用户名: 密码: 验证码:
动物舍微生物气溶胶及其向周围环境的传播
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物是动物舍环境污染的主要因素,动物舍的生物污染可以引起一系列传染病的流行。近几年的研究表明,一些气载病原微生物能够通过空气传播很远的距离,造成传染病的流行。过去对畜禽养殖环境微生物气溶胶的传播主要是通过舍内外环境中的细菌浓度的变化以及细菌耐药性及某些致病菌含量等方面来确认的。然而,未能证明舍内外环境分离的微生物气溶胶的起源及其同源性,没能获得充分的证据证明畜禽舍微生物气溶胶向环境的传播。因此,本课题测量了19个动物舍(5个鸡舍、5个猪舍、6个牛舍和3个兔舍)舍内及舍外不同距离(上风10、50m和下风10、50、100、200、400m)的大肠杆菌和肠球菌含量,在此基础上,(1)统计舍内、舍外气载需氧菌的含量;(2)对大肠杆菌的耐药性及其肠毒素的检测;(3)采用分子生物学方法(ERIC-PCR和REP-PCR)对不同地点分离的大肠杆菌和肠球菌的遗传相似性进行比较;(4)对肠球菌的耐药基因进行了检测。根据以上结果确定动物舍微生物气溶胶的危害性及其向环境中的传播。
     1动物舍内微生物气溶胶的含量及其向舍外环境的传播
     本试验采用ANDERSEN-6级空气微生物样品收集器和RCS离心式采样器在16个动物舍舍内空气、舍外上风10、50m和下风10、50、100、200、400m不同距离收集微生物气溶胶,一方面,通过对动物舍环境中气载需氧菌含量、气载大肠杆菌含量、气载肠球菌含量的检测,以及它们在ANDERSEN六级采样器上的分布规律来推断其对饲养员及动物自身可能造成的危害,从而使人们对动物产生的微生物气溶胶及其健康威胁的高度重视;另一方面,通过对畜禽舍内、外需氧菌含量的比较分析,从而初步观察菌群随着距离增长变化的规律。研究结果表明,(1)在所有检测的养殖环境中微生物气溶胶粒子浓度要远远高于一般的原野环境,而且大部分粒子的空气动力学直径较小,更容易进入呼吸道深部。虽然我们没有对养殖环境的动物及饲养员的健康作系统的调查,但是长期处在这种高浓度的微生物气溶胶环境下,对动物体和饲养人员感染压增大,导致很大的感染风险,能够产生有明显临床症状的传染发生,或隐性感染,或发展为慢性呼吸道疾病以及继发感染等,该领域还有待于进一步研究;(2)通过比较舍内外的气载需氧菌的含量发现,动物舍舍内气载需氧菌含量远远高于动物舍上风和舍外下风方向(>50m)不同距离空气中需氧菌的浓度(P<0.05),该结果表明,舍内微生物气溶胶含量较高,随着舍内外气体的交换而不断传播到舍外一定距离,特别是下风50 m内。另外,下风不同距离细菌浓度与上风处(一般原野)比较,差异显著(P<0.05),舍外下风方向在100、200和400 m(鸡舍A和牛舍C″除外)之间需氧菌的浓度差异不显著(P>0.05),表明气载需氧菌在一定的气象条件下也可以传播到舍外下风较远的距离(≥200 m)。
     2 ERIC-PCR对鸡舍和牛舍环境中气载大肠杆菌向舍外环境传播的鉴定
     本课题测量了5个鸡场和6个牛场舍内及舍外不同距离的大肠杆菌含量,在细菌学鉴定的基础上,采用ERIC-PCR方法对不同地点分离的大肠杆菌鉴定其同源性,获得大肠杆菌ERIC片段指纹图谱,通过该片段在细菌基因组内的数量和分布之间的关系,比较其遗传相似性,确定动物舍微生物气溶胶的向环境中的传播。ERIC-PCR结果表明,从动物的粪便中分离到的大肠杆菌与从舍内空气中分离到的部分大肠杆菌(鸡舍为34.1%;牛舍为)相似性可达100%,从动物舍外下风方向(10、50、100和200m)分离到的多数大肠杆菌(鸡舍为54.5%;牛舍为)与舍内空气或粪便中分离的大肠杆菌相似性可达100%。而从动物舍上风分离到的大肠杆菌与舍内空气或粪便中分离的大肠杆菌相似性较小(<90%)。所以,得出结论,从上风分离到的多数大肠杆菌并非来源于动物的粪便或者舍内空气,而很多从舍内空气和舍外下风方向分离到的大肠杆菌来源于动物的粪便,说明源于动物舍的微生物气溶胶能够通过舍内外气体交换传播到舍外,依气象条件传播到舍外不同的距离,造成周边环境的生物污染以及病原微生物的扩散。
     3鸡舍环境中大肠杆菌耐药性向舍外环境传播的鉴定
     通过对同一鸡舍内外环境中大肠杆菌耐药性的调查、分析,证明鸡舍内环境中的大肠杆菌可以通过舍内外气体的交换而传播到舍外环境中去,可能对附近养殖场及其周边居民的健康构成潜在的威胁。结果表明,鸡舍粪便中及舍内、舍外空气中分离到的大肠杆菌都对P-G和RIF完全耐药;对GEN和TOB都敏感,并且没有发现对这两种药物的耐药菌株。特别是从舍外下风方向上分离到的菌株对药物的敏感性与从舍内空气中或者是鸡的粪便中分离到的大肠杆菌的耐药性基本一致,说明这些耐药菌株来源于动物舍,它们能够从舍内向舍外环境传播。
     4 ERIC-PCR和REP-PCR对猪舍环境气载大肠杆菌向舍外环境传播的鉴定
     采用ERIC-PCR和REP-PCR两种方法进一步对同一猪舍不同地点分离到的大肠杆菌进行同源性比较鉴定,一方面,可以验证两种方法的可靠性;另一方面,为研究猪舍养殖环境产生的大肠杆菌气溶胶向其周围环境的传播提供可靠的方法。在本实验中,我们分析了从5个猪舍环境中分离到的120株大肠杆菌,ERIC-PCR和REP-PCR两种方法都显示出了很高的菌株间的区分性。REP-PCR表现出的指纹图谱与ERIC-PCR表现出的指纹图谱显示出极高的相似性,从而也说明了这两种方法的可靠性。结果表明,有35.1%(20/57)的从粪便中分离的大肠杆菌与舍内空气或舍外下风分离的大肠杆菌的相似性≥90%,然而从上风方向分离的大肠杆菌与舍内空气或粪便中分离的大肠杆菌的相似性较低(61%-69%)。可见,很多从舍内空气和舍外下风方向分离到的大肠杆菌来源于动物的粪便。
     5动物舍环境大肠杆菌主要毒力基因的检测及其向舍外环境传播的鉴定
     本研究采用多重PCR方法分别对5个鸡舍及其周围环境中分离到的117株大肠杆菌,5个猪舍及其周围环境中分离到的120株大肠杆菌和6个牛舍及其周围环境中分离到的143株大肠杆菌进行了5种不同的毒力基因(STa、STb、LTa、Stx1和Stx2/Stx2e)的多重PCR检测,不仅调查了不同动物舍舍内环境中大肠杆菌的5种主要毒力基因的携带情况,而且还通过对舍内、舍外环境中大肠杆菌的5种主要毒力基因的比较检测分析,研究舍内大肠杆菌5中主要毒力基因向舍外环境中的传播。结果表明,不同的动物舍环境中大肠杆菌其携带的5种毒力基因型虽然不同,但是都有一定数量的大肠杆菌携带毒力基因,而且很多是携带2种或2种以上的毒力基因,这些致病性大肠杆菌可以通过舍内外气体的交换而传播到舍外环境。
     6 REP-PCR对动物舍内气载肠球菌向舍外环境传播的鉴定
     为了给畜禽舍微生物气溶胶的产生与传播提供更充分的证据,以另一种微生物一肠球菌作为指示菌,以REP-PCR方法来研究三种动物舍(鸡舍、猪舍和牛舍)环境中气载肠球菌向舍外环境中的传播,从而与大肠杆菌作为指示菌来做对比,进一步证明动物舍舍内微生物气溶胶向舍外环境传播的必然性,同时也证明了以肠球菌作为指示菌研究微生物气溶胶在环境中传播的可行性。通过对5个不同的鸡舍(127株)、5个不同的猪舍(135株)以及6个不同的牛舍(164株)舍内及其周围环境中肠球菌同源性的REP-PCR分析,结果表明,动物舍内动物的粪便中的肠球菌可以不断形成气溶胶,不仅在能够在舍内空气中传播,而且还能够随着气体的交换而传播到舍外较远的距离,特别是下风方向(≥100m)。
     7动物舍环境气载肠球菌主要耐药基因的检测及其向舍外环境传播的鉴定
     为了了解当前养殖环境中细菌的耐药现状,仍以肠球菌为指示菌,通过对该菌的耐药性调查,了解不同场的药物使用状况,细菌耐药谱及其程度,为此后用药提供指导。通过对不同动物舍环境中分离的肠球菌对四环素类(TetM)、氨基糖甙类抗生素(庆大霉素)及糖肽类抗生素(万古霉素VanA和VanB)主要耐药基因的检测,目的:(1)了解当前养殖环境中肠球菌的耐药现状,并为以后的用药提供理论基础;(2)通过对舍内、舍外不同环境中采集到的肠球菌主要耐药基因的检测与比较,研究耐药肠球菌在动物舍舍内及其周围环境中的传播。
     结果表明:本研究通过对16个动物舍426株肠球菌耐药基因的检测,动物舍环境中存在一定比例的(62/426,14.55%)对β-内酰胺酶耐药肠球菌;三种动物舍舍内及其舍外环境分离株都存在不同程度的对四环素类抗生素的耐药性,而且,耐药率较高。其中,鸡舍粪便分离株肠球菌TetM的检出率最高(79.03%),其次为猪舍粪便分离株;有很少几株肠球菌携带vanA和vanB基因,但是,也存在少量的vanA和vanB阳性菌株,这是在动物舍环境中首次检测到,所以应当引起我们足够的重视;绝大多数肠球菌携带AMEs基因的一种或几种,只有7.7%(33/426)的肠球菌不携带AME基因,可见,鸡、猪、牛舍环境中的肠球菌对氨基糖苷类抗生素耐药的普遍性;同时,统计结果也可以看出,大多数肠球菌都携带2种或2种以上的AME基因,最多者可以携带6种AME基因[aac(6′)-aph(2″)+ant(4′)-Ia+ant(9)-Ia+aph(3′)-Ⅲa+aac(6″)-Ii+ant(6)-Ia],可见,肠球菌对庆大霉素类抗生素耐药的严重性。因此,在兽医临床诊断以及治疗的过程中不得不引起我们足够的重视。
     通过对鸡、猪、牛舍舍内(动物粪便和舍内空气)及其周边环境中(上风方向10、50m,下风方向10、50、100、200、400m)肠球菌耐药基因(TEM,tetM,VanA和VanB,AMEs)的检测结果比较后可以看出,舍外环境中的,特别是下风方向分离到的很多肠球菌其携带的耐药基因类型与舍内或动物粪便中的肠球菌其携带的耐药基因类型相同。因此,结合REP-PCR同源性分析结果,可以确定肠球菌耐药性也可以在舍内及其周围环境中传播。
Microorganisms and their products in bioaerosol from animal houses can cause serious air pollution.They may also affect the health and the production capability of the animals and induce prevalence of aerosol infectious diseases.The polluted air in livestock farms is often associated with the outbreak of the epidemic diseases and the environmental problems.It is known that many airborne pathogen microorganisms,including viruses and bacteria,can spread over a large area through the air.Bioaerosol disseminated from animal houses to their environments has been studied with an emphasis on total bacterium amount,pathogenic bacteria and antibiotic resistances of the bacteria in animal houses and their ambient air.It is difficult to differentiate between two strains that have very close genetic relationship using traditional bacterial taxonomy,and can not get the enough evidence to prove the transmission of microorganism from animal houses to their surroundings.So,air samples,including indoor and outdoor air(upwind 10 and 50 m as well as downwind 10,50,100,200 and 400 m away) of 5 chicken houses,5 swine houses,6 cow houses and 3 rabbit houses were collected using six-stage Andersen microbial samplers and RCS samplers.E.coli and