et al. Immune response in mice that lack the interferon-gamma receptor[J]. Science 1993.259:1742–1745.
    [47] Lu, B., C. Epensperger, Z. Dembic,et al. Targeted disruption of the interferon gamma receptor 2 gene results in severe immune defects in mice[J].Proc. Natl. Acad. Sci. USA 1998. 95:8233–8238.
    [48] Angel, J., M. A. Franco, H. B. Greenberg, et al. Lack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice[J]. J. Interferon Res. 1999.19:655–659.
    [49] Samuel,CE.Reoviruses and the interferon system[J]. Curr. Top.Microbiol. Immunol. 1998.233:125–145.
    [50] Darnell, J. E., Jr., I. M. Kerr, and G. M. Stark..Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science 1994.264:1415–1421.
    [51] Levy, D. E. Physiological significance of STAT proteins: investigations through gene disruption invivo[J]. Cell Mol. Life Sci. 1999. 55:1559–1567.
    [52] Schindler, C. Cytokines and JAK-STAT signaling[J]. Exp. Cell Res. 1999.253:7–14.
    [53] Horvath, C. M. STAT proteins and transcriptional responses to extracellular signals[J]. Trends Biochem. Sci. 2000.25:496–502.
    [54] Leonard, W. J., and J. J. O’Shea. Jaks and STATs: biological implications.Annu[J]. Rev. Immunol. 1998. 16:293–322.
    [55] Bandyopadhyay, S. K., G. T. Leonard, T. Bandyopadhyay, et al. Transcriptional induction by double-stranded RNA is mediated by interferon-inducible response elements withouth activation of interferon-stimulated gene factor 3[J]. J. Biol. Chem. 1995.270:19624–19629.
    [56] Durbin, J. E, R. Hackenmiller, M. C. Simon,et al. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease[J]. Cell 1996.84:443–450.
    [57] Parganas, E., D. Wang, D. Stravopodis, D. J. Topham,et al. Jak2 is essential for signaling through a variety of cytokine receptors[J]. Cell 1998.93:385–395.
    [58] Rodig, S. J., M. A. Meraz, J. M. White, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses[J]. Cell 1998. 93:373–383.
    [59] Taniguchi T, Ogasawara K, Takaoka A, et al.IRF family of transcription factors as regulators of host defense[J]. Annu Rev Immunol 2001.19: 623-655.
    [60] Barnes B, Lubyova B, Pitha PM.On the role of IRF in host defense[J]. J Interferon Cytokine Res 2002.22: 59-71.
    [61] Lau, J. F., J.-P. Parisien, and C. M. Horvath. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors[J]. Proc. Natl. Acad. Sci. USA 2000. 97:7278–7283.
    [62] John, J., R. McKendry, S. Pellegrini, et al. Isolation and characterization of a new mutant human cell line unresponsive to alpha and beta interferons[J]. Mol. Cell. Biol. 1991. 11:4189–4195.
    [63] Matsuyama, T., T. Kimura, M. Kitagawa, et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development[J]. Cell 1993.75:83–97.
    [64] Reis, L. F. L., H. Harada, J. D. Wolchok,et al. Critical role of a common transcription factor, IRF-1, in the regulation of IFN-beta and IFN-inducible genes[J]. EMBO J. 1992. 11:185–193.
    [65] Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic patternrecognition receptors[J]. Nat Rev Immunol 2006. 6: 644-658.
    [66] Grandvaux N, Servant MJ, tenOever B, et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes[J]. J Virol 2002.76: 5532-5539.
    [67] Servant MJ, Tenoever B, Lin R.Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function[J]. J Interferon Cytokine Res 2002. 22: 49-58.
    [68] Yang H, Lin CH, Ma G, et al. Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators[J]. J Biol Chem.2003.278: 15495-15504.
    [69] Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activatedby Toll-like receptors[J].Nature .2005.434: 243-249.
    [70] Feller, S. M. Crk family adaptors—signaling complex formation and biological roles[J]. Oncogene .2001.20, 6348–6371.
    [71] Platanias, L. C. Map kinase signaling pathways and hematologic malignancies[J]. Blood 2003.101, 4667–4679.
    [72] Uddin, S. et al. Interferon-αengages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3′-kinase[J]. J. Biol. Chem. 1995.270, 15938–159341.
    [73] Fujii, Y., T. Shimizu, M. Kusumoto,et al. Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences[J]. EMBO J. 1999.18:5028–5041.
    [74] Endo TA,Masuhara M,Yokouchi M,et al. A new protein containing an SH2 domain that inhibits JAK kinases[J].Nature 1997.386:921-924.
    [75] Farrar MA, Schreiber RD. The molecular cell biology of interferon-gamma and its receptor[J]. Annu Rev Immunol 1993;11:571-611.
    [76] Windsor WT, Walter LJ, Syto R, et al.Purification and crystallization of a complex between human interferon gamma receptor (extracellular domain) and human interferon gamma[J]. Proteins 1996;26:108-114.
    [77] Hibino Y, Mariano TM, Kumar CS, et al. Expression and reconstitution of a biologically active mouse interferon gamma receptor in hamster cells. Chromosomal location of an accessory factor[J]. J Biol Chem 1991;266:6948-6951.
    [78] Soh J, Donnelly RJ, Kotenko S, et al.Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor[J]. Cell 1994;76:793-802.
    [79] Pfizenmaier K,Wiegmann K, Scheurich P, et al. High affinity human IFN-gamma-binding capacity is encoded by a single receptor gene located in proximity to c-ros on human chromosome region 6q16 to 6q22[J]. J Immunol 1988;141:856-860.
    [80] Marsters SA, Pennica D, Bach E, et al. Interferon gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain[J]. Proc Natl Acad Sci U S A 1995;92:5401-5405.
    [81] Hemmi S, Bohni R, Stark G, et al. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells[J]. Cell 1994;76:803-810.
    [82] Pestka S, Kotenko SV, Muthukumaran G, et al. The interferon gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor[J]. Cytokine Growth Factor Rev 1997;8:189-206.
    [83] Kotenko SV, Izotova LS, Pollack BP, et al.Interaction between the components of the interferon gamma receptor complex[J]. J Biol Chem 1995;270:20915-20921.
    [84] Farrar MA, Fernandez-Luna J, Schreiber RD.Identification of two regions within the cytoplasmic domain of the human interferon-gamma receptor required for function[J]. J Biol Chem 1991;266:19626-19635.
    [85] Greenlund AC, Farrar MA, Viviano BL, et al. Ligand-induced IFN gamma receptor tyrosinephosphorylation couples the receptor to its signal transduction system (p91) [J]. EMBO J 1994;13:1591-1600.
    [86]Bach EA, Tanner JW, Marsters S, et al.Ligand-induced assembly and activation of the gamma interferon receptor in intact cells[J]. Mol Cell Biol 1996;16:3214-3221.
    [87] Briscoe J, Rogers NC, Witthuhn BA, et al.Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state[J]. EMBO J 1996;15:799-809.
    [88] Briscoe J, Guschin D, Rogers NC, et al. JAKs,STATs and signal transduction in response to the interferons and other cytokines[J].Philos Trans R Soc Lond B Biol Sci 1996;351:167-171.
    [89] Farrar MA, Campbell JD, Schreiber RD.Identification of a functionally important sequence in the C terminus of the interferon-gamma receptor[J]. Proc Natl Acad Sci U S A 1992;89:11706-11710.
