用户名: 密码: 验证码:
淋巴囊肿病毒口服微囊核酸疫苗的研制与免疫效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淋巴囊肿病(Lymphocystis disease,LCD)是由虹彩病毒科(Iridoviridae)淋巴囊肿病毒(Lymphocystis disease virus, LCDV)引起的一种鱼类病毒性传染病。淋巴囊肿病在我国北方养殖牙鲆中大规模发生,给养殖者造成了重大经济损失,严重威胁我国的海水养殖业。面对淋巴囊肿病的蔓延,如何实施预防以及有效地治疗该病毒病,就成了养殖产业面临的一个迫在眉睫的课题。
     DNA疫苗又称基因疫苗或核酸疫苗,是将编码某种抗原蛋白的外源基因(一般是DNA)与真核表达载体质粒重组,利用某种方法直接导入动物细胞内,使带有目的基因的表达载体通过宿主细胞的表达系统合成抗原蛋白,诱导宿主产生针对该抗原蛋白的非特异性和特异性免疫应答,从而起到免疫保护作用。DNA疫苗与传统疫苗相比,制备方法简单、成本低、适合大批量生产、质粒DNA非常稳定且易于贮存和运输。更为重要的是DNA疫苗的抗原基因能在体内长期表达,不断刺激机体的免疫系统达到免疫效果。另外它可组成多价疫苗,形成对多个抗原表位的免疫保护作用。
     目前,水产养殖业对鱼类疾病采用的免疫途径基本上为肌肉注射方式。一般认为,注射方式产生的免疫效果强于浸浴和口服,但该方式也伴随着一些负面问题,例如较高的人力和设备成本,注射量不易控制,养殖鱼个体差异较大,偶而出现鱼类皮肤破损。对于养殖的鱼类而言,用口服疫苗免疫是一条有效的免疫途径。然而,由于各种酶的存在以及恶劣的胃肠条件,以DNA为基础的疫苗会被水解或者发生变性,这使核酸疫苗的应用受到了很大限制。为了克服这一弊端,本文根据DNA疫苗的特征,运用油包水(W/O)和水包油包水(W/O/W)乳化技术制备了三种不同的淋巴囊肿病毒微囊核酸疫苗:海藻酸盐微囊核酸疫苗;聚丙交酯乙二醇酸(PLGA)微囊核酸疫苗和壳聚糖微囊核酸疫苗。
     载有抗淋巴囊肿病毒核酸疫苗的海藻酸盐微囊能通过油包水乳化方式(W/O)被成功制备。这种海藻酸盐微囊的产率,载药量和包被效率分别为90.5%, 1.8%,92.7%。制备的海藻酸盐微囊直径小于10μm,而且其表面形态为圆形。傅立叶红外光谱分析显示,相对于海藻酸钠,载疫苗的海藻酸钠微囊中出现了明显的DNA单键与双键峰值。琼脂糖凝胶电泳发现,在包被过程中,有少量超螺旋质粒DNA的空间结构发生改变,被转变成开环和线性质粒。质粒DNA的累积释放试验表明:在pH = 2.0的酸性介质中,从载药微囊中释放的pDNA少于10%,而在pH = 9.0的碱性介质中有少于6.5%的释放。RT-PCR和免疫荧光试验表明,在进行口服管理之后10到90天内,pDNA表达了RNA和绿色荧光蛋白。间接法酶联免疫吸附试验表明(indirect ELISA),与裸露质粒DNA(pDNA)免疫过的鱼相对照,用载有质粒DNA(pDNA)的海藻酸盐微囊免疫牙鲆之后,从第3周到第16周的这段日期里,鱼的血清免疫响应呈阳性(O.D≥0.3)。
     本论文通过改良的水包油包水(W/O/W)双乳化技术,质粒DNA(pDNA)能成功地包被进聚丙交酯乙二醇酸(PLGA)胶囊里。这种胶囊的包被效率,载药百分比和产率分别是78-88%,0.5-0.7%和83.5-86.5%,它的粒径小于14μm。在模拟胃肠液及体液累积释放试验中发现,在模拟胃液中,它的累积释放能力依次为pH 2.0 > pH 9.0 > pH 7.4。裸露质粒(pDNA)与胶囊中质粒(pDNA)超螺旋比例分别为80%和89%左右,这表明在包被过程中有少量的超螺旋质粒(pDNA)发生降解。反转录技术(RT-PCR)说明,载药胶囊口服免疫后10到90天,含有主要衣壳蛋白基因(MCP gene)信息的RNA广泛存在于牙鲆各种组织内。免疫荧光照片显示:服用载药PLGA胶囊后,淋巴囊肿病毒主要衣壳蛋白在牙鲆供检组织内得到了有效表达。除此之外,间接法酶联免疫吸附试验表明,从口服后第1周到第24周血清的免疫响应呈阳性(O.D≥0.3),而口服裸露核酸疫苗后,血清的免疫响应呈阴性。
     基于壳聚糖在水溶液中带正电荷,核酸疫苗在水溶液带负电荷,两者能互相吸附的特征,本论文运用油包水乳化法(W/O)技术,构建了一种壳聚糖微囊核酸疫苗。这种微囊的产率,载药百分比及包被效率分别是93.6%, 0.3%和94.5%。扫描电镜照片表明,载淋巴囊肿病毒核酸疫苗壳聚糖微囊呈球形且具有光滑的外表。琼脂糖电泳分离结果显示相对于开环质粒和线性质粒疫苗(pDNA),该微囊含有高比例的超螺旋质粒,充分说明核酸疫苗在包被前后的转染效率没有大的改变。模拟胃肠环境下的体外缓释实验表明,被包被于壳聚糖微囊中的质粒疫苗(pDNA)在酸性介质中比在碱性介质中有更快的释放速度。壳聚糖微囊核酸疫苗在磷酸缓冲液(PBS,pH 7.4)中的释放曲线揭示,微囊被肠道吸收以后能持续释放的时间可以达到42天。RT-PCR和免疫荧光结果表明,用淋巴囊肿病毒壳聚糖微囊核酸疫苗对牙鲆进行口服免疫之后,在10-90天里,均能检测到包含淋巴囊肿病毒主要衣壳蛋白(MCP)遗传基因信息的RNA存在于鱼的各供检组织内,在组织切片中同时也发现含有荧光表达蛋白的抗原蛋白被核酸疫苗表达。除此之外,用口服淋巴囊肿病毒壳聚糖微囊核酸疫苗免疫牙鲆之后,显示了抗体浓度明显增加,其免疫响应呈阳性(O.D > 0.3)。
     从免疫效果来分析, PLGA微球疫苗效果最好,但PLGA价格相对另外两种材料稍贵,加工工艺相对复杂,口服管理前要保证有机溶剂挥发完全。壳聚糖微球疫苗与海藻酸盐微球疫苗均采用油包水(W/O)技术制备,前者免疫效果要优于后者,主要是因为壳聚糖本身带正电荷,核酸疫苗带负电荷,它们两者本身发生吸附,所以壳聚糖会提供更好的缓释和保护作用。
     本实验结果表明,海藻酸盐微囊,PLGA微胶囊及壳聚糖微囊均是理想而富有前景的药物载体。这些包被技术因为易于操作,原料价格低廉以及显著的免疫功效而具有广阔的前景,它们有可能在药物传输方面得到广泛的应用。
Lymphocystis disease, caused by lymphocystis disease virus (LCDV), is a kind of infectious disease of many fish. The pathogen was suggested as an iridovirus based on histopathological and morphological evidences. Outbreaks of lymphocystis disease with high mortalities have been reported in cultured Japanese flounder in Northern culture of China and caused significant economic losses in some marine net-cage farms. Therefore, in order to control LCDV, it is essential to find a vaccine and vaccinate fish by optimal approach.