enterococcus concentrations(CFU/m~3 air) collected from different sampling sites were calculated.E.coli and enterococcus strains from animal feces samples were also isolated.In order to study microbiological aerosol spreading from animal houses to their surrounding air,the following methods were used:firstly,airborne aerobic bacteria concentrations collected from different sampling sites were calculated;secondly,the antibiotic-resistant and enterotoxin of E.coli were detected;thirdly,the enterobacterial repetitive intergenic consensus polymerise chain reaction(ERIC-PCR) and the repetitive extragenic palindromic(REP-PCR) approaches were used to study the genetic variability and to determine the strain relationships among E.coli or enterococcus isolated from different sites in each animal house;finally,the antibiotic-resistant factor genes of enterococcus were detected too.
     1.The concentration of microbiological aerosol in animal houses and their transmittion to the environment
     Air samples,including indoor and outdoor air(upwind 10 and 50 m as well as downwind 10,50,100,200 and 400 m away) of 5 chicken houses,5 swine houses,6 cow houses and 3 rabbit houses were collected using six-stage Andersen microbial sampler and RCS.Firstly, through the detection of the concentrations of airborne aerobic bacteria,airborne E.coli and airborne enterococcus and their distribution in each stage of Andersen sampler,the possibly damage of microbiological aerosol to animal or farm workers should be given an enough importance;secondly,through comparing the concentrations of airborne aerobic bacteria indoor air with outdoor air of each animal house,the changeable law of them with the distance was found.
     The results showed that:(1) the concentrations of microbiological aerosol in animal houses were higher than the normal environment,and the aerodynamic diameters of most particulate matter(PM) were very small(<2.5μm).So,these PM can penetrate into the lower respiratory tract easily.Though the health station of animals and farm workers could not be investigated,the health of them would be damaged living in this environment so long and maybe cause many subclinical symptoms which need investigated farther;(2) the concentrations of airborne aerobic bacteria in indoor air were more higher than those in upwind air and downwind air(sampled at the distances of more than 50 m away from the houses) was significant(P<0.05).All these results indicated that concentrations of microbiological aerosols in the houses were much high,and that it was spread from indoor to outdoor through air exchange,especially to the downwind sites(≤50 m).In addition,there was no significant difference(P>0.05) in the microbiological aerosol concentrations among the different downwind sites(100,200 and 400 m) of the animal houses(except chicken house A and cow house C″),indicating microbiological aerosol could be spread far away (≥200 m) based on the meteorological conditions.
     2.Transmission identification of the Escherichia coli aerosol in chicken houses and cow houses to their environments using ERIC-PCR
     In order to study E.coli aerosol spreading from animal houses to their surrounding air,air samples,including indoor and outdoor air(upwind 10 and 50 m as well as downwind 10,50, 100,200 and 400 m away) of 5 chicken houses and 6 cow houses were collected using sixstage Andersen microbial samplers and RCS.E.coli concentrations(CFU/m~3 air) collected from different sampling sites were calculated.Furthermore,the enterobacterial repetitive intergenic consensus(ERIC)-PCR method was applied to amplify the isolated E.coli strain DNA samples.Through the genetic similarity analyses of the E.coli obtained from different sampling sites,the spreading of bioaerosol from animal houses to the ambient air was characterized.The results showed that most of the E.coli isolated from indoor air had 100% similarity with those isolated from feces,and that most of E.coli isolated from downwind at 10,50,100 or even 200 m had 100%similarity with those isolated from indoor air or feces too.But those isolated from upwind air had a lower similarity(<90%) with corresponding strains isolated from indoor air or feces.Our results suggested that some strains isolated from downwind air and indoor air originated in the chicken feces,but most of isolates obtained from upwind air samples did not come from the chicken feces or indoor air.This also could be concluded that indoor microbiological aerosol aerosols in indoor air of animal houses could transmit to their surroundings via air exchange and cause microbiological contamination.
     3.Transmission identification of the antimicrobial' resistance of Escherichia coli in chicken houses to their environments
     Airborne E.coli was spread from indoor to outdoor via air exchange by using the method of analyzing the antimicrobial resistance of E.coli isolated from the same chicken house which can cause the ambient air outside of the animal houses polluted and further threaten the neighboring inhabitants and the chickens themselves.The results showed all E.coli strains isolated from indoor and outdoor(downwind 10,50,100,200 m) air samples in the chicken houses against RIF and P-G,while they were sensitive to TOB and GEN.The sensitivity of E. coli isolated from downwind air was in relation to the E.coli isolated from indoor air or fecal samples,which indicated that the airborne E.coli can spread from indoor to outdoor.