    [90] Hershey GK, McCourt DW, Schreiber RD.Ligand-induced phosphorylation of the human interferon-gamma receptor.Dependence on the presence of a functionally active receptor[J]. J Biol Chem 1990;265:17868-17875.
    [91] Greenlund AC, Morales MO, Viviano BL, et al. STAT recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process[J]. Immunity 1995;2:677-687.
    [92] Heim MH, Kerr IM, Stark GR, et al.Contribution of STAT SH2 groups to specific interferon signaling by the JAKSTAT pathway[J]. Science 1995;267:1347-1349.
    [93] Decker T, Lew DJ, Mirkovitch J, et al. Cytoplasmic activation of GAF, an IFNgamma-regulated DNA-binding factor[J].EMBO J 1991;10:927-932.
    [94] Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAKSTAT pathway[J]. Annu Rev Biochem 1995;64:621-651.
    [95] Bach EA, Szabo SJ, Dighe AS, et al. Ligandinduced autoregulation of IFN-gamma receptor beta chain expression in T helper cell subsets[J]. Science 1995;270:1215-1218.
    [96] Pernis A, Gupta S, Gollob KJ, et al. Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells[J]. Science 1995;269:245-247.
    [97] Groux H, Sornasse T, Cottrez F, et al.Induction of human T helper cell type 1 differentiation results in loss of IFN-gamma receptor beta-chain expression[J]. J Immunol.1997;158:5627-5631.
    [98] Kim TK, Maniatis T. Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway[J]. Science1996;273:1717-1719.
    [99] David M, Grimley PM, Finbloom DS, et al. A nuclear tyrosine phosphatase downregulates interferon-induced gene expression[J]. Mol Cell Biol 1993;13:7515-7521.
    [100]Naka, T., M. Fujimoto, and T. Kishimoto. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor[J]. Trends Biochem. Sci. 1999.24:394–398.
    [101]Starr, R., T. A. Willson, E. M. Viney, et al. A family of cytokine-inducible inhibitors of signalling[J]. Nature 1997.387:917–921.
    [102]Naka T, Narazaki M, Hirata M, et al.Structure and function of a new STATinduced STAT inhibitor[J]. Nature 1997;387:924-929.
    [103]Song, M. M., and K. Shuai. The suppressor of cytokine signaling(SOCS) 1 and SOCS3 but not SOCS2proteins inhibit interferon-mediated antiviral and antiproliferative activities[J]. J. Biol. Chem. 1998.273:35056–35062.
    [104]Liao, J., Y. Fu, and K. Shuai. Distinct roles of the NH2- and COOHterminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction[J]. Proc. Natl. Acad. Sci. USA 2000.97:5267–5272.
    [105]Shuai, K. The STAT family of proteins in cytokine signaling[J]. Prog.Biophys. Mol. Biol. 1999.71:405–422.
    [106]Alexander, W. S. Suppressors of cytokine signalling (SOCS) in the immune system[J]. Nat. Rev. Immunol. 2002.2:410–416.
    [107]Krebs, D. L., and D. J. Hilton. SOCS proteins: negative regulators of cytokine signaling[J]. Stem Cells 2001.19:378–387.
    [108]Samuel, C. E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities[J]. Virology 1991.183:1–11.
    [109]Haller, O., M. Frese, and G. Kochs. Mx proteins: mediators of innate resistance to RNA viruses[J]. Rev. Sci. Technol. Off. Int. Epizootol. 1998. 17:220–230.
    [110]Staeheli, P., F. Pitossi, and J. Pavlovic. Mx proteins: GTPases with antiviral activity[J]. Trends Cell Biol. 1993.3:268–272.
    [111]Mathews, M. B., and T. Shenk. Adenovirus virus-associated RNA and translational control[J]. J. Virol. 1991.65:5657–5662.
    [112]Jacobs, B. L., and J. O. Langland. When two strands are better than one: the mediators and modulators of the cellular responses to doublestranded RNA[J]. Virology 1996. 219:339–349.
    [113]Samuel, C. E. Protein-nucleic acid interactions and cellular responses to interferon[J]. Methods J. 1998.15:161–165.
    [114]Clemens, M. J., and A. Elia. The double-stranded RNA-dependent protein kinase PKR: structure and function[J]. J. Interferon Cytokine Res. 1997.17:503–524.
    [115]Samuel, C. E. The eIF-2 protein kinases, regulators of translation in eukaryotes from yeasts to humans[J]. J. Biol. Chem. 1993.268:7603–7606.
    [116]Thomis, D. C., J. D. Doohan, and C. E. Samuel. Mechanism of interferon action: cDNA structure, expression and regulation of the interferon-induced, RNA-dependent PI/eIF-2 protein kinase from human cells[J]. Virology 1992.188:33–46.
    [117]Jimenez-Garcia, L. F., S. R. Green, M. B. Mathews, et al. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNA1 in adenovirus-2-infected He-La cells[J].J. Cell Sci. 1993.106:11–22.
    [118]Proud, C. G. PKR: a new name and new roles[J]. Trends Biochem. Sci.20:241–246.
    [119]Pathak, V. K., D. Schindler, and J. W. B. Hershey. 1988. Generation of a mutant form of protein synthesis initiation factor eIF-2 lacking the site of phosphorylation of eIF-2 kinases[J]. Mol. Cell. Biol. 1995.8:993–995.
    [120]Samuel, C. E. Mechanism of interferon action. Phosphorylation of protein synthesis initiation factoreIF-2 in interferon-treated human cells by a ribosome-associated protein kinase possessing site-specificity similar to hemin-regulated rabbit reticulocyte kinase[J]. Proc. Natl. Acad. Sci. USA 1979.76:600–604.
    [121]Gale, M., Jr., S. L. Tan, and M. G. Katze. Translational control of viral gene expression in eukaryotes[J]. Microbiol. Mol. Biol. Rev. 2000.64:239–280.
    [122]Schneider, R. J., and T. Shenk. Impact of virus infection on host cell protein synthesis[J]. Annu. Rev. Biochem. 1987.56:317–332.
    [123]Samuel, C. E., R. Duncan, G. S. Knutson, et al. Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo[J]. J. Biol. Chem. 1984.259:13451–13457.
    [124]Kuhen K. L., X. Shen, and C. E. Samuel. Mechanism of interferon action. Sequence of the human interferon-inducible RNA-dependent protein kinase (PKR) deduced from genomic clones[J]. Gene 1996.178:191–193.
    [125]Meurs, E., K. Chang, J. Galabru, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon[J]. Cell 1990.62:379–390.
    [126]Mellor, H., K. M. Flowers, S. R. Kimball, et al. Cloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase[J]. Biochim. Biophys.Acta 1994. 1219:693–696.
    [127]Icely PL, P. Gross, J. J. M. Bergeron, et al. TIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine[J]. J. Biol. Chem. 1991. 266:16073–16077.
    [128]Tanaka, H., and C. E. Samuel. Mechanism of interferon action.Structure of the gene encoding mouse PKR, the interferon-inducible RNAdependent protein kinase[J]. Proc. Natl. Acad. Sci. USA 1994.91:7995–7999.