     DNA vaccines are plasmid DNAs encoding specific proteins that can be expressed in cells of an inoculated host. The plasmids used are eukaryotic expression vectors, which contain the necessary elements for expression in eukaryotic cells. DNA vaccines are considered to be a promising form of vaccine for the control of infectious diseases and cancers since they offer many advantages over other conventional vaccines such as peptide or attenuated live pathogens. For instance, DNA vaccines are relatively safe and can be administered repeatedly without adverse effects. In addition, DNA vaccines are comparatively easy to produce on a large scale and are able to yield products with high purity and stability. Most importantly, effective DNA vaccine delivery systems, such as direct intradermal administration of DNA vaccines via gene gun to professional antigen presenting cells (APCs), have been well established. Experts in the research field now believe that the first step in the success of nucleic acids as a biopharmaceutical drug could come in terms of genetic immunization (DNA vaccines) which only needs transient expression of the encoding protein unlike long term expression in gene therapy. Plasmid DNA encoding for a variety of antigens (proteins) have been demonstrated in animal models of infectious diseases, cancers and allergies.
     Nucleic acid-based immunotherapy is a new treatment option for many complex disorders including a variety of infectious diseases and cancers. More importantly, DNA-based vaccines could have increased advantages over recombinant proteins and peptides in treatments of viral and parasitic infectious diseases as well as cancers. The reproducible and robust clinical efficacy of naked pDNA in fish trials has been demonstrated by intramuscular, intravenous, or intradermal injection. However, for fry in the aquaculture industry, injection approach is inappropriate because of the difficulty in operation. In addition, injection may harm the skin of fish, and bacterium and/or parasite would infect fish and cause higher mortality rate. The lower efficacy of orally administered pDNAs may be attributable to the inactivation of pDNA caused by the nucleases, lipases and peptidases present in the gastrointestinal tract. The pDNA encapsulated in microparticles can be protected from degradation in the gut, and a controlled release of pDNA could be achieved. In order to overcome the problems described above, three kinds of microparticles, including alginate microspheres loaded with DNA vaccine, PLGA microcapsules loaded with DNA vaccine and chitosan microspheres loaded with DNA, were prepared to vaccinate Japanese flounder.
     Oral alginate microcapsules loaded with pDNA against fish lymphocystis disease viruses (LCDV) were prepared with a modified oil containing water (W/O) emulsification method. Yield, loading percent and encapsulation efficiency of alginate microcapsules were 90.5%, 1.8% and 92.7%, respectively. Alginate microspheres prepared had size diameters of less than 10μm, and their shape was spherical. As compared to sodium alginate, a remarkable increase of DNA-phosphodiester and DNA-phosphomonoester bonds was observed for alginate microcapsules loaded with pDNA by Fourier transform infrared (FTIR) spectroscopic analysis. Agarose gel electrophoresis showed a little supercoiled pDNA was transformed to open circular and linear pDNA during encapsulation. The cumulative release of pDNA in alginate microcapsules was≤10% in pH 2.0 acidic media, and it was less than 6.5% in pH 9.0 alkaline media in 12 h. RT-PCR and immunofluorescence image indicated that pDNA expressed RNA and fluorescence protein in tissues of fish 10–90 days after oral administration. An indirect enzyme-linked immunosorbent assay (ELISA) showed that immune response of sera was positive (O.D≥0.3) from week 3 to week 16 for fish vaccinated with alginate microcapsules loaded with pDNA, in comparison with fish vaccinated with naked pDNA.
     Poly(DL-lactide-co-glycolide) (PLGA) microcapsules, loaded with plasmid DNA (pDNA) against lymphocystis disease virus (LCDV), were prepared by modified water in oil in water (W/O/W) double emulsion method in our laboratory. Encapsulation efficiency, loading percent and diameter of microcapsules were 78-88%, 0.5-0.7% and less than 10μm, respectively. In simulated gastric fluid (SGF), less than 10% of pDNA was released from microcapsules in 12 h, and about 6.5% of pDNA was released in 12 h in simulated intestinal fluid (SIF). The content of the supercoiled of pDNA in microcapsules and control was 80% and 89% respectively, which indicated that a little supercoiled pDNA degradation occurred during encapsulation. RT-PCR showed that lots of RNA containing information of MCP gene existed in all tissues of fish vaccinated with microcapsules 10-90 days after oral administration. Immunofluorescence images displayed that major capsid protein (MCP) of LCDV was expressed in tissues of fish vaccinated with pDNA-loaded microcapsules. In addition, indirect enzyme-linked immunosorbent assay (ELISA) showed that the immune responses of sera were positive (O.D≥0.3) from week 1 to week 24 for fish vaccinated with microcapsules, in comparison with fish vaccinated with naked pDNA.
     Chitosan microcapsules containing a plasmid vaccine (pDNA) against lymphocystis disease virus were prepared through an emulsion-based methodology. The yield, drug loading and encapsulation efficiency of microcapsules were 93.6%, 0.3% and 94.5%, respectively. Scanning electron microscopy (SEM) showed that pDNA-loaded microcapsules yielded a spherical shape with smooth surfaces. The disproportion of supercoiled to open circle and linear pDNA suggested that high transfection efficiencies of pDNA in microcapsules were retained. In simulated gastrointestinal tract environment, the release rate of pDNA encapsulated in acidic media was faster than that in alkaline media. The release profile at PBS buffer (PH 7.4) displayed that pDNA-loaded chitosan microcapsules had a sustained release up to 42 days after intestinal imbibition. In addition, the results of RT-PCR and immunofluorescence images indicated that the pDNA expressed antigen protein in tissues of fish 10-90 days after oral administration.
     Our results suggested that pDNA-loaded alginate microcapsules and PLGA microcapsules as well as chitosan microcapsules were promising carriers for pDNA vaccine. The three pDNA-loaded microcapsules have potential for drug delivery applications due to their ease of operation, low cost and notable immunisation efficacy.
引文
[1] Sun, X., Qu, L., Zhang, J., (2000). Pathogenicity and immunogenicity of lymphocystis virus of Japanese flounder (Paralichthys olivaceus). High Technol. Lett. 9, 19– 21.
    [2] Tidona, C.A., Darai, G., (1997). The complete DNA sequence of lymphocystis disease virus. Virology 230, 207– 216.
    [3] Zhang, QY., (2002). A review of viral diseases of aquatic in China. Acta Hydrobiol. Sin. 26, 93– 101 (In Chinese).
    [4] Zhang, Q.Y., Ruan, H.M., Li, Z.Q., Yuan, X.P., Gui, J.F., (2003). Infection and propagation of lymphocystis disease virus isolated from the cultured flounder Paralichthys olivaceus in grass carp cell line. Dis. Aquat. Org. 57, 27– 34.
    [5] Zhang, Q.Y., Xiao, F., Xie, J., Li, Z.Q., Gui, J.F., (2004). Complete genome sequence of lymphocystis disease virus (LCDV-C) isolated from China. J. Virol. 78, 6982–6994.
    [6]孙修勤,曲凌云,张进兴.(2000),牙鲆淋巴囊肿病毒的病原性与免疫原性[J].高技术通讯, 09:19-21.
