用户名: 密码: 验证码:
锂离子电池合金负极材料的理论设计和合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨材料作为锂离子电池负极材料,其利用率已经达到了它的极限(372mAh/g),开发新一代具有更高容量的锂离子电池已经成为当前锂离子电池领域研究的热点。
     金属和合金被认为是具有潜力的锂离子电池负极材料,因为它们一般具有较高的容量和合适的充放电电位。如金属Sn,它具有高达990 mAh/g(7200 mAh/L)的理论容量。其质量比容量是石墨的2.7倍,而体积比容量竟是石墨的8.8倍。然而,金属的单质却不能直接用来做锂离子电池的负极材料,主要的原因是它们在与锂离子发生反应生成锂一金属合金的过程中存在较大的体积膨胀和收缩,这将导致材料受内部应力的作用而龟裂,从而失去活性,最终导致材料的循环性能下降。
     提高金属和合金材料的循环性能成为开发合金锂离子电池材料的关键问题。近年来,对于如何抑制金属材料的体积膨胀和收缩以提高合金材料作为锂离子电池负极材料的循环性能的研究倍受关注。其中一种比较有效的方法是使用金属间化合物(通常称为合金)MM',其中包含M为“活性金属”,也即在电池环境下,可以与锂发生反应的金属;而M'为“非活性金属”,即在电池环境下不能和锂发生反应的金属。其中Cu_6Sn_5,FeSn_2,Cu_2Sb等就是属于此类合金。该体系之所以能够抑制体积膨胀是因为金属M'起到了一种体积“缓冲剂”的作用,它可以从一定程度上抑制活性金属M和锂离子发生反应产生的体积膨胀,减少材料内部因为体积膨胀而产生的龟裂,防止活性材料和集电体脱离。
     然而,在开发此类MM'型金属间化合物作为锂离子电池负极材料的研究中遇到许多困难,其中最主要的是:如何选择组成合金的金属M和M',以及如何调整它们之间的比例。众所周知,在元素周期表中有近十种能与锂合金化的金属(M),如Al,Si,Zn,Ag,In,Sn,Sb等,还有多种不能与锂合金化的金属(M'),如Ti,Mn,Fe,Co,Ni,Cu等。它们相互间的结合,根据元素种类不同和组成成分比例不用,将是无限多的化合物。至今为止,合金材料的研究和开发,主要建立在大量的实验数据和个人经验的基础上,适合锂离子用的高性能的合金材料的开发,将花费大量的研究经费和人力。
     基于密度泛函的第一性原理量子化学计算方法提供了一种只从化合物的元素种类,晶体结构出发,预测其物理、化学性能的有效手段。通过量子化学计算,可以更快,更方便的得出一种材料是否适用于电池材料,许多不能通过常规实验合成或者难于合成的材料,可以用计算来检测其是否具有电化学电池性能。从而指导实验开发,这将给材料的开发带来极大的便利。
     本课题借助量子化学计算的方法,进行合金材料的设计,选择合适的制备方法,结合电化学和多种物理化学现场表征方法。研究开发结构稳定,膨胀率小,循环性能好的锂离子电池用新型高能量合金材料,阐明锂离子嵌入/脱嵌过程中晶体结构,粉体结构与膨胀率,循环性能之间的关系,在量子计算的基础上开发高性能的锂离子电池用高容量合金材料,将开创一个新的研究领域。
     本论文第一章将简单介绍锂离子电池以及常见负极材料。第二章介绍了基于第一性原理的密度泛函理论计算方法以及本论文中采用的VASP计算软件包。
     接着第三章首先介绍量子化学计算在锂离子电池材料研究中的应用。着重讨论如何利用量子化学计算结果来预测材料的电化学性能。然后对元素周期表中常见的合金材料,设计结构和理论模型,进行吉布斯自由能计算。其目的是看它们是否能和锂发生电化学反应,以判断哪些合金适合用于锂离子电池负极材料。通过系统的计算发现,其中Co-Sn合金包含Co_3Sn_2,CoSn和CoSn_2三种化合物,而CoSn_2是一个非常具有开发潜力的合金材料。所以第四章将对它们进行系统的合成和研究。电化学性能测试表明这三种合金,随着Sn含量的增加,脱嵌锂反应变得更加容易,容量也逐渐增大。另外,在利用高能球磨法合成样品时,在原料中添加少量的石墨,可以有效地提高材料的循环性能。通过以上的理论、实验开发和研究,我们发现锂离子电池合金负极材料的电化学性能与组成合金的元素种类及成分,材料的晶体结构,电子结构,以及电荷分布等性质有着密切的关系。
     在第五章中,为了寻找合金嵌锂容量与晶体结构和元素组成的关系,特地选取了两种晶体结构非常相似的合金材料Cu_6Sn_5和Ni_3Sn_2进行研究。本论文设计实验合成具有单相Ni_2In型六方结构的合金系列Ni_xCu_(6-x)Sn_5(x=0.0,0.5,1.0,2.0,4.0),利用量子化学计算和实验相结合的方法研究,结果发现随着Ni掺杂含量的增加,合金容量逐渐下降,但循环性能逐渐变好。并且,在锂离子与合金发生锂脱嵌反应过程中,锂离子首先在合金晶包内部的空位进行嵌入,这将导致晶包能量上升,在一定量锂离子的嵌入之后才发生锂和Cu或Ni的取代。在这个过程中,能量的上升相当于反应要越过一个能垒,如果能垒过高,如Ni_3Sn_2,反应将无法进行下去,这就是导致许多合金材料不能发生脱嵌锂反应,容量很低的原因。
     在第六章中,设计实验合成了合金系列Co_xCu_(6-x)Sn_5(0≤x≤2),并测试了它们的电化学性能。研究发现适量Co掺杂时,及CoCu_5Sn_5合金,具有最好的电化学性能。从理论计算的角度,本论文从合金材料的晶体结构、热稳定性,以及与锂离子发生脱嵌反应生成的中间产物的电子结构、电荷态密度分布等角度进行了深入探讨,很好的解释了材料电化学性能和其结构的关系。结果表明,合金Co_xCu_(6-x)Sn_5在脱嵌锂反应过程中生成中间相化合物Li_2Co_yCu_(1-y)Sn,并且此中间相化合物随着Co含量的增加,逐渐变得不稳定,从而导致电化学性能发生变化。
     论文第七章,为了深入研究锂离子在合金内部扩散的动力学性质,采用经典的电化学测试方法(PITT和EIS)研究了Cu_6Sn_5合金中锂离子迁移的扩散系数。结果发现锂离子在合金材料中的扩散并没有想象中的慢,在充放电的大部分电位区间内,扩散系数在10~(-11)~10~(-10)cm~2/s之间。但是,在充放电平台电位,锂离子扩散非常地慢,扩散系数低于10~(-11)cm~2/s。而且在扩散系数对放电电位作图地曲线中,明显地存在两个扩散系数的极小值,与Cu_6Sn_5放电曲线地两个平台吻合。PITT和EIS两种方法得到的实验数据也非常吻合。这很可能是由于合金中的相变过程阻碍了锂离子的扩散。