     4.Source identification of airborne Escherichia Coli of swine house surroundings using ERIC-PCR and REP-PCR
     The ERIC-PCR and REP-PCR approaches were used to study the genetic variability and to determine the strain relationships among E.coli isolated from different sites in each swine house.The aim of this experiment was as follows:firstly,the reliability of the two approaches could be tested;secondly,the two approaches could be used to study the transmission of E. coli aerosol in swine houses to their environments.In the present study,we analyzed 120 E. coli isolates originating from five swine houses.The grouping of REP-PCR fingerprints was highly similar with those obtained from ERIC-PCR.This showed that the two approaches yield an analogous taxonomic resolution,suggesting that the two approaches can be fully applied for the study of the transmission of bioaerosols from animal houses to their environments.Results showed that 35.1%of the bacterial DNA fingerprints from the fecal isolates matched with those isolated from indoor and downwind air samples(similarity≥90%).E.coli strains from the indoor and downwind air samples were closely related to the E. coli strains isolated from feces,while those isolated from upwind air samples(house C) had low similarity(61%-69%).Our results suggest that some strains isolated from downwind and indoor air originated in the swine feces.
     5.The detecting of virulence factor genes in Escherichia coli in animal houses and the transmission identification to their environments
     The 5 virulence factor genes of 117 E.coli isolates isolated from 5 chicken houses,120 E.coli isolates isolated from 5 swine houses and 143 E.coli isolates isolated from 6 cow houses were detected using multiplex PCR.Not only have the differences of the 5 virulence factored genes in E.coli in each animal houses been detected,but also through comparing the differences of the 5 virulence factored genes in E.coli isolated from indoor air to outdoor air in one houses,the transmission of virulence factor genes in E.coli could have been found. Results showed that the 5 virulence factor genes in E.coli in different animal houses were different,but there had a number of E.coli carried one or more than two virulence factor genes in each animal houses,and these pathogen E.coli could be spread outdoor air via air exchange.
     6.Transmission identification of the Enterococcus aerosol in animal houses to their environments using REP-PCR
     Transmission identification of the microbiological aerosol in animal houses to their environments using REP-PCR for fingerprinting and Enterococcus as a target organism compared E.coli as a target organism.At the same time,the fidelity of Enterococcus as a target organism was tested too.Through the genetic similarity analyses of the E.coli obtained from different sampling sites in 5 chicken houses,5 swine houses and 6 cow houses using REP-PCR approach,the spreading of bioaerosol from ahimal houses to the ambient air was characterized.The results showed that E.coli in feces was found aerosolized and spread to outdoor air,especially to downwind air of the chicken houses via air exchange(≥100 m).
     7.The detecting of antimicrobial resistance genes in Enterococcus in animal houses and the transmission identification to their environments
     The aim of this experiment,by detecting antimicrobial resistance genes of TEM,TetM, AME,VanA and VanB,were as follows:firstly,the situation of antimicrobial resistance in Enterococcus in animal rear environment were found and could be used as basis for farm workers;secondly,through comparing the differences of the antimicrobial resistance genes in Enterococcus isolated from indoor air with outdoor air in one houses,the transmission of antimicrobial resistance genes in Enterococcus could be found.
     The antimicrobial resistance genes of 426 Enterococcus isolated from 16 animal houses has been detected.The results showed that:(1) there was 14.55%(62/426) Enterococcus carring antimicrobial resistance gene of TEM;(2) the TetM gene was detected at high frequency in Enterococcus,and the ratio of carring TetM gene was highest(79.03%) in fecal samples of chicken,in fecal samples of swine was in the next;(3) there was a few of Enterococcus carring antimicrobial resistance gene of vanA and vanB,but it was the first report about them in animal environment.So,we must pay much attention to this;(4) most of Enterococcus carring one or more than one AME,and there was 7.7%(33/426) not carring antimicrobial resistance gene of AME.It is obvious that it was very frequency of AME in Enterococcus.Furthermore,it was of note that 6 AME genes[aac(6′)-aph(2″)+ant(4′)-Ia+ ant(9)-Ia+aph(3′)-Ⅲa+aac(6″)-Ii+ant(6)-Ia]were detected in Enterococcus.So,it was very serious of antimicrobial resistance gene of AME in Enterococcus isolated from animal houses,and we must pay much attention to this station in our future.
     By comparing antimicrobial resistance genes of TEM,TetM,AME,VanA and VanB in Enterococcus isolated from indoor(air and fecal samples) with the isolates isolated from their environments(upwind 10 and 50 m as well as downwind 10,50,100,200 and 400 m away), Enterococcus isolated from downwind air with them isolated from indoor air or feces had the same antimicrobial resistance genes.So,Enterococcus carring antimicrobial resistance genes could spread to not only indoor air but also outdoor air based on the REP-PCR results.
引文
曹又方,赵立平.ERIC序列在不同细菌基因组中分布的分析.山西大学学报,2002,25(4):354-357.
    柴同杰,柴家前,Wolfgang Mueller.牛舍空气微生物及向环境传播的研究.中国预防兽医学报,1999,21(4):311-313.
    柴同杰,张继祥,侯颜平等.畜禽舍微生物气溶胶向环境扩散的研究.畜牧与兽医,2001,33(4):10-12.
    柴同杰,赵云玲,刘文波等.鸡舍环境耐药细菌气溶胶及其向环境传播的研究.中国预防兽医学报,2003,25(3):209-214.
    车风翔,李劲松,柴同杰,2004.空气生物学原理与应用[M].北京:科学出版社.5-48.
    车风翔,于玺华,1998.空气微生物采检理论及其技术应用[M].北京:中国大百科全书出版社,1,15.
    陈平洁,陈庄,魏平华等.2001.猪源肠球菌的分离及生物特性的初报.中国微生态学杂志,13(3):135.
    陈迎春,曹又方,赵立平.大肠杆菌MGl655菌株ERIC-PCR图谱主带序列组成分析.微生物学通报,2002,29(6):28-33.
    单松华,谢爱织等.进口鸵鸟的粪肠球菌的分离与鉴定.上海农业学报.1998,14(1):87-88.
    高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势菌群的能力.微生物学报,2003,43(2):264-270.
    金莉莉,王芳,王秋雨.ERIC-PCR鉴定单核细胞增生利斯特氏菌.中国公共卫生,2003,19(7):879.
    金莉莉,王秋雨,侯潇.ERIC-PCR技术在李斯特氏菌种、菌株鉴定中的应用.遗传,2003,25(2):195-197.
    李海鹏,赵春贵,陈涛.枯草芽孢杆菌TY7210菌株的ERIC-PCR快速鉴别。山西大学学报,2006,29(1):89-92.
    李家泰,WeinsteinA.J,杨敏.中国细菌耐药检测研究.中华医学杂志,2001,81:8-16.
    李亮,魏桂芳,童耕雷等.用PCR指纹图技术分析焦化废水接触氧化池中悬浮污泥和生物膜的微生物种群组成.中国微生态学杂志,2004,16(1):8-12.
    李艳琴,孙永艳,崔丽方等.ERIC-PCR在人工混合菌体系中的检出灵敏度.微生物学通报,2004,31(41:61-64.
    刘秀云,江载芳,金芳,等。肠球菌的耐药性研究.中国实用儿科杂志,2002,9:543-545.
    鲁海峰,魏桂芳,李仲逵等.ERIC-PCR分子杂交技术分析大熊猫肠道菌群结构.中国微生态学杂志,2005,17(2):81-84.
    陆承平,2001.兽医微生物学[M].北京:中国农业出版社,215-223.
    任南,文细毛,徐秀华等.全国医院感染监控网医院感染肠球菌耐药性分析。中国现代医学杂志,2002,12(24):41-43.
    王清涛,徐英春,王辉等.肠球菌耐药现状调查及抗感染用药探讨.中华医学检验杂志,1999,22:154-156.
    晏群,陈丽华,刘文恩等.分子生物学分型技术ERIC-PCR的建立。实用医学杂志,2003,19(6):688-699.
    杨朝国,安乙敏.病原微生物分子生物学分型方法的选择.国外医学:病毒学分册,2000,7(2):48-51.
    姚美玲,张彬,柴同杰.2007.鸡兔舍耐药大肠杆菌气溶胶向环境扩散的研究.西北农林科技大学学报,35(8):60-64.
    尹崇,乌尼.鸡源肠球菌的分离与鉴定.湖南畜牧兽医.1999,2:6.
    于玺华,车凤翔,1998.现代空气微生物学及采检鉴技术[M].北京:军事医学科学出版社,1-10,341.
    张扣兴,唐英春,张天托,等.肠球菌的分离及耐药性.中华医院感染学杂志,2001,11(3):233-234.
    张美玲,周志华,赵立平.粪便样品中大肠杆菌多态性分子研究.微生物学通报,2005,32(2):5-9.
    张群智,周惠平.311株肠球菌所致医院感染与耐药性分析.中华医院感染学杂志,2000,104(4):257-259.
    赵立平,肖红,李艳琴等.ERIC-PCR:一种快速鉴别环境细菌菌株的方法.应用与环境生物学报,1999,5:30-33.
    朱其太.值得警惕的鸡万古霉素耐药性肠球菌.Guide to Chinese poulty.1999,16(19):2.