    [7]张奇亚,肖枫,李正秋等. (2002),从我国分离的3株蛙虹彩病毒与FV3主要衣壳蛋白基因同源性的比较[J].病毒学报, 18(1):83-85.
    [8]刘允坤,孙修勤,黄捷. (2002),牙鲆(Paralichthys olivaceus)淋巴囊肿病毒的分离[J]高技术通讯. 06:92-95.
    [9]孙德禹,沈宗武等. (2001),牙鲆池塘人工育苗试验.齐鲁渔业, 18(3):28-29
    [10] Zhang, Q.-Y., Zhao, Z., Xiao, F., Li, Z.-Q., Gui, J.-F. (2006). Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis disease virus (LCDV-C) in iridoviruses. Aquaculture 251, 1–10.
    [11] Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996). Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 184, 1555-1560.
    [12]曲凌云,孙修勤,张进兴.(2001).养殖牙鲆淋巴囊肿病的电镜观察.鱼类病害研究23(3).51-52
    [13]刘允坤,孙修勤.(2002).牙鲆(Paralichthys olivaceus)淋巴囊肿病毒的分离高技术通讯12(6).92-95
    [14] Fuji, K., Kobayashi, K., Hasegawa, O., Coimbra, M. R. M., Sakamoto, T., Okamoto, N. (2006). Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254, 203–210.
    [15]曲凌云,孙修勤. (2000).牙鲆抗淋巴肿病毒免疫球蛋白的纯化.高技术通讯10(9). 14-18
    [16] Coimbra, M.R.M., Kobayashi, K., Koretsugu, S., Hasegawa, O., Ohara, E., Ozaki, A., Sakamoto, T., Naruse, K., Okamoto, N., (2003). A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture 220, 203–218.
    [17] Nam, B.H., Hirono, I., Aoki, T., (2003). Bulk isolation of immune response-related genes by expressed sequenced tags of Japanese flounder Paralichthys olivaceus leucocytes stimulated with Con A/PMA. Fish Shellfish Immunol. 14, 467–476.
    [18]孙修勤,曲凌云.(2000).牙鲆淋巴囊肿病毒的病原性与免疫原性.高技术通讯10(9). 19-21
    [19]孙修勤,汪敏.(2002).牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG—9307中的增殖.高技术通讯12, 94-96
    [20]刘允坤孙修勤. (2002).牙鲆淋巴囊肿病的PCR诊断方法研究.高技术通讯12(11).87-89
    [21] Ludewig, B., Ochsenbein, A. F., Odermatt, B., Paulin, D., Hengartner, H., and Zinkernagel, R. M. (2000). Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191, 795-804.
    [22] Lungwitz, U., Breunig, M., Blunk, T., and Gopferich, A. (2005). Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60, 247-266.
    [23] Luo, Y., O'Hagan, D., Zhou, H., Singh, M., Ulmer, J., Reisfeld, R. A., James Primus, F., and Xiang, R. (2003). Plasmid DNA encoding human carcinoembryonic antigen (CEA) adsorbed onto cationic microparticles induces protective immunity against colon cancer in CEA-transgenic mice. Vaccine 21, 1938-1947.
    [24] Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., and Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solidimmune response in mice. J Control Release 109, 62-76.
    [25] Manuel, W. S., Zheng, J. I., and Hornsby, P. J. (2001). Transfection by polyethyleneimine-coated microspheres. J Drug Target 9, 15-22.
    [26] Akinc, A., Thomas, M., Klibanov, A. M., and Langer, R. (2005). Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7, 657-663.
    [27] Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
    [28] Anderson, W. F. (2002). The current status of clinical gene therapy. Hum Gene Ther 13, 1261-1262.
    [29] Kim, Y. H., Park, J. H., Lee, M., Kim, Y. H., Park, T. G., and Kim, S. W. (2005). Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 103, 209-219.
    [30] Kipper, M. J., Wilson, J. H., Wannemuehler, M. J., and Narasimhan, B. (2006). Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. J Biomed Mater Res A 76, 798-810.
    [31] Kircheis, R., Wightman, L., and Wagner, E. (2001). Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53, 341-358.
    [32] Klencke, B., Matijevic, M., Urban, R. G., Lathey, J. L., Hedley, M. L., Berry, M., Thatcher, J., Weinberg, V., Wilson, J., Darragh, T., et al. (2002). Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res 8, 1028-1037.
    [33] Atuah, K. N., Walter, E., Merkle, H. P., and Alpar, H. O. (2003). Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: a comparison of solvent evaporation and spray-drying methods. J Microencapsul 20, 387-399.
    [34] Roy, K., Wang, D., Hedley, M. L., and Barman, S. P. (2003). Gene delivery with in-situ crosslinking polymer networks generates long-term systemic protein expression. Mol Ther 7, 401-408.
    [35] Birnbaum, D. T., and Brannon-Peppas, L. (2003). Molecular weight distribution changes during degradation and release of PLGA nanoparticles containing epirubicin HCl. JBiomater Sci Polym Ed 14, 87-102.
    [36] Bonhoeffer, J., Kohl, K., Chen, R., Duclos, P., Heijbel, H., Heininger, U., Jefferson, T., and Loupi, E. (2002). The Brighton Collaboration: addressing the need for standardized case definitions of adverse events following immunization (AEFI). Vaccine 21, 298-302.
    [37] Roy, M. J., Wu, M. S., Barr, L. J., Fuller, J. T., Tussey, L. G., Speller, S., Culp, J., Burkholder, J. K., Swain, W. F., Dixon, R. M., et al. (2000). Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particlemediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764-778.
    [38] Leach, W. T., Simpson, D. T., Val, T. N., Anuta, E. C., Yu, Z., Williams, R. O., 3rd, and Johnston, K. P. (2005). Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release. J Pharm Sci 94, 56-69.
    [39] Bivas-Benita, M., Romeijn, S., Junginger, H. E., and Borchard, G. (2004). PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm 58, 1-6.
    [40] Boeckle, S., von Gersdorff, K., van der Piepen, S., Culmsee, C., Wagner, E., and Ogris, M. (2004). Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6, 1102-1111.
    [41] Li, L., and Schwendeman, S. P. (2005). Mapping neutral microclimate pH in PLGA microspheres. J Control Release 101, 163-173.
    [42] Itaka, K., Harada, A., Yamasaki, Y., Nakamura, K., Kawaguchi, H., and Kataoka, K. (2004). In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J Gene Med 6, 76-84.
    [43] Berkland, C., Kipper, M. J., Narasimhan, B., Kim, K. K., and Pack, D. W. (2004). Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release 94, 129-141.
    [44] Chong, C. S., Cao, M., Wong, W. W., Fischer, K. P., Addison, W. R., Kwon, G. S., Tyrrell, D. L., and Samuel, J. (2005). Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102, 85-99.
    [45] Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996). Gene vaccination with nakedplasmid DNA: mechanism of CTL priming. J Exp Med 184, 1555-1560.
    [46] Bonhoeffer, J., Kohl, K., Chen, R., Duclos, P., Heijbel, H., Heininger, U., Jefferson, T., and Loupi, E. (2004). The Brighton Collaboration-enhancing vaccine safety. Vaccine 22, 2046.
    [47] Dar, M. M., and Kwak, L. W. (2003). Vaccination strategies for lymphomas. Curr Oncol Rep 5, 380-386.
    [48] Francois, G., Duclos, P., Margolis, H., Lavanchy, D., Siegrist, C. A., Meheus, A., Lambert, P. H., Emiroglu, N., Badur, S., and Van Damme, P. (2005). Vaccine safety controversies and the future of vaccination programs. Pediatr Infect Dis J 24, 953-961.