    [129]Barber, G. N., J. Tomita, A. G. Hovanessian, et al. Functional expression and characterization of the interferon-induced double-stranded RNA activated p68 protein kinase from E. coli[J]. Biochemistry 1991.30:10356–10361.
    [130]Thomis, D. C., and C. E. Samuel. Mechanism of interferon action: autoregulation of RNA-dependent P1/eIF-21 protein kinase (PKR) expression in transfected mammalian cells[J]. Proc. Natl. Acad. Sci. USA 1992.89:10837–10841.
    [131]Patel, R. C., P. Stanton, and G. C. Sen. Role of the amino-terminal residues of the interferon-induced protein kinase in its activation by dsRNA and heparin[J]. J. Biol. Chem. 1994.269:18593–18598.
    [132]Berry, M. J., G. S. Knutson, S. R. Lasky, et al. Mechanism of interferon action: purification and substrate specificites of the double-stranded RNA-dependent protein kinase from untreated and interferon-treated mouse fibroblasts[J]. J. Biol. Chem. 1985. 260:11240–11247.
    [133]Galabru, J., and A. G. Hovanessian. Autophosphorylation of the protein kinase dependent on double-stranded RNA[J]. J. Biol. Chem. 1987.262:15538–15544.
    [134]Thomis, D. C., and C. E. Samuel. Mechanism of interferon action:characterization of the intermolecularautophosphorylation of PKR, the interferon-induced, RNA-dependent protein kinase[J]. J. Virol. 1995.69:5195–5198.
    [135]Circle, D. A., O. D. Neel, H. D. Robertson, et al. Surprising specificity of PKR binding to delta agent genomic RNA [J] RNA 1997.3:438–448.
    [136]Bevilacqua, P. C., and T. Cech. Minor-groove recognition of doublestranded RNA of the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR[J]. Biochemistry 1996.35:9983–9994.
    [137]Lengyel, P. Tumor-suppressor genes: news about the interferon connection[J].Proc. Natl. Acad. Sci. USA 1993.90:5893–5895.
    [138]Samuel, C. E., K. L. Kuhen, C. X. George, et al. The PKR protein kinase—an interferon-inducible regulator of cell growth and differentiation[J]. Int. J. Hematol. 1997.65:227–237.
    [139]Kirchhoff, S., A. E. Koromilas, F. Schaper, et al. IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR[J]. Oncogene 1995. 11:439–445.
    [140]Rebouillat, D., and A. G. Hovanessian. The human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties[J]. J. Interferon Res. 1999.19:295–308.
    [141]Sarkar, S. N., and G. C. Sen. Production, purification, and characterization of recombinant 2′,5′-oligoadenylate synthetases[J]. Methods 1998.15:233–242.
    [142]Chebath, J., P. Benech, A. Hovanessian, et al. Four different forms of interferon-treated 2′,5′-oligo(A) synthetase identified by immunoblotting in human cells[J]. J. Biol. Chem. 1987.262:3852–3857.
    [143]Hovnanian, A, D. Rebouillat, M. G. Mattei, et al. The human 2′,5′-oligoadenylate synthetase locus is composed of three distinct genes clustered on chromo-some 12q24.2 encoding the 100-, 69-, and 40-kDa forms[J]. Genomics 1998.52:267–277.
    [144]Saunders, M. E., D. R. Gewert, M. E. Tugwell, et al. Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure[J]. EMBO J. 1985.4:1761–1768.
    [145]Kumar, S., C. Laneback, G. Valente, et al. Expansion and molecular evolution of the interferon-induced 2′-5′oligoadenylate synthetase gene family[J]. Mol. Biol. Evol. 2000.17:738–750.
    [146]Rebouillat, D., A. Hovnanian, I. Marie, et al. The 100-kDa 2′,5′-oligoadenylate synthetase catalyzing preferentially the synthesis of dimeric pppA2′p5′A molecules is composed of three homologous domains[J]. J. Biol. Chem. 1999.274:1557–1565.
    [147]Ghosh, A., S. N. Sarkar, W. D. Guo, et al. Enzymatic activity of 2′-5′-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein[J]. J. Biol. Chem. 1997.272:33220–33226.
    [148]Witt, P. L., I. Marie, N. Robert, et al. Isoforms p69 and p100 of 2′,5′-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro[J]. J. Interferon Res. 1993.13:17–23.
    [149]Rebouillat, D., A. Hovnanian, G. David, et al. Characterization of the gene encoding the 100-kDa form of human 2′,5′oligoadenylate synthetase[J]. Genomics 2000.70:232–240.
    [150]Dong, B., and R. H. Silverman. 2-5A-dependent RNase molecules dimerize during activation by 2-5A[J]. J. Biol. Chem. 1995. 270:4133–4137.
    [151]Salehzada, T., M. Silhol, A. M. Steff, et al. 2′,5′-Oligoadenylate-dependent Rnase L is a dimer of regulatory and catalytic subunits[J].J. Biol. Chem. 1993.268:7733–7740.
    [152]Bisbal, C., C. Martinand, M. Silhol, et al. Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2-5A pathway[J]. J. Biol. Chem. 1995.270:13308–13317.
    [153]Floyd-Smith G, E. Slattery, and P. Lengyel. Interferon action: RNA cleavage pattern of a 2′-5′oligoadenylate-dependent endonuclease[J]. Science 1981.212:1030–1032.
    [154]Squire, J., A. Zhou, B. A. Hassel, et al. Localization of the interferon-induced, 2-5A-dependent Rnase Gene (RNS4) to human chromosome 1q25[J]. Genomics 1994.19:174–175.
    [155]Zhou, A., B. A. Hassel, and R. H. Silverman. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action[J].Cell 1993.72:753–765.
    [156]Hassel, B. A., A. Zhou, C. Sotomayor, et al. A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon[J]. EMBO J. 1993.12:3297–3304.
    [157]Bass, B. L. RNA editing and hypermutation by adenosine deamination[J].Trends Biochem. Sci. 1997.22:157–162.
    [158]Rebagliati, M. R., and D. A. Melton. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity[J]. Cell 1987. 48:599–605.
    [159]Wagner, R. W., J. E. Smith, B. S. Cooperman, et al. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs[J]. Proc. Natl. Acad. Sci. USA 1989. 86:2647–2651.
    [160]Patterson, J. B., and C. E. Samuel. Expression and regulation by interferon of a double-stranded RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase[J]. Mol. Cell. Biol. 1995.15:5376–5388.
    [161]Weier, H. U. G., C. X. George, K. M. Greulich, et al. The interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (DSRAD) maps to human chromosome 1q21.1-21.2[J]. Genomics 1995.30:372–375.
    [162]Liu, Y., C. X. George, J. B. Patterson, et al. Functionally distinct dsRNA binding domains associated with alternative splice variants of the IFN-inducible ADAR[J]. J. Biol. Chem. 1997.272:4419–4428.
    [163]Weier, H. U. G, C. X. George, R. A. Lersch, et al. Assignment of the RNA-specific adenosine deaminase gene (Adar) to mouse chromosome 3F2 by in situ hybridization[J]. Cytogenet.Cell Genet. 2000. 89:214–215.
    [164]George, C. X., and C. E. Samuel. Human RNA specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon-inducible[J]. Proc. Natl. Acad. Sci. USA 1999.96:4621–4626.
    [165]Liu, Y., and C. E. Samuel. Mechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase[J]. J. Virol. 1996.70:1961–1968.