    Aarestrup F.M.1995.Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms.Microb Drug Resist.1:255-257.
    Adhikari A.,Sen M.M.,Gupta-Bhattacharya S.,and Chanda S.2004.Volumetric assessment of airborne fungi in two sections of rural indoor dairy cattle shed.Environment International,29:1071-1078.
    Alex Donaldson. 1999. Airborne spread of foot-and-mouth disease. Microbiology Today, 26:118-119.
    Andersen A. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacterial, 76: 471-484.
    Anon. 1995. Performance of methods for the microbiological examination of bathing water. Part I EUR 16601 EN, DG XII, Uropean Commision, Brussels.
    Bach S., de Almeida A., Carniel E. 2000. The Yersinia highpathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol. Lett. 183,289-294
    Bachellier S., Clement J.M., Hofnungm. 1999. Short palindromic repetitive DNA elements in enterobacteria: a survey. Research in Microbiology, 150:627-639.
    Berger U., in Mikrobiologische Diagnostik, ed. F. Burkhardt, Georg Thieme Verlag, Suttgart, New York, 1992, p. 75.
    Bertschinger H.U., Bachmann M., Mettler C., et al. 1990. Adhesive fimbriae produced in vivo by Escherichia coli O139:K12(B):H1 associated with enterotoxaemia in pigs. Vet. Microbiol. 25,267-281.
    Beutin L., Steinruck H., Krause G., et al. 2007. Comparative evaluation of the Ridascreen Verotoxin enzyme immunoassay for detection of Shiga-toxin producing strains of Escherichia coli (STEC) from food and other source's. Journal of Applied Microbiology, 102:630-639.
    Bonilla T.D., Nowosielski K., Esiobu N., et al. 2006. Species assemblages of Enterococcus indicate potential sources of fecal bacteria at a south Florida recreational beach. Baseline/ Marine Pollution Bulletin. 52:800-815.
    Borges L.G.d.A., Vechia V.n.D., Corca G. 2003. Characterisation and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil. FEMS Microbiology Ecology, 45:173-180.
    Braaten B.A., Myers L.L. 1977. Biochemical characteristics of enterotoxigenic and nonenterotoxigenic Escherichia coli isolated from calves with diarrhoea. Am. J. Vet. Res. 38,1989-1991.
    Brown J.H., Cook K.M., Ney F.G., et al. 1950. Influence of particle size upon the retention of particulate matter in the human lung. Am J Public Health Nations Health. 40(4):450-458, 480.
    Brown J.K.M, Hovmoller M.S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297: 537-541.
    Bruijin R.J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint thegenomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol, 58(7):2180-2187.
    Buchrieser C., Brosch R., Bach S., et al. 1998. The high pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30, 965-978.
    Buttner M.P., and Stetzenbach L.D. 1991. Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Appl. Environ. Microbiol. 57, 1268-1270.
    
    Canepari P., Lleo M.M., Comaglia G., et al. 1986. In Streptococcus faecium penicillin- binding protein 5 alone is sufficient for cell growth at sub-maximal but not at maximal rate. J Gen Microbiol. 132:625-631.
    Carducci A., Tizzy E., Rubulotta E., et al. 2000. Assessing airborne biological hazard from urban wastewater treatment. Water Research, 34:1173-1178.
    Carniel E., Guiyoule A., Guilvout I., et al. 1992. Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Mol. Microbiol. 6, 379-388.
    Cater G.R., in Diagnostic procedures in veterinary bacteriology and mycology, ed. G.R. Cater, R. John and Jr. Cole, Academic Press, San diego, new York, Boston, London, Sydney, Tokyo, Toronto, 5th edn., 1990, pp. 77-86.
    Centers for Disease Control and Prevention (CDC). 2003. Follow-up of deaths among U.S. Postal Service workers potentially exposed to Bacillus anthracis-District of Columbia, 2001-2002. MMWR Morb. Mortal. Wkly. Rep. 52, 937-938.
    Chandrashekar M.R., Rathish K.C., Nagesha C.N. 1997. Reservoirs of nosocomial pathogens in neonatal intensive care unit. J Indian Med Assoc, 95: 72-74, 77.
    Chang C.W., Chung H., Huang C.F., et al. 2001. Exposure of workers to airborne microorganisms in open-air swine houses. Appl. Environ. Microbiol. 67(1):155-161.
    Chang J.C., Ossoff S.F., Lobe D.C., et al. 1985. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 49(6):1361-1365.
    Chen X., Gao S., Jiao X., et al. 2004. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Vet. Microbiol. 103,13-20.
    Cheng D.R., Sun H.C., Xu J.S., et al. 2005. Prevalence of fimbrial colonization factors F18ab and F18ac in Escherichia coli isolates from weaned piglets with edema and/or diarrhea in China. Vet. Microbiol. 110,35-39.
    Choi C., Cho W., Chung H., et al. 2001. Prevalence of the enteroaggregative Escherichia coli heat-stableenterotoxin 1 (EAST1) gene in isolates in weaned pigs with diarrhea and/or edema disease. Vet. Microbiol. 81, 65-71.
    
    Chow J.W. 2000. Aminoglycoside resistance in enterococci. Clin Infect Dis, 31(2):586-589.
    Chow J.W., Kak V., You I., et al. 2001. Aminoglycoside Resistance Genes aph(2")-Ib and aac (6')-Im Detected Together in Strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother, 45:2691-2694.
    Chow J.W., Zervos M.J., Lerner S.A., et al. 1997. A novel gentamicin resistance gene in enterococcus. Antimicrob Ag Chemother, 41: 511-4.
    Cormier Y., Tremblay G., Meriaux A., et al. 1990. Airborne microbial contents in two types of swine confinement buildings in Quebec. Am Ind Hyg Assoc J. 51:304-309.
    Coyete J.J., Ghuysen M., and Fontana R. 1980. The penicillin-binding proteins in streptococcus faecalis ATCC9790. Eur. J. Biochem. 110:445-456.
    Crawford G.V., and Jones P.H. 1979. Sampling and differentiation techniques for airborne organisms emitted from wastewater. Water Res. 13, 393-399.
    Crook B., Robertson J.F., Glass S.A., et al. 1991. Airborne dust, ammonia, microorganisms, and antigens in pig confinement houses and the respiratory health of exposed farm workers. Am Ind Hyg Assoc J. 52:271-279.
    Crowe C.K., Harris D.L.H., Elliott L.P., et al. 1996. A possible relationship between low facility dust and endotoxin levels and improved growth rates in pigs reared by IsoweanSM. Swine-Health-and-Production. 4(5):231-236.
    Dalla-Costa L.M., Irino k., Rodrigues J., et al. 1998. Characterisation of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. Journal of Medical Microbiology, 47(3):227-234.
    Deeb B.J., and DiGiacomo R.F. Respiratory diseases of rabbits- Veterinary Clin North Am Exot Anim Pract. 2000 May; 3(2):465-80.
    Deeb B.J., DiGiacomo R.F., Bernard B.L., and Silbernagel S.M. Pasteurella multocida and Bordetella bronchiseptica infections in rabbits. J Clin Microbiol. 1990 Jan; 28(1):70-5.
    Dennis N. 2004. Influenza: Girding for disaster: Asia Struggles to Keep Humans and Chickens Apart. Science. 306(5695):399.
    Devriese L.A., Hommez J., Wijfels R., et al. 1991. Composition of the enterococcal and streptococcal intestinal flora of chickens. J Appl Bacteriol, 71:46-50.
    
    Devriese L.A., Ieven M., Goossens H., et al. 1996. Presence of vancomycin-resistant enterococci in farm and pet animals. Antimicrob Agents Chemother. 40:2285-2287.
    
    Dho-Moulin M., Fairbrother J.M. 1999. Avian pathogenic Escherichia coli (APEC). Vet Res, 30:299-316.
    
    Di Giovanni G.D., Watrud L.S., Seidler R.J., et al. 1999. Comparison of parental and transgenic alfalfa rhizosphere acterial communities usingBiolog GN metabolic fingerprinting and Enterobacterial Repetitive Intergenic Consensus sequence-PCR (ERIC- PCR). Microbial Ecology, 37(2): 129-139.
    
    Di Giovanni G.D., Watrud L.S., Seidler R.J., et al. 1999. Fingerprinting of mixed bacterial strains and BIOLOG gram-negative (GN) substrate communities by Enterobacterial Repetitive Intergenic Consensus Sequence-PCR (ERIC-PCR). Current Microbiology, 38(4):217-223.
    Domig K.J., Mayer H.K., and Kneifel W. 2003. Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp 1. Media for isolation and enumeration. Int J Food Microbiol. 88(2/3): 147-164.