    [49] Fu, K., Pack, D. W., Klibanov, A. M., and Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 17, 100-106.
    [50] Xie, H., Gursel, I., Ivins, B. E., Singh, M., O'Hagan, D. T., Ulmer, J. B., and Klinman, D. M. (2005). CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect Immun 73, 828-833.
    [51] Yamamoto, S., Kuramoto, E., Shimada, S., and Tokunaga, T. (1988). In vitro augmentation of natural killer cell activity and production of interferon-alpha/beta and -gamma with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn J Cancer Res 79, 866-873.
    [52] Yoshida, M., and Babensee, J. E. (2004). Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J Biomed Mater Res A 71, 45-54.
    [53] Yu, M., and Finn, O. J. (2006). DNA vaccines for cancer too. Cancer Immunol Immunother 55, 119-130.
    [54] Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005b). Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 102, 5679-5684.
    [55] Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., and Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chem Rev 99, 3181-3198.
    [56] Ulmer, J. B., Deck, R. R., DeWitt, C. M., Fu, T. M., Donnelly, J. J., Caulfield, M. J., and Liu, M. A. (1997). Expression of a viral protein by muscle cells in vivo induces protectivecell-mediated immunity. Vaccine 15, 839-841.
    [57] Singh, M., Kazzaz, J., Chesko, J., Soenawan, E., Ugozzoli, M., Giuliani, M., Pizza, M., Rappouli, R., and O'Hagan, D. T. (2004b). Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B. J Pharm Sci 93, 273-282.
    [58] Zhao, X., Jain, S., Benjamin Larman, H., Gonzalez, S., and Irvine, D. J. (2005). Directed cell migration via chemoattractants released from degradable microspheres. Biomaterials 26, 5048-5063.
    [59] Fu, T. M., Ulmer, J. B., Caulfield, M. J., Deck, R. R., Friedman, A., Wang, S., Liu, X., Donnelly, J. J., and Liu, M. A. (1997). Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 3, 362-371.
    [60] Denis-Mize, K. S., Dupuis, M., Singh, M., Woo, C., Ugozzoli, M., O'Hagan, D. T., Donnelly, J. J., 3rd, Ott, G., and McDonald, D. M. (2003). Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell Immunol 225, 12-20.
    [61] Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C., and Robinson, H. L. (1993). DNA vaccines: protective immunizations by parenteral, mucosal, and genegun inoculations. Proc Natl Acad Sci USA 90, 11478-11482.
    [62] Dean, H. J., Haynes, J., and Schmaljohn, C. (2005). The role of particle-mediated DNA vaccines in biodefense preparedness. Adv Drug Deliv Rev 57, 1315-1342.
    [63] Donnelly, J., Berry, K., and Ulmer, J. B. (2003). Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 33, 457-467.
    [64] Duclos, P. (2004). A global perspective on vaccine safety. Vaccine 22, 2059-2063.
    [65] Wolff, J. A., and Budker, V. (2005). The mechanism of naked DNA uptake and expression. Adv Genet 54, 3-20.
    [66] Gurunathan, S., Klinman, D. M., and Seder, R. A. (2000). DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18, 927-974.
    [67] He, X., Jiang, L., Wang, F., Xiao, Z., Li, J., Liu, L. S., Li, D., Ren, D., Jin, X., Li, K., et al. (2005). Augmented humoral and cellular immune responses to hepatitis B DNA vaccineadsorbed onto cationic microparticles. J Control Release 107, 357-372.
    [68] Henderson, R. A., and Finn, O. J. (1996). Human tumor antigens are ready to fly. Adv Immunol 62, 217-256.
    [69] Hsu, Y. Y., Hao, T., and Hedley, M. L. (1999). Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres. J Drug Target 7, 313-323.
    [70] Kanazawa, S., Kogoma, M., Okazaki, S., and Moriwaki, T. (1989). Glow Plasma Treatment at Atmospheric-Pressure for Surface Modification and Film Deposition. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 37-8, 842-845.
    [71] Iwasaki, A., Torres, C. A., Ohashi, P. S., Robinson, H. L., and Barber, B. H. (1997). The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol 159, 11-14.
    [72] Kanazawa, S., Kogoma, M., Moriwaki, T., and Okazaki, S. (1988). Stable Glow Plasma at Atmospheric-Pressure. Journal of Physics D-Applied Physics 21, 838-840.
    [73] Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R., and Pulendran, B. (2006). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203, 413-424.
    [74] Raja, L. L., and Linne, M. (2002). Analytical model for ion angular distribution functions at rf biased surfaces with collisionless plasma sheaths. Journal of Applied Physics 92, 7032-7040.
    [75] Shive, M. S., and Anderson, J. M. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28, 5-24.
    [76] Rappuoli, R., and Covacci, A. (2003). Reverse vaccinology and genomics. Science 302, 602.
    [77] Singh, M., Briones, M., Ott, G., and O'Hagan, D. (2000). Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci U S A 97, 811-816.
    [78] Rasmussen, R. A., Hofmann-Lehman, R., Montefiori, D. C., Li, P. L., Liska, V., Vlasak, J., Baba, T. W., Schmitz, J. E., Kuroda, M. J., Robinson, H. L., et al. (2002). DNA prime/protein boost vaccine strategy in neonatal macaques against simian humanimmunodeficiency virus. J Med Primatol 31, 40-60.
    [79] Singh, M., Chesko, J., Kazzaz, J., Ugozzoli, M., Kan, E., Srivastava, I., and O'Hagan, D. T. (2004a). Adsorption of a novel recombinant glycoprotein from HIV (Env gp120dV2 SF162) to anionic PLG microparticles retains the structural integrity of the protein, whereas encapsulation in PLG microparticles does not. Pharm Res 21, 2148-2152.
    [80] Otten, G., Schaefer, M., Doe, B., Liu, H., Srivastava, I., zur Megede, J., O'Hagan, D., Donnelly, J., Widera, G., Rabussay, D., et al. (2004). Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22, 2489-2493.
    [81] Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., Sherry, R., Restifo, N. P., Hubicki, A. M., et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850-854.
    [82] Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465-1468.
    [83] Godbey, W. T., Wu, K. K., Hirasaki, G. J., and Mikos, A. G. (1999a). Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 6, 1380-1388.
    [84] Dupuis, M., Denis-Mize, K., Woo, C., Goldbeck, C., Selby, M. J., Chen, M., Otten, G. R., Ulmer, J. B., Donnelly, J. J., Ott, G., and McDonald, D. M. (2000). Distribution of
    [85] DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165, 2850-2858.
    [86] Goh, S. L., Murthy, N., Xu, M., and Frechet, J. M. (2004). Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjug Chem 15, 467-474.
    [87] Economou, D. J. (2000). Modeling and simulation of plasma etching reactors for microelectronics. Thin Solid Films 365, 348-367.
    [88] Finn, O. J. (2003). Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3, 630-641.
    [89] Otten, G. R., Schaefer, M., Doe, B., Liu, H., Srivastava, I., Megede, J., Kazzaz, J., Lian, Y., Singh, M., Ugozzoli, M., et al. (2005). Enhanced potency of plasmid DNA microparticlehuman immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J Virol 79, 8189-8200.
    [90] Epstein, J. E., Charoenvit, Y., Kester, K. E., Wang, R., Newcomer, R., Fitzpatrick, S., Richie, T. L., Tornieporth, N., Heppner, D. G., Ockenhouse, C., et al. (2004). Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A. Vaccine 22, 1592-1603.