    [166]Ptossi, F., A. Blank, A. Schro¨der, et al. A functional GTP-binding motif is necessary for antiviral activity of Mx proteins[J]. J. Virol. 1993.67:6726–6732.
    [167]Ponten, A., C. Sick, M. Weeber, O. Haller, et al. Dominantnegative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity[J]. J. Virol. 1997.71:2591–2599.
    [168]Simon, A., J. Fa¨h, O. Haller, and P. Staeheli. Interferon-regulated Mx genes are not responsive to interleukin-1, tumor necrosis factor, and other cytokines[J]. J. Virol. 1991.65:968–971.
    [169]Kochs, G., and O. Haller. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids[J]. Proc. Natl. Acad. Sci.USA 1999.96:2082–2086.
    [170]Weber, F., O. Haller, and G. Kochs. MxA GTPase blocks reporter gene expression of reconstituted Thogoto virus ribonucleoprotein complexes[J].J. Virol. 2000. 74:560–563.
    [171]Aebi, M., J. Fa¨h, N. Hurt, et al. cDNA Structures and regulation of two interferon-induced human Mx proteins[J]. Mol. Cell. Biol. 1989. 9:5062–5072.
    [172]Gardiner, K., M. Horisberger, J. Kraus, et al. Analysis of human chromosome 21:correlation of physical and cytogenetic maps: gene and CpG island distributions[J].EMBO J. 1990.9:25–34.
    [173]Ponten, A., C. Sick, M. Weeber, et al. Dominantnegative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity[J]. J. Virol. 1997.71:2591–2599.
    [174]Dreiding, P., P. Staeheli, and O. Haller. Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses[J]. Virology 1985.140:192–196.
    [175]Pavlovic, J., O. Haller, and P. Staeheli. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle[J].J. Virol. 1992. 66:2564–2569.
    [176]Biron, C. A., K. B. Nguyen, G. C. Pien, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines[J]. Annu. Rev. Immunol. 1999. 17:189–220.
    [177]Waldburger, J. M., K. Masternak, A. Muhlethaler-Mottet, et al. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression[J].Immunol. Rev. 2000.178:148–165.
    [178]Steimle, V., C. A. Siegrist, A. Mottet, B. et al. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA[J]. Science 1994.265:106–109.
    [179]MacMicking, J. D., Q.-W. Xie, and C. Nathan. Nitric oxide and macrophage function[J]. Annu. Rev. Immunol 1997.15:323–350.
    [180] Nathan, C. Inducible nitric oxide synthase: what difference does it make? J. Clin. Investig. 1997. 100:2417–2423.
    [181]Karupiah, G., Q. W. Xie, R. M. Buller, et al. Inhibition of viral replication by interferon-gammainduced nitric oxide synthase[J]. Science 1993. 261:1445–1448.
    [182]Der, S. D., A. Zhou, B. R. Williams, et al. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays[J]. Proc. Natl. Acad. Sci. USA 1998.95:15623–15628.
    [183]Guo, J., K. L. Peters, and G. C. Sen.Induction of human protein P56 by interferon, double-stranded RNA, or virus infection[J]. Virology 2000.267:209–219.
    [184]Min, W., S. Ghosh, and P. Lengyel. The interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos,and c-Jun activities[J]. Mol. Cell. Biol. 1996.16:359–368.
    [185]Datta, B., W. Min, W. Burma, et al. Increase in p202 expression during skeletal muscle differentiation: inhibition of MyoD protein expression and activity by p202[J]. Mol. Cell. Biol. 1998.18:1074–1083.
    [186]Whitten TM,Quets AT,Schloemer RH. Identification of the hepatitis B virus factor that inhibits expression of the beta interferon gene[J].J.Virol. 1991.65:4699-704.
    [187]Ronco LV,Karpova AY,Vidal M, et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity[J].Genes Dev. 1998.12:2061-72.
    [188]Zimring JC,Goodbourn S,Offermann MK. Human herpesvirus 8 encodes an interferon reglatory factor(IRF) homolog that represses IRF-1-mediated transcription[J].J,Virol. 1998.72:701-7.
    [189]Talon J,Horvath CM,Polley R, et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein[J].J Virol. 2000.74:7989-96.
    [190]Talon J,Salvatore M,Oneill RE, et al. Influenza A and B viruses expressing altered NS1 proteins:a vaccine approach[J].Proc.Natl.Acad.Sci.USA 2000,97:4309-14.
    [191]Smith, G. L., J. A. Symons, and A. Alcami. Poxviruses: interfering with interferon[J]. Semin. Virol. 1998.8:409–418.
    [192]Alcami, A, J. Symons, and G. L. Smith. The vaccinia virus soluble alpha/beta interferon receptor binds to the cell surface and protects cells from the antiviral effects of IFN[J]. J. Virol. 2000. 74:11230–11239.
    [193]Leonard, G. T., and G. C. Sen. Restoration of interferon responses of adenovirus E1A-expressing HT1080 ell lines by overexpression of p48 protein[J].J. Virol. 1997.71:5095–5101.
    [194]Garcin, D, J. Curran, and D. Kolakofsky. Sendai virus C proteins must interact directly with cellular components to interfere with interferon action[J]. J. Virol. 2000. 74:8823–8830.
    [195]Munoz-Jordan, J. L., G. G. Sanchez-Burgos, M. Laurent-Rolle, et al. Inhibition of interferon signaling by dengue virus[J]. Proc.Natl. Acad. Sci. USA 2003. 100:14333–14338.
    [196]Ren-Jye Lin,Ching-Len Liao,Elong Lin, et al. Blocking of the alpha interferon-induced Jak-Stat signaling pathway by japanese encephalitis virus infecton[J]. J.Virol. 2004.78:9285-9294.
    [197]Tan SL,Ktze MG. HSV com:mneuvering the internetworks of viral neuropathogenesis and evasion of the host defense[J].Proc.Natl.Acad.Sci.USA 2000.97:5684-86.
    [198]Gale MJ Jr,Korth MJ,Tang NM, et al. Evidence that hepatitis C virus resistance to interfferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein[J].Virology 1997.230:217-27.
    [199]Taylor DR,Shi ST,RomanoPR, et al. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein[J].Science 1999.285:107-10.
    [200]Leib DA,Machalek MA,Williams BR,et al. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene[J].Proc.Natl.Acad.Sci.USA 2000.97:6097-101.
    [201] Bautista EM, Molitor TW. IFN gamma inhibits porcine reproductive and respiratory syndrome virusreplication in macrophages[J]. Arch Virol,1999,144(6):1191-200.
    [202]Rowland RR,Robinson B,Stefanick J,et al.Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine[J].Archives Of Virology,2001,146 (3):539-55.
    [203]Overend C,Mitchell R,He D,et al.Recombinant swine beta interferon protects swine alveolar macrophages and MARC-145 cells from infection with Porcine reproductive and respiratory syndrome virus[J]. The Journal Of General Virology,2007,88 (Pt 3):925-31.
    [204]Yao Q, Qian P, Cao Y, He Y, Si Y, Xu Z, Chen H. Synergistic inhibition of pseudorabies virus replication by porcine alpha/beta interferon and gamma interferon in vitro[J].Eur Cytokine Netw,2007,18(2):71-7.