    Donaldson A.I., Gloster J., Harvey L.D., et al. 1982. Use of prediction models to forecast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany, Jersey and the Isle of Wight in 1981. Veterinary Record, 110:53-57.
    Donham K., Haglind P., Peterson Y., et al. 1989. Environmental and health studies of farm workers in Swedish swine confinement buildings Brit. J. Ind. Med. 46:31-37.
    Donham K.J., and Gustafson K.E. 1982. Human occupational hazards from swine confinement. Ann Am Conf Gov Ind Hyg. 2:137-142.
    Donham K.J., Popendorf W., Palmgren U., et al. 1986. Characterization of dusts collected from swine confinement buildings. Am. J. Ind. Med. 10:294-297.
    Donham K.J., Rubino M., Thedell T.D., et al. 1977. Potential health hazards to agricultural workers in swine confinement buildings. J Occup Med. 19:383-387.
    Donnenberg M.S., Kaper J.B., Finlay B.B. 1997. Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol. 5,109-114.
    Dowes J., Thorne P., Pearce N., et al. 2003. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann occup Hyg, 47(3): 187-200.
    Draker K.A., Wright G.D. 2004. Molecular mechanism of the enterococcal aminoglycoside 6'-N-acetyltransferase: role of GNAT-conserved residues in the chemistry of antibiotic inactivation.Biochemitry,43(2):446-454.
    Druet H.A.,Hendersen D.W.,Packman L.P.,et al.1953.Studies on respiratory infection.Ⅰ.The influence of particle size on respiratory infection with anthrax spores.J.Hyg.51(3):359-371.
    Duchaine C.,Grimard Y.,and Cormier Y.2000.Influence of building maintenance,environmental factors,and seasons on airborne contaminants of swine confinement buildings.Am Ind Hyg Assoc J.61(1):56-63.
    Duez C.,Zorzia W.,Sapunaric F.,et al.2001.The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-afinity penicillin-binding protein PBP4 and does not involve a psr-like gene.Microbiology,147(Pt9):2561-2569.
    Dunny G.M.,Antiporta M.H.,Hirt H.2001.Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis:probing the genetic and molecular basis for specificity of the pheromone response.Peptides,22:1529-1539.
    Dutldewicz J.and Jablonski L.1989.Biologiczne Szkodliwosci Zawodowe.PZWL,Warszawa(in Polish).
    Dutldewicz J.,Krysifiska-Traczyk E.,Skorskal C.,et al.2000.Exposure of agricultural workers to airborne microorganisms and endotoxin during handling of various vegetable products.Aerobiologia.16:193-198.
    Dutkiewicz J.,Pomorski Z.J.H.,Sitkowska J.,et al.1994.Airborne microorganisms and endotoxin in animal houses.Grana.33(2):85-90.
    Eklund M.,Scheutz F.,and Siitonen A..2001.Clinical Isolates of Non-O157 Shiga ToxinProducing Escherichia coli:Serotypes,Virulence Characteristics,and Molecular Profiles of Strains of the Same Serotype.Journal of Clinical Microbiology.39(8):2829-2834.
    E1 Amin N.,Lund B.,Tjernlund A.,et al.2001.Mechanisms of resistance to imipenem in imipenem-resistant,ampicillin-sensitive Enterococcus faecium.APMIS.109(11):791-6.
    E1 Kharroubi A.,Jacques P.,Piras G.,et al.1991.The Enterococcus hirae R40 penicillinbinding protein5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar.Biochem.J.280:463-469.
    Eubank S.,Guclu H.,Kumar,et al.2004.Modelling disease outbreaks in realistic urban social networks.Nature,429:180.
    Fairbrother J.M.1999.Enteric colibacillosis[A].In:Leman A D,Straw B E,Mengeling W L,et al.,Disease of swine[C].Ames:Iowa State University Press,433-440.
    Feachem R.G., Bradley D.J., Garelick H., et al. 1983. Health aspect of excreta and wastewater management. In sanitation and disease. World Bank Studies in Water Supply and Sanitation. (John Wiley & Sons, New York).
    Feldman K.A., Mohle-Boetani J.C., Ward J., et al. 2002. A cluster of Escherichia coli O157: non-motile infections associated with recreational exposure to lake water. Public Health Rep, 117(4):380-385.
    Fetherston J.D., Perry R.D. 1994. The pigmentation locus of Yersinia pestis KIM~(6+) is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol. Microbiol. 13, 697-708.
    
    Fontana R., Aldegheri M., Ligozzi M., et al. 1994. Overproduction of a low-afinity penicillin- binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 38:1980-1983.
    
    Fontana R., Cerini R., Longoni P., et al. 1983. Identification of a streptococcal penicillin- binding protein that reacts very slowly with penicillin. J. Bacterial. 155:1343-1350.
    Fraimow H., Knob C. 1997. Amplification of macrotide efflus pumps msr and mef from Enterococcus faecium by polymerase chain reaction, abstr [C]. Washington DC: American Society for Mocrobiology, 22.
    Franck S.M., Bosworth B.T., Moon H.W. 1998. Multiplex PCR for enterotoxigenic, attaching and effacing, and shiga toxinproducing Escherichia coli strains from calves. J. Clin. Microbiol. 36 (6), 1795-1797.
    Franklin R.B., and Taylor D.R. 1999. Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). Journal of Microbiological Methods, 35(3):225-235.
    Franz C.M., Holzapfel W.H., Stiles M.E. 1999. Enterococci at the crossroads of food safety? International Journal of Food Microbiology. 47:1-24.
    Frederic S., Christine F., Patrick S., et al. 2003. Redefining the Role of psr in β-Lactam Resistance and Cell Autolysis of Enterococcus hirae. Journal of Bacteriology, 185(20):5925-5935.
    Frydendahl K. 2002. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet. Microbiol. 85, 169-182.
    Gambarotto K., et al. 2000. Prevalence of vanacomycin-resistant enterococci in fecal samples from hospitalized patients and nonhospitalized controls in a cattle-rearing area of France. Journal of Clinical Microbiology, 38:620-624.
    Gillings M., Holley M. 1997. Repetitive element PCR fingerprinting (rep-PCR) using enterobactenal repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Letters in Applied Microbiology, 25(1):17-21.
    Gilson E., Clementj M., Perrin D., et al. 1987. Palindromic units: a case of highly repetitive DNA sequence in bacteria. Trends in Genetics, 3:226-230.
    Gilson E., Perrin D., Hofnungm. 1990. DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucleic Acids Research, 18 (13):3941-3952.
    Godfree A.F., Kay D., and Wyer M.D. 1997. Fecal streptococci as indicators of fecal contamination in water. Journal of Applied Microbiology Symposium Supplement, 83: 110S-119S.
    Gonzalez A., Hierro N., Poblet M., et al. 2005. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. International Journal of Food Microbiology, 102:295-304.
    Gophna U., Oelschlaeger T.A., Hacker J., et al. 2001. Yersinia HPI in septicemic Escherichia coli strains isolated from diverse hosts. FEMS Microbiol. Lett. 196, 57-60.
    Graham J.C, Gould F.K. 2002. Role of aminoglycosides in the treatment of bacterial endocarditis. J Antimicrob Chemother. 49:437-44.
    Grayson M.L., Eliopoulos G.M., Wennersten C.B., et al. 1991. Increasing resistance tobeta- lactam antibiotics among clinical isolates of Enterococcus faecium: a 22- year review at one institution. Antimicrob Agents Chemother. 35(11):2180-2184.
    Gross W.B. 1994. Diseases due to Esherichia coli in poultry. In: Gyles, C.L. (Ed.), Escherichia coli in Domestic Animals and Man. CAB International, Wallingford, UK. 237- 259.
    Guilvout I., Mercereau-Puijalon O., Bonnefoy S., et al. 1993. High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J. Bacteriol. 175, 5488- 5504.
    Hacker J., Kaper J.B. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54,641-679.
    Hagmar L., Schutz A., Hallberg T., et al. 1990. Health effects of exposure to endotoxins and organic dust in poultry slaughter-house workers. International Archives of Occupational Environmental Health. 62(2): 159-164.
    Hallgren A., Saeedi B., Nilsson M., et al. 2003. Genetic relatedness among Enterococcus faecalis with transposon-mediated high-level gentamicin resistance in Swedish intensive care units. Antimicrob Chemother, 52 (2): 162-167.
    Harper G.J., and Morton J.D. 1953. The respiratory retention of bacterial aerosols: experiments with radioactive spores. J. Hyg. 51:372-385.
    Heidelberg J.F., Shahamat M., Levin M., et al. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl Environ Microbiol. 63:3585-3588.
    Hermann J.R., Hoff S.J., Yoon K.J., et al. 2007. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet Res, 38: 81-93.