    [91] Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K., and Labhasetwar, V. (2002). Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. Faseb J 16, 1217-1226.
    [92] Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C., and Robinson, H. L. (1995). DNA vaccines: a novel approach to immunization. Int J Immunopharmacol 17, 79-83.
    [93] Gherardi, N., and Massines, F. (2001). Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. Ieee Transactions on Plasma Science 29, 536-544.
    [94] Wang, C., Ge, Q., Ting, D., Nguyen, D., Shen, H. R., Chen, J., Eisen, H. N., Heller, J., Langer, R., and Putnam, D. (2004). Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3, 190-196.
    [95] Gibson, S. J., Lindh, J. M., Riter, T. R., Gleason, R. M., Rogers, L. M., Fuller, A. E., Oesterich, J. L., Gorden, K. B., Qiu, X., McKane, S. W., et al. (2002). Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 218, 74-86.
    [96] Porgador, A., Irvine, K. R., Iwasaki, A., Barber, B. H., Restifo, N. P., and Germain, R. N. (1998). Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188, 1075-1082.
    [97] Kasturi, S. P., Sachaphibulkij, K., and Roy, K. (2005). Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 26, 6375-6385.
    [98] Krieg, A. M. (2002). CpG motifs in bacterial DNA and their immune effects. Annu Rev 44Immunol 20, 709-760.
    [99] Pouton, C. W., and Seymour, L. W. (2001). Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46, 187-203.
    [100] Massines, F., Segur, P., Gherardi, N., Khamphan, C., and Ricard, A. (2003). Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surface & Coatings Technology 174, 8-14.
    [101] Tang, D. C., DeVit, M., and Johnston, S. A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152-154.
    [102] Kazzaz, J., Singh, M., Ugozzoli, M., Chesko, J., Soenawan, E., and O'Hagan D, T. (2006). Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110, 566-573.
    [103] McKeever, U., Barman, S., Hao, T., Chambers, P., Song, S., Lunsford, L., Hsu, Y. Y., Roy, K., and Hedley, M. L. (2002). Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine 20, 1524-1531.
    [104] Krieg, A. M. (2003). CpG motifs: the active ingredient in bacterial extracts? Nat Med 9, 831-835.
    [105] Neu, M., Fischer, D., and Kissel, T. (2005). Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7, 992-1009.
    [106] Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res 33, 94-101.
    [107] Mollenkopf, H. J., Dietrich, G., Fensterle, J., Grode, L., Diehl, K. D., Knapp, B., Singh, M., O'Hagan, D. T., Ulmer, J. B., and Kaufmann, S. H. (2004). Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. Vaccine 22, 2690-2695.
    [108] Tang, M. X., and Szoka, F. C. (1997). The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4, 823-832.
    [109] Mehta, U., Milstien, J. B., Duclos, P., and Folb, P. I. (2000). Developing a national system for dealing with adverse events following immunization. Bull World Health Organ78, 170-177.
    [110] O'Hagan, D. T., and Rappuoli, R. (2004). The safety of vaccines. Drug Discov Today 9, 846-854.
    [111] Bramwell, V. W., and Perrie, Y. (2005a). Particulate delivery systems for vaccines. Crit Rev Ther Drug Carrier Syst 22, 151-214.
    [112] Brown, M. D., Schatzlein, A. G., and Uchegbu, I. F. (2001). Gene delivery with synthetic (non viral) carriers. Int J Pharm 229, 1-21.
    [113] Mwau, M., Cebere, I., Sutton, J., Chikoti, P., Winstone, N., Wee, E. G., Beattie, T., Chen, Y. H., Dorrell, L., McShane, H., et al. (2004). A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol 85, 911-919.
    [114] Bramwell, V. W., and Perrie, Y. (2005b). The rational design of vaccines. Drug Discov Today 10, 1527-1534.
    [115] Oster, C. G., and Kissel, T. (2005). Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques. J Microencapsul 22, 235-244.
    [116] Brissault, B., Kichler, A., Guis, C., Leborgne, C., Danos, O., and Cheradame, H. (2003). Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 14, 581-587.
    [117] Kazzaz, J., Neidleman, J., Singh, M., Ott, G., and O'Hagan, D. T. (2000). Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release 67, 347-356.
    [118] Pugachev, K. V., Guirakhoo, F., and Monath, T. P. (2005). New developments in flavivirus vaccines with special attention to yellow fever. Curr Opin Infect Dis 18, 387-394.
    [119] Little, S. R., Lynn, D. M., Ge, Q., Anderson, D. G., Puram, S. V., Chen, J., Eisen, H. N., and Langer, R. (2004). Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A 101, 9534-9539.
    [120] Prud'homme, G. J. (2005). DNA vaccination against tumors. J Gene Med 7, 3-17.
    [121] Oster, C. G., Kim, N., Grode, L., Barbu-Tudoran, L., Schaper, A. K., Kaufmann, S. H.,and Kissel, T. (2005). Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J Control Release 104, 359-377.
    [122] Pulendran, B. (2004). Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev 199, 227-250.
    [123] O'Hagan, D. T., and Valiante, N. M. (2003). Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2, 727-735.
    [124] Pulendran, B., and Ahmed, R. (2006). Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849-863.
    [125] Ravi Kumar, M. N., Bakowsky, U., and Lehr, C. M. (2004). Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 25, 1771-1777.
    [126] Renkvist, N., Castelli, C., Robbins, P. F., and Parmiani, G. (2001). A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50, 3-15.
    [127] Biragyn, A., Ruffini, P. A., Coscia, M., Harvey, L. K., Neelapu, S. S., Baskar, S., Wang, J. M., and Kwak, L. W. (2004). Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104, 1961-1969.
    [128] Ruffini, P. A., Biragyn, A., Coscia, M., Harvey, L. K., Cha, S. C., Bogen, B., and Kwak, L. W. (2004). Genetic fusions with viral chemokines target delivery of nonimmunogenic antigen to trigger antitumor immunity independent of chemotaxis. J Leukoc Biol 76, 77-85.
    [129] Saxena, R. K., Vallyathan, V., and Lewis, D. M. (2003). Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J Biosci 28, 129-134.
    [130] Thomas, M., Ge, Q., Lu, J. J., Chen, J., and Klibanov, A. M. (2005). Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res 22, 373-380.
    [131] Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J., and Chen, Y. T. (2002). Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. ImmunolRev 188, 22-32.
    [132] Regnstrom, K., Ragnarsson, E. G., Koping-Hoggard, M., Torstensson, E., Nyblom, H., and Artursson, P. (2003). PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther 10, 1575-1583.
    [133] Jilek, S., Zurkaulen, H., Pavlovic, J., Merkle, H. P., and Walter, E. (2004b). Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro. Eur J Pharm Biopharm 58, 491-499.
    [134] Donnelly, J. J., Wahren, B., and Liu, M. A. (2005). DNA vaccines: progress and challenges. J Immunol 175, 633-639.
    [135] Kabanov, A. V., Batrakova, E. V., Sriadibhatla, S., Yang, Z., Kelly, D. L., and Alakov, V. Y. (2005). Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 101, 259-271.
    [136] Shin, J. C., and Raja, L. L. (2003). Dynamics of pulse phenomena in helium dielectricbarrier atmospheric-pressure glow discharges. Journal of Applied Physics 94, 7408-7415.
    [137] Liu, M. A., Fu, T. M., Donnelly, J. J., Caulfield, M. J., and Ulmer, J. B. (1998). DNA vaccines. Mechanisms for generation of immune responses. Adv Exp Med Biol 452, 187-191.