    [205]Chang HW,Jeng CR,Liu JJ,et al. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha[J]. Veterinary Microbiology,2005,108 (3-4):167-77.
    [206]Yao Q, Huang Q, Cao Y, Qian P, Chen H. Porcine interferon-gamma protects swine from foot-and-mouth disease virus (FMDV) [J].Vet Immunol Immunopathol,2008,122(3-4):309-11.
    [207]Chinsangaram J, Moraes MP, Koster M, Grubman MJ. Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease[J].J Virol,2003,77(2):1621-5.
    [208]Charley B,McCullough K,Martinod S. Antiviral and antigenic properties of recombinant porcine interferon gamma[J]. Veterinary Immunology And Immunopathology,1988,19 (2):95-103.
    [209]Esparza I,González JC,Vi?uela E. Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages[J]. The Journal Of General Virology,1988,69 (12):2973-80.
    [210]Suradhat S,Intrakamhaeng M,Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection[J].Vet Immunol Immunopathol,2001,83(3-4):177-89.
    [211]Riffault S, Carrat C, van Reeth K, Pensaert M, Charley B. Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets[J].Vet Res, 2001,32(1):71-9.
    [212]Adams J R,McClintock J R.Baculoviridae,nuclear polyhedrosis viruses Part1.Nuclear polyhedrosis viruses of insects[M].In“Atlas of invertebrate Viruses”(J.R.Adams and J.R.Bonami,eds.),Chapter 6,87-180,CRC Press,Boca Raton.
    [213]Smith G E,Summers M D,Fraser M J.Production of human beta-interferon in insect cells infected with a baculovirus expression vector[J].Molecular and Cellular Biology,1983,3:2156-2165.
    [214]Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells[J]. Acta Pharmacologica Sinica,2005,26 (4):405-16.
    [215]Ayres MD; Howard SC; Kuzio J,et al. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus[J]. Virology,1994,202 (2):586-605.
    [216]Ahrens CH; Russell RL; Funk CJ.The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome[J]. Virology,1997,229 (2):381-99.
    [217]Gomi S,Majima K,Maeda S.Sequence analysis of the genome of Bombyx mori nucleopolyhdrovirus[J].The Journal of general virology,1999,80(5):1323-37.
    [218]Kuzio J,Pearson MN,Hrwood SH,et al.Sequence and analysis of the genome of a baculovirus pathogenic fo lymantria dispar[J].Virology,1999,253(1):17-34.
    [219]Willis LG,Seipp R,Stewart TM et al. Sequence analysis of the complete genome of Trichoplusia ni single nuleopolyhedrovirus and the identification of a baculovirus photolyase gene[J].Virology,2005,338(2)209-26.
    [220]Luque T; Finch R; Crook N. The complete sequence of the Cydia pomonella granulovirus genome[J]. The Journal Of General Virology,2001,82 (10):2531-47.
    [221]Todd JW,Passarelli AL,Lu A,et a1.Factors regulating baculovirus late and very late gene expression in transient-expression assays[J].J Virol,1996,70(4):2307-2317.
    [222]Sriram S,Palhan VB,Gopinathan KP.Hetemlogous promoter recognition leading to high-level expression of cloned foreign genes in Bornbyx mori cell lines and larvae[J].Gene,1997,190(1):181-189.
    [223]Theilmann DA,Chantler JK,Stweart S,et a1.Characterization of a highly conserved baculovirus structural protein that is specific for occlusion-derived virions[J].Virology,1996,218(1):148-158.
    [224]侯云德.分子病毒学[M].北京,学苑出版社,1990:87-88.
    [225]Blissard GW. Baculovirus--insect cell interactions[J]. Cytotechnology,1996,20 (1-3):73-93.
    [226]Flipsen JT,Martens JW,van Oers MM,et a1.Passage of Autographa califomiea nuclear polyhedmsis virus through the midgut epithelium of Spodoptera exigua larvae[J].Virology,1995,208(1):328-335.
    [227]Luckow VA,Summers MD.High level expression of nonfused foreign genes with Autographa ealifomica nuclear polyhedrosis virus expression vectors[J].Virology,1989,170(1):31-39.
    [228]Choudary PV,Kamita SG,Maeda S.Expression of foreign genes in Bombyx mori larvae using baculovirus vectors[J].Methods Mol Biol,1995,39:243-264.
    [229]Zeiser A; Elias CB; Voyer R,et al. On-line monitoring of physiological parameters of insect cell cultures during the growth and infection process[J]. Biotechnology Progress,2000,16 (5): 803-8.
    [230]Lebacq-Verheyden AM,Kasprzyk PG,Raum MG,et al. Posttranslational processing of endogenous and of baculovirus-expressed human gastrin-releasing peptide precursor[J]. Molecular And Cellular Biology,1988, 8 (8):3129-35.
    [231]Cahoreau C; Garnier L; Djiane J,et al. Evidence for N-glycosylation and ubiquitination of the prolactin receptor expressed in a baculovirus-insect cell system[J]. FEBS Letters,1994,350 (2-3):230-4.
    [232]Kretzchmar E; Geyer R; Klenk HD. Baculovirus infection does not alter N-glycosylation in Spodoptera frugiperda cells[J]. Biological Chemistry Hoppe-Seyler,1994,375 (5):23-7.
    [233]Yeh JC; Seals JR; Murphy CI,et al. Site-specific N-glycosylation and oligosaccharide structures of recombinant HIV-1 gp120 derived from a baculovirus expression system[J]. Biochemistry,1993,32 (41):11087-99.
    [234]Shi X; Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell system[J]. Current Drug Targets ,2007,8 (10):1116-25.
    [235]Matsuura Y; Possee RD; Overton HA,et al. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins[J]. The Journal Of General Virology,1987,68 (5):1233-50.
    [236]Murphy CI,Piwnica-Worms H,Grünwald S,et al. Overview of the baculovirus expression system[M]. Current Protocols In Molecular Biology,2004,Chapter 16:Unit 16.9.
    [237]Chatterji U; Ahmad R; Venkaiah B,et al. A recombination-efficient baculovirus vector for simultaneous expression of multiple genes[J]. Gene,1996,171 (2):209-13.
    [238]Weyer U; Possee RD. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells[J]. The Journal Of General Virology,1991,72 (12):2967-74.
    [239]Vialard J,Lalumiere M,Vernet T,et a1.Synthesis of the membrane fusion and hemagglutinin proteins of measles virus , using a novel baculovirus vector containing the beta-galactosidase gene[J].Wrol,1990,64(1):37-50.
    [240]Kitts PA,Ayres MD,Possee RD.Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors[J].Nucleic Acids Res,1990,18(19):5667-5672.
    [241]Possee RD; King LA. Baculovirus transfer vectors[J]. Methods In Molecular Biology,2007, 388:55-76.
    [242]Cha HJ,Dalai NG,Vakhari VN,et a1.Expression and Duriftcati0of human interleukin-2 simplified as a fusion with green fluorescent protein in suspended Sf-9 insect cells[J].Biotechnology,1999,69(1):9-17.
    [243]Cha HJ; Bentley WE. Monitoring and visualization of baculovirus infection using green fluorescent protein strategy[J]. Methods In Molecular Biology, 2007,388:407-18.
    [244]Patel G; Nasmyth K; Jones N. A new method for the isolation of recombinant baculovirus[J]. Nucleic Acids Research ,1992,20 (1):97-104.