    Heyder J., Gebhart G., Rudolf G, et al. 1986. Deposition of particles in the human respiratory tract in the size range 0.005-15μm. J. Aerosol Sci. 17:811-825.
    Hinz T., Hartung J., and Wiegand B. 1994. Air quality in a Louisiana-type broiler house. Presented at the XII World Congress in Agricultural Engineering, Milano, Italy. Report No. 94-C-008.
    Hojovec J., Fiser A., Kubicek K Z. 1977. Die Rolle von Indikator keimen fuer die Beurteilung der Stalluft. Mh Vet Med, 32:766-769.
    Houf K., Zutterl D., HooF J.V., et al. 2002. Assessment of the genetic diversity among arcobacters isolated frompoultry products by using two PCR-based typing methods. Applied and Environmental Microbiology, 68(5):2172 -2178.
    Hultonc S.J., Higgins C.F., Sharp P.M. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, 5(4):825-834.
    Ibenyassine K., AitMhand R., Karamoko Y., et al. 2006. Use of repetitive DNA sequences to determine the persistence of enteropathogenic Escherichia coli in vegetables and in soil grown in fields treated with contaminated irrigation water. Letters in Applied Microbiology, 43: 528-533.
    Ike Y., Tanimoto K., Tomita H., et al. 1998. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 ( Gmr ) ( 65. 1 kilobases) to Enterococcus strains during broth mating. J Bacteriol, 180:4886-4892.
    Ingerman M., Pitsakis P.G., Rosenberg A., et al. 1987. beta-Lactamase production in experimental endocarditis due to aminoglycoside-resistant Streptococcus faecalis. J Infect Dis. 155(6):1226-1232.
    Inzana T.J., in Diagnostic procedures in veterinary bacteriology and mycology, ed. G.R. Cater, R. John and Jr. Cole, Academic Press, San diego, new York, Boston, London, Sydney, Tokyo, Toronto, 5th edn., 1990, pp. 165-176.
    Jackson V, Blair I S, McDowell D A, et al. 2007. The incidence of significant foodborne pathogens in domestic refrigerators. Food Control, 18:346-351.
    Jarnych V.S. 1976. Aerosole in der Veterinaermedizin. VEB Deutscher Landwirtschaftsverlag Berlin, S.74-88.
    Jennifer F., Robert C., David A.E. 2006. Airborne infectious disease and the suppression of pulmonary bioaerosols. DDT, 11(1/2): 51-57.
    Jerse A.E., Yu J., Tall B.D., et al. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 87, 7839-7843.
    Johnson J.R., Russo T.A. 2002. Extraintestinal pathogenic Escherichia coli: "the other bad E. coli". J Lab Clin Med, 139:155-162.
    Jones A.M., and Harrison R.M. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment. 326:151-180.
    Jones A.M., Govan J.R.W., Doherty C.J., et al. 2003. Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax, 58: 525-527.
    Judd A.K., Schneider M., Sadowsky M.J., et al. 1993. Use of repetitive sequences and the polymerase chain reaction technique to classify Genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol, 59(6):1702-1708.
    Jurkovic D., Krizkova L., Sojka M., et al. 2007. Genetic diversity of Enterococcus faecium isolated from Bryndza cheese. International Journal of Food Microbiology, 116: 82-87.
    Kak V., Donabedian S.M., Zervos M.J., et al. 2000a. Efficacy of ampicillin plus arbekacin in experimental rabbit endocarditis caused by an Enterococcus faecalis strain with high-level gentamicin resistance. Antimicrob Agents Chemother, 44:2545-2546.
    Kak V., You I., Zervos M.J., et al. 2000b. In-vitro synergistic activity of the combination of ampicillin and arbekacin against vancomycin-and high-level gentamicin-resistant Enterococcus faecium with the aph (2")-Id gene. Diagn Microbiol Infect Dis, 37:297-299.
    Kaliste E., Linnainmaa M., et al. 2002. Airborne contaminants in conventional laboratory rabbit rooms. Laboratory-Animals. 36(1): 43-50.
    Kao S.J., You I., Clewell D.B., et al. 2000. Detection of the High-level aminoglycoside resistance gene aph(2")-Ib in Enterococcus faecium. Antimicrob Agents Chemother, 44(10):2876-2879.
    Karra S., Katsivela E. 2007. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site. Water Research, 41: 1355-1365.
    Kaszanyitzky E.J., Tenk M., et al. 2007. Antimicrobial susceptibility of enterococci strains isolated from slaughter animals on the data of Hungarian resistance monitoring system from 2001 to 2004. International Journal of Food Microbiology, 115:119-123.
    Kator H., and Rhodes M. 1994. Microbial and chemical indicators. In Environmental Indicators and Shelfish Safety (New York, chapman and Hall).
    Kawamoto E., Sawada T., and Maruyama T. Evaluation of transport media for Pasteurella multocida isolates from rabbit nasal specimens. J Clin Microbiol. 1997 August; 35(8): 1948-1951.
    Ke D., Picard F.O.J., Martineau F., et al. 1999. Development of a PCR Assay for Rapid Detection of Enterococci. Journal of Clinical Microbiology. 37:3497-3503.
    Kennan R., Soderlind O., Conway P. 1995. Presence of F107, 2134P and Av24 fimbriae on strains of Escherichia coli isolated from Swedish piglets with diarrhoea. Vet. Microbiol. 43, 123-129.
    Khan A.A., McCarthy S., Wang R.F., et al. 2002. Characterization of United States outbreak isolates of Vibrio parahaemolyticus using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates. FEMS Microbiology Letters, 206:209-214.
    Kim K.Y. and Kim C.N. 2007. Airborne microbiological characteristics in public buildings of Korea, Building and Environment 42:2188-2196.
    Klare I., Heier H., Claus H., et al. 1995. VanA mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Let. 125:165-171.
    Kuzucu C., Cizmeci Z., Durmaz R., et al. 2005. The prevalence of fecal colonization of enterococci, the resistance of the isolates to ampicillin, Vancomycin, and high-level aminoglycosides, and the clonal relationship among isolates. Microb Drug Resist, 11 (2): 159-164.
    Lai L.C., Wainwrigh L.A., Stone K.D., et al. 1997. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infect. Immun. 65, 2211-2217.
    Leclercq R., Derlot E., Duval J., et al. 1988. Plasmid-mediated resistance to Vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med, 319: 157-161.
    Lee A.K, Arthur P.S., Lau, et al. 2007. Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 41:2831-2843.
    Levine M.M. 1987. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155, 377-389.
    Levison M.E., Mallela S. 2000. Increasing Antimicrobial Resistance: Therapeutic Implications for Enterococcal Infections. Curr Infect Dis Rep, 2:417-423.
    Lighthart B. 1984. Microbial aerosols: estimated contribution of combine harvesting to an airshed. Applied and Environmental Microbiology, 47:430-432.
    
    Lighthart B., Shaffer B.T. 1994. Bacterial flux from chaprral into the atmosphere in midsummer at a high desert location. Atmos Environ, 128:1267-1274.
    Ligozzi M., Pittaluga F., Fontana R. 1993. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-bindingp rotein5. J. Bacteriol. 175:2046-2051.
    Ligozzi M., Pittalugaf F., Fontana R. 1996. Modification of Penicillin-Binding Protein 5 Associated with High-Level Ampicillin Resistance in Enterococcus faecium. Antimicrob Agents Chemother, 40:354-357.
    Lim S.K., Lee H.S., Nam H.M., et al. 2007. Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003-2004. International Journal of Food Microbiology, 116:283-286.
    Lucier T.S., Fetherston J.D., Brubaker R.R., et al. 1996. Iron uptake and iron-repressible polypeptides in Yersinia pestis. Infect. Immun. 64,3023-3031.
    Maier R.M., Pepper I.L., Gerba C.P. 2000. Environmental Microbiology. Academic Press, San Diego, CA.
    Mainardi J.L., Legrand R., Arthur M., et al. 2000. Novel Mechanism ofp-Lactam Resistance Due to Bypass of DD-Transpeptidation in Enterococcus faecium. J Biol Chem., 275(22): 16490-16496.
    Malmberg P. 1990. Health effects of organic dust exposure in dairy farmers. American Journal of Industrial Medicine, 17: 1,7-15.
    Manna S.K., Brahmane M.P., et al. 2006. Occurrence, virulence characteristics and antimicrobial resistance of Escherichia coli 0157 in slaughtered cattle and diarrhoeic calves in West Bengal, India. Applied Microbiology, 43:405-409.
    Marilda C.V., Mirela B.Q., et al. 2007. Prevalence of ibeA gene in avian pathogenic Escherichia coli (APEC). Veterinary Microbiology, 119:88-89.