    [138] Liu, M. A., and Ulmer, J. B. (2005). Human clinical trials of plasmid DNA vaccines. Adv Genet 55, 25-40.
    [139] O'Hagan, D. T., Singh, M., Dong, C., Ugozzoli, M., Berger, K., Glazer, E., Selby, M., Wininger, M., Ng, P., Crawford, K., et al. (2004). Cationic microparticles are a potent delivery system for a HCV DNA vaccine. Vaccine 23, 672-680.
    [140] Chen, W. C., and Huang, L. (2005). Non-viral vector as vaccine carrier. Adv Genet 54, 315-337.
    [141] Chesko, J., Kazzaz, J., Ugozzoli, M., O'Hagan D, T., and Singh, M. (2005). An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. J Pharm Sci 94, 2510-2519.
    [142] Shenton, M. J., Stevens, G. C., Wright, N. P., and Duan, X. (2002). Chemical-surfacemodification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas. Journal of Polymer Science Part a-Polymer Chemistry 40, 95-109.
    [143] Chollet, P., Favrot, M. C., Hurbin, A., and Coll, J. L. (2002). Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 4, 84-91.
    [144] O'Hagan, D. T., Singh, M., and Ulmer, J. B. (2004b). Microparticles for the delivery of DNA vaccines. Immunol Rev 199, 191-200.
    [145] Singh, M., and Srivastava, I. (2003). Advances in vaccine adjuvants for infectious diseases. Curr HIV Res 1, 309-320.
    [146] Stevenson, F. K. (2004). DNA vaccines and adjuvants. Immunol Rev 199, 5-8.
    [147] Sun, H., Pollock, K. G., and Brewer, J. M. (2003). Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21, 849-855.
    [148] Thomas, M., and Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 100, 9138-9143.
    [149] Singh, M., Kazzaz, J., Ugozzoli, M., Malyala, P., Chesko, J., and O'Hagan, D. T. (2006). Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr Drug Deliv 3, 115-120.
    [150] Jilek, S., Merkle, H. P., and Walter, E. (2005). DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev 57, 377-390.
    [151] von Harpe, A., Petersen, H., Li, Y., and Kissel, T. (2000). Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69, 309-322.
    [152] Wack, A., and Rappuoli, R. (2005). Vaccinology at the beginning of the 21st century. Curr Opin Immunol 17, 411-418.
    [153] Shen, H., Ackerman, A. L., Cody, V., Giodini, A., Hinson, E. R., Cresswell, P., Edelson, R. L., Saltzman, W. M., and Hanlon, D. J. (2006). Enhanced and prolonged crosspresentation following endosomal escape of exogenous antigens encapsulated inbiodegradable nanoparticles. Immunology 117, 78-88.
    [154] Banchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252.
    [155] Standley, S. M., Kwon, Y. J., Murthy, N., Kunisawa, J., Shastri, N., Guillaudeu, S. J., Lau, L., and Frechet, J. M. (2004). Acid-degradable particles for protein-based vaccines: enhanced survival rate for tumor-challenged mice using ovalbumin model. Bioconjug Chem 15, 1281-1288.
    [156] Barman, S. P., Lunsford, L., Chambers, P., and Hedley, M. L. (2000). Two methods for quantifying DNA extracted from poly(lactide-co-glycolide) microspheres. J Control Release 69, 337-344.
    [157] Sheets, E. E., Urban, R. G., Crum, C. P., Hedley, M. L., Politch, J. A., Gold, M. A., Muderspach, L. I., Cole, G. A., and Crowley-Nowick, P. A. (2003). Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188, 916-926.
    [158] Berkland, C., King, M., Cox, A., Kim, K., and Pack, D. W. (2002). Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82, 137-147.
    [159] Schrama, D., Reisfeld, R. A., and Becker, J. C. (2006). Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5, 147-159.
    [160] Walter, E., and Merkle, H. P. (2002). Microparticle-mediated transfection of nonphagocytic cells in vitro. J Drug Target 10, 11-21.
    [161] Zheng, F.R., Sun, X.Q., Liu, H.Z., Zhang, J.X., 2006. Study on the distribution and expression of a DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 261, 1128-1134.
    [1] Robinson HL, Torres CA. DNA vaccines. Semin Immunol 1997;9:271-83.
    [2] Kumar SR, Parameswaran V, Ahmed VPI, Musthaq SS, Hameed ASS. Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish Shellfish Immunol 2007;23:316-26.
    [3] Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr Mol Med 2001;1:217-43.
    [4] Caipang CMA, Takano T, Hirono I, Aoki T. Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish Shellfish Immunol 2006;21:130-8.
    [5] Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58:68-89.
    [6] Mittal SK, Aggarwal N, Sailaja G, van Olphen A, Hogenesch H, North A, Hays J, Moffatt S. Immunization with DNA, adenovirus or both in biodegradable alginate microspheres: effect of route of inoculation on immune response. Vaccine 2001;19:253-63.
    [7] Brayden DJ, O’Mahony DJ. Novel oral drug delivery gateways for biotechnology products: polypeptides and pDNAs. Pharm Sci Technol Today 1998;1:291-9.
    [8] Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72.
    [9] Sriamornsak P, Kennedy RA. Development of polysaccharide gel coated pellets for oral administration. 2. Calcium alginate. Eur J Pharm Sci 2006;29:139-47.
    [10] Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002;28:621-30.
    [11] Bowersock TL, Hogenesch H, Suckow M, Guimond P, Martin S, Borie D, Torregrosa S, Park H, Park K. Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine 1999;17:1804-11.
    [12] Martins S, Sarmento B, Souto EB, Ferreira DC. Insulin-loaded alginate microspheres for oral delivery– Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohyd Polym 2007;69:725-31.
    [13] Fujiki K, Matsuyamas H, Yano T. Protective effect of sodium alginates against bacterial infection in common Carp, Cyprinus-Carpio L. J Fish Dis 1994;17:349-55.
    [14] Romalde JL, Luzardo-Alvárez A, Ravelo C, Toranzo AE, Blanco-Méndez J. Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture 2004;236:119-29.
    [15] Huttenhuis HBT, Ribeiro ASP, Bowden TJ, Van Bavel C, Taverne-Thiele AJ, Rombout JHWM. The effect of oral immuno-stimulation in juvenile carp (Cyprinus carpio L.). Fish Shellfish Immunol 2006;21:261-71.
    [16] Garcia-Rosado E, Castro D, Rodriguez SP, Perez-Prieto SI, Borrego JJ. Isolation and characterization of lymphocystis virus (FLDV) from gilt-head seabream (Sparus aurata, L.) using a new homologous cell line. Bull Eur Assoc Fish Pathol 1999;19:53-6.
    [17] Zheng FR, Sun XQ, Liu HZ, Zhang JX. Study on the distribution and expression of a DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 2006;261:1128-34.
    [18] Rodrigues AP, Hirsch D, Figueiredo HCP, Logato PVR, Moraes ?M. Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochem 2006;41:638-43.
    [19] Mofidi N, Aghai-Moghadam M, Sarbolouki MN. Mass preparation and characterization of alginate microspheres. Process Biochem 2000;35:885-8.
    [20] Choi BY, Park HJ, Hwang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm 2002;239:81-91.
    [21] Oya Alpar H, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev 2005;57:411-30.
    [22] Singh M, O’Hagan D. The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv Drug Deliv Rev 1998;34:285-304.
    [23] Lemoine D, Wauters F, Bouchend’Homme S, Pre′at V. Preparation and characterization of alginate microparticles containing a model antigen. Int J Pharm 1998;176:9-19.