    [245]Jarvis DL Howe D, Aumiller JJ. Novel Baculovirus expression vector that provide sialylation of recombination glycoproteins in lepidopteran insect cell[J].Virology,2001:6223~6227.
    [246]Hollister J; Grabenhorst E; Nimtz M,et al. Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans[J]. Biochemistry,2002,41 (50):. 15093-104.
    [247]Sternberg N; Smoller D; Braden T. Three new developments in P1 cloning. Increased cloning efficiency, improved clone recovery, and a new P1 mouse library[J]. Genetic Analysis, Techniques And Applications,1994,11 (5-6):171-80.
    [248]Stricklett PK,Nelson RD,Kohan DE.Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase[J].Gene,1998,215(2):415-423.
    [249]Luckow VA,Lee SC,Barry GF,et a1.Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated inseion of foreign genes into a baculovirus genome propagated in Escherichia coli[J].J Virol,1993,67(8):4566-4579.
    [250]Merrington CL,Bailey MJ,Possee RD.Manipulation of baculovirus vectors[J]. Molecular Biotechnology,1997,8 (3):283-97.
    [251]Kool M,Ahrens CH,Vlak JM,et a1.Replication of baculovirus DNA[J].J Gen Virol,1995,76(9):2103-2118.
    [252]Miyajima A,Schreurs J,Otsu K,et a1.Use ofthe silkworm,Bombyx mori,and an insect baculoviru s vector for highlevel expression and secretion of biologically active mouse interleukin-3[J].Gene,1987,58(2-3):273-281.
    [253]Wickham T J,Davis T,Grandos R R,et al.Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system[J].Biotechnol Prog,1992,8:391-396.
    [254]Bédard C; Tom R; Kamen A.Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism[J]. Biotechnology Progress,1993,9 (6):615-24.
    [255]Davis TR,Wickham TJ, McKenna KA,et al.Comparative recombinant protein production of eight insect cell lines. In Vitro Cellular & Developmental Biology. Animal,1993,29A (5):388-90.
    [256]Chen YP,Gundersen-Rindal DE,Lynn DE.Baculovirus-based expression of an insect viral protein in 12 different insect cell lines. In Vitro Cellular & Developmental Biology. Animal,2005 ,41 (1-2):43-9.
    [257]Trager W.Multiplication of the virus of equine encephalomyelitis in surviving mosquito tissues[J] J Trop Med,1938,18:387.
    [258]Wyattss.Culture in vitro of tissue from the silkworm,Bombyx mori L[J].Gen Physiol,1956,39:841-852.
    [259]Grace T D C.The prolonged growth and survival of ovarian tissue of the promethean moth in vitro[J].En Physiol,1958,41:1027-1034.
    [260]Gotoh T,Miyazaki Y.Investigation of sequential behavior of carbosyl protease and cysteine protease activities in virus infected sf-9 insect cell culture by inhibition assay[J].Appl Microbiol Biotechnol,2001,56(5/6):742-749.
    [261]Mitsuhashi.Development of insect cell culture media for biotechnology[A].1991 World Congress on Cell Tissue Culture,Anaheim,CA,1991.
    [262]张传溪.昆虫分子科学[M].北京:科学出版社,2001.271-276.
    [263]Palomares LA,Joosten CE,Hughes PR,et al. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins[J]. Biotechnology Progress,2003,19 (1):185-92.
    [264]Viswanathan K, Lawrence S,Hinderlich S,et al. Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them[J]. Biochemistry,2003,42 (51):15215-25.
    [265]Lin G; Li G; Granados RR,et al. Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion[J]. In Vitro Cellular & Developmental Biology. Animal,2001,37 (5):293-302.
    [266]Guangyun L.Stable cell lines expression baculovirus P35:resistance to apoptosis and nutfiend stress,and increased glycoprotein secretion[J].In Vitro,2001,37:293-302.
    [267]Chico E. Perfusion culture of baculovirus-infected BTI-Tn-5B1-4 insect cells: a method to restore cell-specific beta-trace glycoprotein productivity at high cell density[J]. Biotechnology And Bioengineering ,2000,70 (5):574-86.
    [268]Dwight E Lynn.Insect cell culture[J].Bilolgy and Applications of Biological Control,2001(7):110-115.
    [269]Trager W.Multiplication of the virus of equine encephalomyelitis in surviving mosquito tissues[J]. J Trop Med,1938,18:387.
    [270]Deutschmann SM,J?ger V. Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactors[J]. Enzyme And Microbial Technology ,1994 ,16 (6):506-12.
    [271]Elias CB,Jardin B,Kamen A. Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system.[J]. Methods In Molecular Biology ,2007,388:225-46.
    [272]Donaldson MS, Shuler ML. Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production[J]. Biotechnology Progress,1998,14 (4):543-7.
    [273]DiFalcoMR,Bakopanos E,PatricelliM,et al.The influence of various insect cell lines, p10 and polyhedrin promoters in the production of secreted insulin--like growth factor·-interleukin-3 chimeras in the baculovirus expression system[J].J Biotechl,1997,56(1):49-56.
    [274]Ailor E,Betenbaugh MJ.Modifying secretion and post-translational processing in insect cells[J].Curr Opin Biotechnol,1999,10(2):142-145.
    [275]Kozak M.Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes[J].Cell,1986,44(2):283-292.
    [276]Sriram S,Palhan VB,Gopinathan KP.Heterologous promoter recognition leading to high-level expression of cloned foreign in Bombyx mori cell lines and larvae[J].Gene,1997,190(1):181-189.
    [277]Condreay JP,Witherspoon SM,Clay WC,et a1.Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector[J].Proc Natl Acad Sci USA,1999,96(1):127-132.
    [278]Boyce EM,Bucher N.L.R.Baculovirus-mediated gene transfer into mammalian cells.Proc Natl Acad Sci USA.1996,93(6):2348-52.
    [279]Liang CY,Wang HZ,Li TX,et al.High efficiency gene transfer into mammalian kidney cells using baculovirus vectors[J].Arch Virol,2004,149(1):51-60.
    [280]Liu X,Li K,Song J,et al.Efficient and stable gene expression in rabbit intervertebral disc cells transduced with a recombinant baculovirus vector[J].Spine,2006,31(7):732-735.
    [281]Lefevre F,La Bonnardiere C.Molecular cloning and sequencing of a gene encoding biologically active porcine alpha-interferon[J]. Journal Of Interferon Research,1986,6 (4):349-60.
    [282]Lefèvre F,L'Haridon R,Borras-Cuesta F,La Bonnardière C. Production, purification and biological properties of an Escherichia coli-derived recombinant porcine alpha interferon[J]. The Journal Of General Virology,1990,71 (5):1057-63.
    [283]Dijkmans R,Vandenbroeck K,Beuken E,Billiau A.Sequence of the porcine interferon-gamma (IFN-gamma) gene[J]. Nucleic Acids Research,1990,18 (14):4259.
    [284]Vandenbroeck K; Dijkmans R; van Aerschot A; Billiau A.Engineering by PCR-based exon amplification of the genomic porcine interferon-gamma DNA for expression in Escherichia coli[J]. Biochemical And Biophysical Research Communications,1991,180 (3):1408-15.
    [285]The porcine family of interferon-omega: cloning, structural analysis, and functional studies of fiverelated genes. Mege D; Lefevre F; Labonnardiere C[J]. Journal Of Interferon Research ,1991,11 (6):341-50.