    Marjut E., Flemming S., and Anja S. 2001. Clinical Isolates of Non-O157 Shiga Toxin- Producing Escherichia coli: Serotypes, Virulence Characteristics, and Molecular Profiles of Strains of the Same Serotype. Journal of Clinical Microbiology, 2829-2834.
    Mark H., Reacher, Anita Shah, David M., Livermore, et al. Baceraemia and antibiotic resistance of its pathogens reported in Englandand Wales between 1990 and 1998: trend analysis.
    Marthi B., Fieland V.P., Walter M., et al. 1990. Survival of bacteria during aerosolization. Appl Environ Microbiol, 56: 3463-3467.
    
    McCartney A.L., Wenzhi W., Tanock G.W. 1996. Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied Environmental Microbiology, 62:4608-4613.
    McDaniel T.K., Kaper J.B. 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23, 399-407.
    McKee M.L., Melton-Celsa A.R., Moxley R.A., et al. 1995. Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells. Infect. Immun. 63, 3739-3744.
    Mehlhorn G. und Chai T.G. In: Mehihorn G. 2000. (Hrsg.): Lehrbuch der Tierhygiene[M].VEB Gustav Fischer Verlag Jena, S. 63-67; 117-200; Aufl. S. 5-15; 17.
    Merion E., Becerril B., Valle F., et al. 1986. Deletion of a repetitive extrgenic palindromic(REP) sequence downstreamform the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA. Gene, 50(2/ 3):305-309.
    Mims S.A., Mims III F.M. 2004. Fungal spores are transported long distances in smoke from biomass fires. Atmospheric Environment, 38: 651-655.
    Moellering Jr Rc. 1992. Emergence of Entercoccus as a significant pathogen. Clin Infect Dis, 14(6): 1173.
    Moon H.W., Schneider R.A., Moseley S.L. 1986. Comparative prevalence of four enterotoxin genes among Escherichia coli isolated from swine. Am. J. Vet. Res. 47, 210-212.
    Morgan G., Lincoln D., Sheppeard V., et al. 2003. The effects of low level air pollution on daily mortality and hospital admissions in Sydney, Australia, 1994 to 2000. Epidemiology. 14(5) Supplement:S111-S112.
    Morley A.J., Thomson D.K. 1984. Swollen head syndrome in broiler chickens. Avian Dis. 28: 238-243.
    Mueller W., Dossow V.A., and Dinter P.S. 1988. Die Tenazitaet von Bakterien im luftgetragenen Zustand. V. Mitt.: Vergleich zwischen kaelber- und ferkelpathogenen E.coli Staemmen; Tieraerztl. Umschau. 4:258-262.
    Murray B.E. 1992. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 36(11):2355-2359.
    
    Murray B.E., Church D.A.,Wanger A., et al. 1986. Comparison of two beta-lactamase- producing strains of Streptococcus faecalis. Antimicrob Agents Chemother. 30 (6):861- 864.
    Murray, B. E. 1990. The Life and Times of the Enterococcus. Clinical Microbiology Reviews. 3: 46-65.
    Murry B.E., Mederski-Samoraj B. 1983. Transferable beta-lactamase a new mechanism for in vitro penicillin resistance in streptococcus faecalis. Journal of Clinicalln Vestigation, 72:1168-1171.
    Murray P.R. 1995. Manual of Clinical Microbiology [M]. 6th. Washingtong DC: American Society Microbiology, 308.
    NNIS. 2001. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992-June 2001. Am J Infect Control 29:404-421.
    Normile D. 2004. INFLUENZA: GIRDING FOR DISASTER: Asia Struggles to Keep Humans and Chickens Apart. Science. 306:399.
    Norval J.C., Strachana T., Michael P., et al. 2005. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. International Journal of Food Microbiology, 103:35- 47.
    Olson D.K., and Bark S.M. 1996. Health hazards affecting the animal confinement farm worker. AAOHN J. 44:198-204.
    Onodera Y., Okuda J.,Yanaka M., et al. 2002. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob Agents Chemother, 46(6): 1800-1804.
    Owen M.K., Ensor D.S., Sparks L.E. 1992. Airborne particle sizes and sources found in indoor air. Atmospheric Environment, 26A:2149-62.
    Palleroni N.J., in The Prokaryotes, ed. A. Balows, H.G. Tpiiper, M. Dworkin, W. Harder, K.H. Schleifer, Springer Verlag, New York, berlin, Heidelberg, 1992, pp. 3071-3085.
    Pascual L., Perez-Luz S., Adela Yanez M., et al. 2003. Bioaerosol emission from wastewater treatment plants. Aerobiologia 19:261-270.
    Patrick R., Murray. 1995. Manu of Clinical Microbiology [M]. Sixth Edition ASM press. 308.
    Patterson J.E., Masecar B.L., Zervos M.J. 1988. Characterization and comparison of two penicillinase-producing strains of Streptococcus (Enterococcus) faecalis. Antimicrob Agents Chemother, 32(1): 122-124.
    Patterson J.E., Wanger A., Zscheck K.K., et al. 1990. Molecular epidemiology of beta-lactamase-producing enterococci. Antimicrob Agents Chemother, 34(2): 302-305.
    Piras G., El Kharroubi A., Van Beeumen J., et al. 1990. Characterization of an Enterococcus hirae penicillin-binding protein3 with low penicillin afinity. J Bacteriol. 172:6856-6862.
    Piras G., Raze D., el Kharroubi A., et al. 1993. Cloning and sequencing of the low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J Bacteriol. 175(10):2844-2852.
    Pootoolal J., Neu J., Wright G.D. 2002. Glycopeptide antibiotic restance. Ann Rev Pharmacol Toxiol, 42:381-408.
    Pope III C.A., Bates D.V., and Raizenne M.E. 1995. Health effects of particulate air pollution: time for reassessment? Environ Health Perspect. 103:472-80.
    Pope III C.A., Burnett R.T., Thurston G.D., et al. 2004. Cardiovascular mortality and long-term exposure to particulate air pollution, epidemiological evidence of general pathophysiological pathways of disease. Circulation. 109: 71-77.
    Prazmo Z., Dutkiewicz J., Skorska C., et al. 2003. Exposure to airborne Gram-negative bacteria, dust, and endotoxin in paper factories. Ann Agric Environ Med, 10(1):93-100.
    Predicala B.Z., Urban J.E., Maghirang R.G., et al. 2002. Assessment of bioaerosols in swine barns by filtration and impaction. Curr Microbiol, 44:136-140.
    Randall C.J., Meakins P.A., Harris M.P., et al. 1984. A new skin disease in broilers? Vet. Rec, 114(10):246.
    Rasschaert G., Houf K., Imberechts H., et al. 2005. Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. Journal of Clinical Microbiology, 43(8): 3615-3623.
    Raze D., Dardenne O., Hallut S., et al. 1998. The gene encoding the low-affinity penicillin-binding protein 3r in Enterococcus hirae S185R is bome on a plasmid carrying other antibiotic resistanced eterminants. Antimicrob Agents .Chemother. 42:534-539.
    Rice L.B., Bellais S., Carias L.L., et al. 2004. Impact of Specific pbp5 Mutations on Expression of {beta)-Lactam Resistance in Enterococcus faecium. Antimicrob Agents Chemother. 48:3028-3032.
    Rice L.B., Carias L.L. 1998. Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol, 180: 714-21.
    Rice L.B., Carias L.L., Huton-Thomas R., et al. 2001. Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 45:1480-1486.
    Rice L.B., Marshall S.H. 1992. Evidence of incorporation of the chromosomal beta-lactamase gene of Enterococcus faecalis CH19 into a transposon derived from staphylococci. Antimicrob Agents Chemother. 36(9):1843-6.
    Richards M.J., Edwards J.R., Culver D.H., et al. 2000. Nosocomial infections incombined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol, 2(8):510-515.
    Riley E.C., Murphy G., and Riley R.L. 1978. Airborne spread of measles in a suburban elementary school. Am J Epidemiol, 107:421-432.
    Robert C., Moellering J.R. 2000. Enterococcus species, streptococcus bovis and Leuconostoc species [A]. Mandell G.L., Bennett J.E., Dolin R. Principles and practice of infectious disease [M]. 5th. NewYork: Churchill Livingstone, 2147-2156.
    Rohlf F.J. 2000. NTSYS-pc. Numerical Taxonomy and Multi-variate Analysis System, Version 2.1. Exeter Software, Setauket, New York
    Rosdahl V.T. 1973. Naturally occurring constitutive -lactamase of novel serotype in Staphylococcus aureus. J Gen Microbiol. 77(1):229-231.
    Rowland Dyke K.G. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol. 4(6):961-975.