    [24] Desai MP, Labhasetwar V, Amidon GL, Levy RL. Gastrointestinal uptake of biodegradable microparticles: effects of particle size. Pharm Res 1996;13:1838-45.
    [25] Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 2007;119:339-48.
    [26] Janssen JMH, Meijer HEH. Droplet breakup mechanism: Stepwise equilibrium versus transient dispersion. J Rheol 1993;37:597-608.
    [27] Tjahjadi M, Ottino JM. Stretching and breakup of droplets in chaotic flows. J Fluid Mech 1991;232:191-219.
    [28] Joosten PHM, Tiemersma E, Threels A, Caumartin-Dhieux C, Rombout JHWM. Oral vaccination of fish against Vibrio anguillarum using alginate microspheres. Fish Shellfish Immun 1997;7:471-85.
    [29] Quick DJ, Macdonald KK, Anseth KS. Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J Control Release 2004;97:333-43.
    [30] Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 1999;20:1427-35.
    [31] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J Control Release 2006;114:1-14.
    [32] Jilek S, Zurkaulen H, Pavlovic J, Merkle HP, Walter E. Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microspheres in vitro. Eur J Pharm Biopharm 2004;58:491-9.
    [33] Walter E, Dreher D, Kok M, Thiele L, Kiama SG, Gehr P, Merkle HP. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Release 2001;76:149-68.
    [34] De Ambrogi M, Spinaci M, Galeati G, Tamanini C. Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 2006;66:1994-2000.
    [35] Levy MS, Collins IJ, Yim SS, Ward JM, Titchener-Hooker N, Ayazi Shamlou P, Dunnill P. Effect of shear on plasmid DNA in solution. Bioproc Eng 1999;20:7-13.
    [36] Lentz YK, Worden LR, Anchordoquy TJ, Lengsfeld CS. Effect of jet nebulization on DNA: identifying the dominant degradation mechanism and mitigation methods. J Aerosol Sci 2005;36:973-90.
    [37] Kanellos T, Sylvester ID, Ambali AG, Howard CR, Russell PH. The safety and longevity of DNA vaccines for fish. Immunology 1999; 96: 307-13.
    [38] Zang XN, Liu B, Liu SM, Sun PN, Zhang XQ, Zhang XC. Transformation and expression of Paralichthys olivaceus growth hormone cDNA in Synechocystis sp. PCC6803. Aquaculture 2007;266:63-9.
    [39] Tonheim TC, Dalmo RA, B?gwald J, Seternes T. Specific uptake of plasmid DNA without reporter gene expression in Atlantic salmon (Salmo salar L.) kidney after intramuscular administration. Fish Shellfish Immunol 2008;24:90-101.
    [40] Yoshinaga T, Yasuda K, Ogawa Y, Takakura Y. Efficient uptake and rapid degradation of plasmid DNA by murine dendritic cells via a specific mechanism. Biochem Biophys Res Commun 2002;299:389-94.
    [1] Kumar SR, Parameswaran V, Ahmed VPI, Musthaq SS, Hameed ASS. Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish Shellfish Immunol 2007;23:316-26.
    [2] Chen L, Shao HJ, Su YB. Coimmunization of Agaricus blazei Murill extract with hepatitis B virus core protein through DNA vaccine enhances cellular and humoral immune responses. Int Immunopharmacol 2004;4:403-9.
    [3] McLauchlan PE, Collet B, Ingerslev E, Secombes CJ, Lorenzen N, Ellis AE. DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection—early protection correlates with Mx expression. Fish Shellfish Immunol 2003;15:39-50.
    [4] Pasnik DJ, Smith SA. Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Vet Immunol Immunopathol 2005;103:195-206.
    [5] Li Y, Kandimalla ER, Yu D, Agrawal S. Oligodeoxynucleotides containing synthetic immunostimulatory motifs augment potent Th1 immune responses to HBsAg in mice. Int Immunopharmacol 2005;5:981-91.
    [6] Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr Mol Med 2001;1:217-43.
    [7] Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58:68-89.
    [8] Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 2006;12:216-22.
    [9] Ellis AE. Meeting the requirements for delayed-release of oral vaccines for fish. J Appl Ichthyol 1998;14:149-52.
    [10] Krishnamachari Y, Madan P, Lin S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm 2007;338:238-47.
    [11] Matsunaga M, Ohtaki H, Takaki A, Iwai Y, Yin L, Mizuguchi H, et al. Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neurol Res 2003;47:269-76.
    [12] Adams A, Thompson KD. Biotechnology offers revolution to fish health management. Trends Biotechnol 2006;24:201-5.
    [13] Lauterslager TGM, Stok W, Hilgers LAT. Improvement of the systemic prime/oral boost strategy for systemic and local responses. Vaccine 2003;21:1391-9.
    [14] Rombout JHWM, van den Berg AA. Immunological importance of the second gut segment of carp. I. Uptake and processing of antigens by epithelial cells and macrophages. J Fish Biol 1989;35:179-88.
    [15] Vervarcke S, Ollevier F, Kinget R, Michoel A. Oral vaccination of African catfish with Vibrio anguillarum O2: effect on antigen uptake and immune response by absorption enhancers in lag time coated pellets. Fish Shellfish Immunol 2004;16:407-14.
    [16] Rombout JHWM, Taverne-Thiele AJ, Villena MI. The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical analysis. Dev Comp Immunol 1993;17:55-66.
    [17] Vervarcke S, Ollevier F, Kinget R, Michoel A. Development of a lag time coating for drug layered fish feed pellets. Pharm Dev Technol 2002;7:471-80.
    [18] Adelmann M, K?llner B, Bergmann SM, Fischer U, Lange B, Weitschies W, et al. Development of an oral vaccine for immunisation of rainbow trout (Oncorhynchus mykiss) against viral haemorrhagic septicaemia. Vaccine 2008;26:837-44.
    [19] Benoit MA, Ribet C, Distexhe J, Hermand D, Letesson JJ, Vandenhaute J, et al. Studies on the potential of microcapsules entrapping pDNA-poly(aminoacids) complexes as vaccine delivery systems. J Drug Target 2001;9:253-66.
    [20] Purcell MK, Kurath G, Garver KA, Herwig RP. Winton JR. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol 2004;17:447-62.
    [21] Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen JZ, et al. Molecularly engineered poly(ortho ester) microcapsules for enhanced delivery of DNA vaccines. Nat Mater 2004;3:190-6.
    [22] Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Sakamoto T, Okamoto N. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 2006;254:203-10.
    [23] Zheng FR, Sun XQ, Liu HZ, Zhang JX. Study on the distribution and expression of a DNAvaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 2006;261:1128-34.
    [24] Ito F, Makino K. Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloid Surface B 2004;39:17-21.
    [25] Delgado A, Lavelle EC, Hartshorne M, Davis SS. PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 1999;17:2927-38.
    [26] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
    [27] Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 2007;119:339-48.
    [28] Rodrigues AP, Hirsch D, Figueiredo HCP, Logato PVR, Moraes ?M. Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochem 2006;41:638-43.
    [29] Walter E, Moelling K, Pavlovic J, Merkle HP. Microencapsulation of DNA using poly(DL-lactide-co-glycolide): stability issues and release characteristics. J Control Rel 1999;61:361-74.
    [30] Challacombe SJ, Rahman D, O’Hagan DT. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 1997;15:169-75.
    [31] Jilek S, Zurkaulen H, Pavlovic J, Merkle HP, Walter E. Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro. Eur J Pharm Biopharm 2004;58:491-9.