    [286]Artursson K; Gobl A; Lindersson M; Johansson M; Alm G.Molecular cloning of a gene encoding porcine interferon-beta[J]. Journal Of Interferon Research,1992,12 (3):153-60.
    [287]Sarmiento UM,Sarmiento JI,Lunney JK,Rishi SS.Mapping of the porcine alpha interferon (IFNA) gene to chromosome 1 by fluorescence in situ hybridization[J]. Mammalian Genome: Official Journal Of The International Mammalian Genome Society,1993,4 (1):62-3.
    [288]Johansson M; Chowdhary B; Gu F; Ellegren H; Gustavsson I; Andersson L.Genetic analysis of the gene for porcine submaxillary gland mucin: physical assignment of the MUC and interferon gamma genes to chromosome 5[J]. The Journal Of Heredity,1993,84 (4):259-62.
    [289]Murphy CI, McIntire JR, Davis DR, Hodgdon H, Seals JR, Young E.Enhanced expression, secretion, and large-scale purification of recombinant HIV-1 gp120 in insect cell using the baculovirus egt and p67 signal peptides[J]. Protein Expr Purif. 1993,4(5):349-57.
    [290]Congote LF, Li Q.Accurate processing and secretion in the baculovirus expression system of an erythroid-cell-stimulating factor consisting of a chimaera of insulin-like growth factor II and an insect insulin-like peptide[J]. Biochem J. 1994,299(1)101-7.
    [291]Tessier DC, Thomas DY, Khouri HE, Laliberte F, Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide[J].Gene. 1991 Feb 15;98(2):177-83.
    [292]Sisk WP, Bradley JD, Leipold RJ, Stoltzfus AM, Ponce de Leon M, Hilf M, Peng C, Cohen GH, Eisenberg RJ.High-level expression and purification of secreted forms of herpes simplex virus type 1 glycoprotein gD synthesized by baculovirus-infected insect cells[J]. J Virol. 1994 Feb;68(2):766-75.
    [293]Li Y, Luo L, Thomas DY, Kang CY.Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences[J]. Virology. 1994 Oct;204(1):266-78.
    [294]Wang ZM, Tong LL, Grant D, Cihlar T. Expression and characterization of soluble human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein[J].J Virol Methods. 2001 Oct;98(1):53-61.
    [295]Van der Geld YM, Smook ML, Huitema MG, Harmsen MC, Limburg PC, Kallenberg CG.Expression of recombinant proteinase 3, the autoantigen in Wegener's granulomatosis, in insect cells[J]. J Immunol Methods. 2002 Jun 1;264(1-2):195-205.
    [296]Jarvis DL, Summers MD, Garcia A Jr, Bohlmeyer DA.Influence of different signal peptides and prosequences on expression and secretion of human tissue plasminogen activator in the baculovirus system[J]. J Biol Chem. 1993 Aug 5;268(22):16754-62.
    [297]Wicker-Planquart C, Canaan S, Rivière M, Dupuis L, Verger R.Expression in insect cells and purification of a catalytically active recombinant human gastric lipase[J]. Protein Eng. 1996,9(12):1225-32.
    [298] Samuel CE.Antiviral Actions of Interferons[J].Clinical Microbiology Reviews.2001,14(4):778-809.
    [299]Marcus PI. Celebrating the 50th anniversary of the discovery of interferon[J].J Interferon Cytokine Res.2007,27(2):87-9.
    [300] Friedman RM.On The Discovery of Interferon[J].J Interferon Cytokine Res. 2007,27(3):175-180.
    [301]Lefevre F; La Bonnardiere C. Molecular cloning and sequencing of a gene encoding biologically active porcine alpha-interferon[J]. Journal Of Interferon Research,1986,6 (4):349-60.
    [302]Buddaert W; Van Reeth K; Pensaert M. In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Advances In Experimental Medicine And Biology,1998,440:461-7.
    [303]陈涛,于瑞嵩,刘惠莉等.重组猪干扰素基因定点突变及在大肠杆菌中的表达.生物工程学报[J],2002,18(3):339-342
    [304]葛丽,李震,于瑞嵩等.猪a干扰素基因在毕赤酵母中的分泌表达[J].中国兽医学报,2005,25(3):289-292.
    [305]杜以军,姜平,李玉峰等.猪a干扰素重组腺病毒的构建及其抗口蹄疫病毒活性研究[J].中国病毒学,2006,21(4):390-393.
    [306]Kidd IM,Emery VC. The use of baculoviruses as expression vectors[J]. Appl Biochem Biotechnol. 1993,42(2-3):137-59.
    [307]HU YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells[J]. Acta Pharmacol Sin. 2005,26(4):405-16.
    [308]Summers MD. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides[J]. Adv Virus Res. 2006,68:3-73.
    [309]Heath AW,Playfair HL.Conjugation of interferon-gamma to antigen enhances its adjuvanticity[J],Immunology,1990,71(3):454-456.
    [310]Esparza I,González JC, Vi?uela E.Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages[J]. The Journal Of General Virology,1988,69 (12):2973-80.
    [311]Geiger KD,Nash TC,Sawyer S,Krahl T,Patstone G,Reed JC,Krajewski S,Dalton D,Buchmeier MJ,Sarvetnick N. Interferon-gamma protects against herpes simplex virus type 1-mediated neuronal death[J]. Virology,1997,238 (2):189-97.
    [312]Bao S,Beagley KW,France MP,et al.Interferon plays a critical role in intestinal immunity against Salmonella typhimurium infection[J].Immunology,2000,99:464-472.
    [313]Dijkmans R,Vandenbroeck K,Beuken E,Billiau A.Sequence of the porcine interferon-gamma (IFN-gamma) gene[J]. Nucleic Acids Research,1990,18 (14):4259.
    [314]Vandenbroeck K,Martens E,D'Andrea S,Billiau A.Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Conditions for reconstitution of dimeric IFN-gamma[J]. European Journal Of Biochemistry / FEBS,1993,215 (2): 481-6.
    [315]Vandenbroeck K,Willems L,Billiau A,Opdenakker G,Huybrechts R.Glycoform heterogeneity of porcine interferon-gamma expressed in Sf9 cells[J].Lymphokine And Cytokine Research,1994,13 (4):253-8.
    [316]Cencic A,LeFèvre F,Koren S,La Bonnardière C.Tetracycline-controlled expression of glycosylated porcine interferon-gamma in mammalian cells[J]. Animal Biotechnology,1999,10 (1-2):63-79.
    [317]秦立迁,王喜军,胡森,李志中,陈伟业,葛金英,刘思当,步志高.猪γ干扰素在重组杆状病毒中的表达及其抗病毒活性的测定[J].生物工程学报,2007,23 (3): 386-91.
    [318]姚清侠,徐卓菲,何雁南,司有辉,钱平,陈焕春.表达猪γ干扰素的重组腺病毒的构建和活性鉴定[J].病毒学报.2007,24(5):394-398
    [319]姚清侠,刘新文,钱平,郭东春,陈涣春.携带猪干扰素基因逆转录病毒载体的构建及其在猪肾细胞(PK-15)中的表达[J].微生物学报,2007,47 (1):141-4.