    Rybkine T., Mainardi J.L., Sougakoff W., et al. 1998. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with diferent levels ofp-lactam resistance. J. Infect. Dis. 178:159-163.
    Satoshi T., Takaoki H., et al. 1999. Analysis of cross infection using genomic fingerprinting in nosocomial urinaty tract infection caused by Enterococcus faecalis. Japan. J Infect Chemother, 5:46-48.
    Savage D.C. 1977. Microbial ecology of the gastrointestinal tract. In Annual Reviews of Microbiology, Starr, MP. (Reviews Inc., Palo Alto), pp. 107-133.
    Scharek L., Guth J., Reiter K., et al. 2005. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet. Immunol. Immunopathol. 105:151-161.
    Schroeder C.M., White D.G., Meng J. 2004. Retail meat and poultry as a reservoir of antimicrobial-resistant Escherichia coli. Food Microbiol, 21: 249-255.
    Schwartz J., and Neas L.M. 2000. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology. 11(1): 6-10.
    Schwartz J., Dockery D., and Neas L. 1996. Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc. 46: 927-39.
    Seedorf J., Hartung J., Schroder M., et al. 1998. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. J Agric Eng Res. 70:97-109.
    Sharpies G.J., Lloyd R.G. 1990. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Research, 18(22):6503-6508.
    Shepard B.D., Gilmore M.S. 2002. Antibiotic-resistantent erococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect, 4(2):215-224.
    Shinn E.A., Smith G.W., Prospero, et al. 2000. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 27: 3029-3032.
    Sifaoui F., Arthur M., Rice L., and Gutmann L. 2001. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother. 45:2594-2597.
    Simjee S., Manzoor S.E., Fraise A.P., et al. 2000. Nature of transposon-mediated high-level gentamicin resistance in Enterococcus faecalis isolated in the United Kingdom. J Antimicrob Chemother, 45: 565-575.
    Sojka W.J., Carnaghan R.B.A. 1961. Escherichia coli infection in poultry. Res Vet Sci., 2: 340-352.
    Soltani et al. 2000. Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococcus feacium from animals, raw meat, and hospital patients in Western Europe. Antimicrobial Agent and Chemotherapy, 44:433-436.
    Somarelli J.A., Makarewicz J.C., Sia R., et al. 2007. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Journal of Environmental Management, 82:60-65.
    Stetzenbach L.D. 1998. Microorganisms and indoor air quality. Clin Microbiol News. 20:157- 161.
    Steven M.W. 2006. Public health: Chicken Monster or Chicken Little? Science, 311(5762): 780-781.
    Stewart S.L., Grinshpun S.A., Willeke K., et al. 1995. Effect of impact stress on microbial recovery on an agar surface. Appl Environ Microbiol. 61:1232-1239.
    Strachan N.J.C., Doyleb M.P., Kasuga F., et al. 2005. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. International Journal of Food Microbiology. 103: 35-47.
    Swenson J.M., Ferraro M.J., Sahm D.F., et al. 1995. Multilaboratory evaluation of screening methods for detection of high-level aminoglycoside resistance in enterococci. National Committee for Clinical Laboratory Standards Study Group on Enterococci. J Clin Microbiol, 33:3008-3018.
    Szczuka E., Kaznowski A. 2004. Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and Enterobacterial Repetitive Intergenic Consensus sequence PCR. Journal of Clinical Microbiology, 42(1):220-228.
    Taha M.P.M., Drew G.H., Longhurst P.J., et al. 2006. Bioaerosol releases from compost facilities: evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmospheric Environment, 40:1159-1169.
    Tanimoto K., Ike Y. 2002. Analysis of the Conjugal Transfer System of the Pheromone- Independent Highly Transferable Enterococcus Plasmid pMG1: Identification of a tra Gene (traA) Up-Regulated during Conjugation. J Bacteriol, 184:5800-5804.
    Teng L.J., Liaw S.J., Hsueh P.R., et al. 1998. Heterogeneity of resistance elements in clinical isolates of enterococci with high-level gentamicin resistance. J Formos Med Assoc, 97:855-859.
    Thorne P.S., Kiekhaefer M.S., Whitten P., et al. 1992. Comparison of bioaerosol sampling methods in barns housing swine. App Environ Microbial, 58: 2543-2551.
    Tomita H., Pierson C., Lim S.K., et al. 2002. Possible connection between a widely disseminated conjugative gentamicin resistance (pMGl-like) plasmid and the emergence of Vancomycin resistance in Enterococcus faecium. J Clin Microbiol, 40:3326-3333.
    Tsai S.F., Zervos M.J., Clewell D.B., et al. 1998. A New High2Level Gentamicin Resistance Gene, aph(2")-Id in Enterococcus spp. Antimicrob Agents and Chemother, 42:1229-1232.
    Uttley A.H, Collins C.H, Naidoo J., George R. C. Vancomycin-resistant enterococci. Lancet, 1988,1:57-58.
    Vakulenko S.B., Donabedian S.M., Voskresenskiy A.M., et al. 2003. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother, 47:1423-1426.
    Venkataraman C., and Kao A.S. 1999. Comparison of particle lung doses from the fine and coarse fractions of urban PM-10 aerosols. Inhalation Toxicology. 11:151-69.
    Ventura M., Meylan V., Zinkr. 2003. Identification and tracing of Bifidobacterium species by use of Enterobacterial Repetitive Intergenic Consensus sequences. Applied and Environmental Microbiology, 69(7):4296-4301.
    Versalovic J., Koeuth T., Lupski J.R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 19:6823-6831.
    Vidotto M.C., Queiroz M.B., de Lima N.C.S., et al. 2007. Prevalence of ibeA gene in avian pathogenic Escherichia coli (APEC). Veterinary Microbiology. 119: 88-89.
    Weiss R.A., McMichael A.J. 2004. Social and environmental risk factors in the emergence of infectious diseases. Nat Med, 10 (Suppl. 12):S70-S76.
    Wells W.F. 1955. Airborne contagion and air hygiene. Harvard University Press, Cambridge, Massachusetts, 106.
    Wendelbo O., Jureen R., Eide G.E., et al. 2003. Outbreak of infection with high-level gentamicin-resistant Enterococcus faecalis (HLGRE) in a Norwegian hospital. Clin Microbiol Infect, 9 (7):662-669.
    Wiegand B., Hartung J., Hinz T., et al. 1993. Air quality in Louisiana type broiler houses. Part 2: Bacteria and endotoxin levels in airborne dust. Landbauforschung Volkenrode. 43(4):236-241.
    Wieler L.H., Ilieff A., Herbst W., et al. 2001. Prevalence of enteropathogens in suckling and weaned piglets with diarrhoea in southern Germany. J. Vet. Med. B 48:151-159.
    Wikstromp and Ersson A.C., Forsmanm. 1999. Biomonitoring complex microbial communities using random amplified polymorphic DNA and principal component analysis. FEMSMicrobiology Ecology, 28(2):131-139.
    Williamson W., Gutmann R.L., Horaud T., et al. 1986. Use of penicillin-binding proteins for the identification of enterococci. J. Gen. Microbiol, 132:1929-1937.
    Willy Z., Xiang Y.Z., Olivier D., et al. 1996. Structure of the Low-Affinity Penicillin-Binding Protein 5 PBP5fm in Wild-Type and Highly Penicillin-Resistant Strains of Enterococcus faecium J Bacteriology, Aug. 178(16):4 948-4957.
    Wolinsky S.M. 2006. Public Health: Chicken Monster or Chicken Little? Science. 311(5762): 780-781.
    World Helth Organization (WHO), Sustainable Development and Healthy Environments (1999). Health-based monitoring of recreational waters: the feasibility of a new approach (the 'Annapolis protocol'). Protection of the Human Environment Water, Sanitation and Health Series, Geneva.
    Xie Y., Kim K.J., Kim K.S. 2004. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol, 42:271-279.
    Xu X., Dockery D.W., Christiani D.C., et al. 1995. Association of air pollution with hospital out patient visits in Beijing. Arch. Environ. Health. 50(3):214-220.
    Zscheck K.K., Hull R., Murray B.E. 1988. Restriction mapping and hybridization studies of a beta-lactamase-encoding fragment from Streptococcus (Enterococcus) faecalis. Antimicrob Agents Chemother. 32(5):768-769.
    Zucker B.A., Muller W. 2000a. Airborne microorganisms in animals stables. 3. Relationship between inhaled endotoxins, dust and airborne bacteria in a poultry housing unit. Berliner und Munchener Tierarztliche Wochenschrift. 113:7-8,-279-283.
    Zucker B.A., Trojan S., et al. 2000b. Airborne gram-negative bacterial flora in animal houses. Journal of Veterinary Medicine Series B - Infectious Diseases and Veterinary Public Health, 47(1):37-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700