    [32] Piganelli JD, Zhang JA, Christensen JM, Kaattari SL. Enteric coated microspheres as an oral method for antigen delivery to salmonids. Fish Shellfish Immunol 1994;4:179-88.
    [33] Aguado MT, Lambert PH. Controlled release vaccines-biodegradable polylactide/polyglycolide (PL/PG) microcapsules as antigen vehicles. Immunobiology 1992;184:113-25.
    [34] Walter E, Dreher D, Kok M, Thiele L, Kiama SG, Gehr P, et al. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Rel 2001;76:149-68.
    [35] Kanellos T, Sylvester ID, Ambali AG, Howard CR, Russell PH. The safety and longevity of DNA vaccines for fish. Immunology 1999;96:307-13.
    [36] Georgopoulou U, Vernier JM. Local immunological response in the posterior intestinal segment of the rainbow trout after oral administration of macromolecules. Dev Comp Immunol 1986;10:529-37.
    [37] Hart S, Wrathmell AB, Harris JE, Grayson TH. Gut immunology in fish: a review. Dev Comp Immunol 1988;12:453-80.
    [38] Quentel C, Vigneulle M. Antigen uptake and immune response after oral vaccination. Dev Bio Stand 1997;90:69-78.
    [39] Arnon R, Ben-Yedidia T. Old and new vaccine approaches. Int Immunopharmacol 2003;3:1195-204.
    [40] Yoshinaga T, Yasuda K, Ogawa Y, Takakura Y. Efficient uptake and rapid degradation of plasmid DNA by murine dendritic cells via a specific mechanism. Biochem Biophys Res Commun 2002;299:389-94.
    [41] Bhattacharya R, Bukkapatnam R, Prawoko I, Soto J, Morgan M, Salup RR. Efficacy of vaccination with plasmid DNA encoding for HER2/neu or HER2/neu-EGFP fusion protein against prostate cancer in rats. Int Immunopharmacol 2002;2:783-96.
    [1] Gurunathan, S., Klinman, D.M., Seder, R.A., 2000. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol. 18, 927-974.
    [2] Donnelly, J.J., Ulmer, J.B., Shiver, J.W., Liu, M.A., 1997. DNA vaccines. Annu. Rev. Immunol. 15, 617-648.
    [3] Cavazzana-Calvo, M., Hacein-Bey, S., De Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., 2000. pDNA therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669-672.
    [4] Middaugh, C.R., Evans, R.K., Montgomery, D.L., Casimiro, D.R., 1998. Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87, 130-146.
    [5] Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd, Harper LB, Schock HB, Zhang H, Faris JE, Way PA, Beare CM, Bagdon WJ, Nichols WW. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol (Basel). 2000;104:33-43.
    [6] Premenko-Lanier, M., Rota, P.A., Rhodes, G., Verhoeven, D., Barouch, D.H., Lerche, N.W., Letvin, N.L., Bellini, W.J., McChesney, M.B., 2003. DNA vaccination of infants in the presence of maternal antibody: a measles model in the primate. Virology 307, 67-75.
    [7] Dass, C.R., Contreras, K.G., Dunstan, D.E., Choong, P.F.M., 2007. Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials 28, 3026-3033
    [8] Xiang, C., Han, P., Lutziger, I., Wang, K., Oliver, D.J., 1999. A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711-717.
    [9] Artursson, P., Lindmark, T., Davis, S.S., Illum, L., 1994. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11, 1358-1361.
    [10] Brayden, D.J., O’Mahony, D.J., 1998. Novel oral drug delivery gateways for biotechnology products: polypeptides and pDNAs. Pharm. Sci. Technol. 1, 291-299.
    [11] Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., Borchard, G., 2002. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23, 153-159.
    [12] Hejazi, R., Amiji, M., 2003. Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151-165.
    [13] Guliyeva,ü., ?ner, F., ?zsoy, ?., Haziro?lu, R., 2006. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur. J. Pharm. Biopharm. 62, 17-25.
    [14] Desai, M.P., Labhasetwar, V., Amidon, G.L., Levy, R.J., 1996. Gastrointestinal uptake of biodegradable microspheres: effects of particle size. Pharm. Res. 13, 1838-1845.
    [15] van der Lubben, I.M., Verhoef, J.C., van Aelst, A.C., Borchard, G., Junginger, H.E., 2001. Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer's patches. Biomaterials 22, 687-694.
    [16] Ouji, Y., Yoshida-Terakura, A., Hayashi, Y., Maeda, I., Kawase, M., Yamato, E., Miyazaki, J., Yagi, K., 2002. Polyethyleneimine/chitosan hexamer-mediated gene transfection into intestinal epithelial cell cultured in serum-containing medium. J. Biosci. Bioeng. 94, 81-83.
    [17] Kanellos, T., Sylvester, I.D., Ambali, A.G., Howard, C.R., Russell, P.H., 1999. The safety and longevity of DNA vaccines for fish. Immunology 96, 307-313.
    [18] Enel, S., McClure, S.J., 2004. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliver. Rev. 56, 1467-1480.
    [19] Jenkins, P.G., Howard, K.A., Blackhall, N.W., Thomas, N.W., Davis, S.S., O'Hagan, D.T., 1994. Microparticulate absorption from the rat intestine. J. Control. Release 29, 339-350.
    [20] Shalaby, W.S., 1995. Developmental of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin. Immunol. Immunopathol. 74, 127-134.
    [21] Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100, 5-28.
    [22] Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31, 603-632.
    [23] Richardson, S.C.W., Kolbe, H.V.J., Duncan, R., 1999. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 178, 231-243.
    [24] Borchard, G., 2001. Chitosans for gene delivery. Adv. Drug Deliver. Rev. 52, 145-150.
    [25] Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., Dhawan, S., 2004. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274, 1-33.
    [26] Sriamornsak, P., Burton, M.A., Kennedy, R.A., 2006. Development of polysaccharide gel coated pellets for oral administration. 1. Physicomechanical properties. Int. J. Pharm. 326, 80-88.
    [27] Zheng, F.R., Sun, X.Q., Liu, H.Z., Zhang, J.X., 2006. Study on the distribution and expression of a DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 261, 1128-1134.
    [28] O’Hagan, D., 1998. Microspheres and polymers for the mucosal delivery of vaccines. Adv. Drug Deliver. Rev. 34, 305-320.
    [29] Dang, J.M., Leong, K.W., 2006. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliver. Rev. 58, 487-499.
    [30] Tsakalos, V.T., Navard, P., Peuvrel-Disdier, E., 1998. Deformation and breakup mechanisms of single drops during shear. J. Rheol. 42, 1403-1417.
    [31] Yi, H., Song, H., Gong, Y., Mao, Z., Gao, C., Shen, J., 2007. Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 3, 23-31.
    [32] Liu, W., Sun, S., Cao, Z., Zhang, X., Yao, K., Lu, W.W., Luk, K.D.K., 2005. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26, 2705-2711.
    [33] Bivas-Benita, M., Laloup, M., Versteyhe, S., Dewit, J., Braekeleer, J.D., Jongert, E., Borchard, G., 2003. Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int. J. Pharm. 266, 17-27.
    [34] Zhou, X., Liu, B., Yu, X., Zha, X., Zhang, X., Chen, Y., Wang, X., Jin, Y., Wu, Y., Chen, Y., Shan, Y., Chen, Y., Liu, J., Kong, W., Shen, J., 2007. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J. Control. Release 121, 200-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700