    [320]Xia C; Dan W; Wen-Xue W; Jian-Qing W; Li W; Tian-Yao Y; Qin W; Yi-Bao N.Cloning and expression of interferon-alpha/gamma from a domestic porcine breed and its effect on classical swine fever virus[J]. Veterinary Immunology And Immunopathology,2005, 104 (1-2): 81-9.
    [321]Eberl-Gregoric E; Filipic B; Rozman S; Cencic A; Drinovec B. Porcine interferon-gamma inhibits the growth of Legionella pneumophila in WiREF cells in vitro[J].Folia Microbiologica,1996,41 (4),309-14.
    [322]Karpov AV; Ivanenko VK; Kishko IaG,et al. The isolation and purification of porcine interferon-gamma[J]. Voprosy Virusologii,1993,38 (2):78-81.
    [323]Horisberger MA. Virus-specific effects of recombinant porcine interferon-gamma and the induction of Mx proteins in pig cells[J]. Journal Of Interferon Research,1992 ,12 (6):439-44.
    [324]Oleszak E, Stewart WE.Potentiation of the antiviral and anticellular activities of interferons by mixtures of HuIFN-gamma and HuIFN-alpha or HuIFN-beta[J]. [J Interferon Res. 1985]
    [325]John AL,Afroza H,Bei S.Beta and gamma interferon act synergistically to produce an antiviral state in cells resistant to both interferons individually[J].Journal of virology,1989,63(11):4569-78.
    [326]Peng T, Zhu J, Hwangbo Y, Corey L, Bumgarner RE. Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts[J]. J Virol.2008,82(4):1934-45.
    [327]Sainz B Jr, Halford WP. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1[J]. J Virol.2002,76(22):11541-50.
    [328]Scagnolari C, Trombetti S, Alberelli A, Cicetti S, Bellarosa D, Longo R, SpanòA, Riva E, Clementi M, Antonelli G. The synergistic interaction of interferon types I and II leads to marked reduction in severe acute respiratory syndrome-associated coronavirus replication and increase in the expression of mRNAs for interferon-induced proteins[J]. Intervirology.2007,50(2):156-60.
    [329]Scagnolari C, Vicenzi E, Bellomi F, Stillitano MG, Pinna D, Poli G, Clementi M, Dianzani F, Antonelli G. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons[J]. Antivir Ther.2004,9(6):1003-11.
    [330]Mossel EC, Sainz B Jr, Garry RF, Peters CJ. Synergistic inhibition of SARS-coronavirus replication by type I and type II IFN[J]. Adv Exp Med Biol.2006,581:503-6.
    [331]Okuse C, Rinaudo JA, Farrar K, Wells F, Korba BE.Enhancement of antiviral activity against hepatitis C virus in vitro by interferon combination therapy[J]. Antiviral Res.2005,65(1):23-34
    [332]Larkin J, Jin L, Farmen M, Venable D, Huang Y, Tan SL, Glass JI.Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system[J]. J Interferon Cytokine Res.2003,23(5):247-57.
    [333]Yao Q, Qian P, Cao Y, He Y, Si Y, Xu Z, Chen H. Synergistic inhibition of pseudorabies virusreplication by porcine alpha/beta interferon and gamma interferon in vitro[J]. European Cytokine Network.2007,18(2):71-7.
    [334]Mauro PM,Teresa de los S,Marla K,Traci T,He W,Vladimir GA,Marvin JG.Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons[J].Journal of virology.2007,81(13):7124-7135.
    [335]Sekellick MJ, Lowenthal JW, O'Neil TE, Marcus PI. Chicken interferon types I and II enhance synergistically the antiviral state and nitric oxide secretion[J]. J Interferon Cytokine Res. 1998,18(6):407-14.
    [336]Tan H, Derrick J, Hong J, Sanda C, Grosse WM, Edenberg HJ, Taylor M, Seiwert S, Blatt LM.Global transcriptional profiling demonstrates the combination of type I and type II interferon enhances antiviral and immune responses at clinically relevant doses[J]. J Interferon Cytokine Res. 2005,25(10):632-49.
    [337]Sanda C, Weitzel P, Tsukahara T, Schaley J, Edenberg HJ, Stephens MA, McClintick JN, Blatt LM, Li L, Brodsky L, Taylor MW.Differential gene induction by type I and type II interferons and their combination[J]. J Interferon Cytokine Res. 2006,26(7):462-72.
    [338]Weyer U,Possee RD. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells[J]. The Journal Of General Virology,1991,72 (12):2967-74.
    [339]Tessier DC, Thomas DY, Khouri HE, Laliberte F, Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide[J].Gene. 1991,98(2):177-83.
    [340]Vihko P, Kurkela R, Porvari K, Herrala A, Lindfors A, Lindqvist Y, Schneider G.Rat acid phosphatase: overexpression of active, secreted enzyme by recombinant baculovirus-infected insect cells, molecular properties, and crystallization[J].Proc Natl Acad Sci U S A. 1993,90(3):799-803.
    [341]Marchetti M,Monier MN,Fradagrada A,et al. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors[J]. Molecular Biology Of The Cell.2006,17(7):2896-909.
    [342]Loula T.Mystery pig disease[J].Agri-practice.1991,12:23-24.
    [343]Shimizu M,Yamada S,Murakami Y,et al.Isolation of porcine reproductive and respriratory syndrome virus from Heko-Heko disease of pit[J].J.Vet,Med.Sci.1994,56:389-392.
    [344]Albina E; Carrat C; Charley B.Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus[J]. Journal Of Interferon & Cytokine Research,1998,18 (7):485-90.
    [345]Luo R; Xiao S; Jiang Y; Jin H; Wang D; Liu M; Chen H; Fang L.Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway[J]. Molecular Immunology, 2008,45 (10):2839-46.
    [346]Buddaert W; Van Reeth K; Pensaert M.In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Advances In Experimental Medicine And Biology,1998,440:461-7.
    [347]Miller LC; Laegreid WW; Bono JL; Chitko-McKown CG; Fox JM.Interferon type I response in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells[J]. Archives Of Virology,2004,149 (12):2453-63.
    [348]Chang HW; Jeng CR; Liu JJ; Lin TL; Chang CC; Chia MY; Tsai YC; Pang VF.Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha[J]. Veterinary Microbiology ,2005,108 (3-4):167-77.
    [349]Choi C; Cho WS; Kim B; Chae C.Expression of Interferon-gamma and tumour necrosis factor-alpha in pigs experimentally infected with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) [J]. Journal Of Comparative Pathology,2002,127 (2-3):106-13.
    [350]Wesley RD; Lager KM; Kehrli ME Jr.Infection with Porcine reproductive and respiratory syndrome virus stimulates an early gamma interferon response in the serum of pigs[J]. Canadian Journal Of Veterinary Research, 2006,70 (3):176-82.
    [351]Thanawongnuwech R,Thacker EL.Interleukin-10, interleukin-12, and interferon-gamma levels in the respiratory tract following mycoplasma hyopneumoniae and PRRSV infection in pigs[J]. Viral Immunology,2003,16 (3):357-67.
    [352]Buddaert W; Van Reeth K; Pensaert M. In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Advances In Experimental Medicine And Biology,1998,440:461-7.
    [353]Charley B; McCullough K; Martinod S. Antiviral and antigenic properties of recombinant porcine interferon gamma. Veterinary Immunology And Immunopathology,1988,19 (2):95-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700