It has been demonstrated that metals and alloys present an attractive altemative to graphite as anode materials for lithium-ion batteries due in particular to the high capacity, an acceptable rate capability,and operating potentials well above the potential of metallic lithium.For example,Sn yields a maximum theoretical capacity of 990 mAh/g or 7200 Ah/L.However,one major problem preventing them from the commercial application is that they undergo large volume changes during cycling,which result in disintegration of the electrodes and subsequent rapid capacity fading.
     An interesting approach for overcoming these problems is the use of the intermetallic compounds(or called alloys),M'M,which consisting of an "inactive phase M'”,referring to the metals that do not react with lithium,and an "active phase M", referring to the metals that react with lithium.The role of"inactive phase M'”is mainly to provide a matrix that will absorb the massive volume change occurred within the electrode upon the lithiation(expansion)/delithiation(contraction) process,thus maintains the mechanical integrity between the particles and also with the current collector.
     However,many problems occurred during the research of the M'M intermetallic compounds,and one of them is how to choose of the metals of M' and M,as well as how to optimize the composition since there are dozens of active metals M,like Al,Zn,Ag, In,Sn,Sb,and so on,and even more inactive metals M',such as Ti,Mn,Fe,Co,Ni,Cu, etc.There will be a great number of such intermetallic compound of M'M,and it will takes hundreds of man hours of experimental work for the tradition research methods.
     Since first principles quantum chemistry can now predict physical and chemical properties of molecules and solids,attempts should be made to use this tool for predicting favorable new electrode materials,thereby avoiding needless experimentation and focusing work solely on materials that promise success.The important physicochemical performance parameters of a rechargeable battery are its energy density, specific energy,power density,and cycling stability.The challenge is now to predict some of these properties by first principles quantum mechanics.In this thesis,we want to show that it is possible to predict parameters such as the average voltage,energy density,and specific energy of lithium-ion batteries.
     After the method of first-principles density-functional theory with pseudopotentials and plane wave basis and the software package of VASP we used were introduced,, some cases of first-principles study in the materials of lithium ion batteries were introduced in Chapter 3.Then,a series of simulations for the most common alloys were carried and their Gibbs energies of the reaction with lithium were calculated.According to this Gibbs energy,the estimation of the alloys' possibility of electrochemical reaction with lithium,hence their potential use for the anode of lithium ion batteries become possible.Base on the above calculation,the CoSn_2 alloy shows great reactivity with lithium ion in a battery environment and was expected to have a high capacity.So,in Chapter 4,the Co-Sn system,including Co_3Sn_2,CoSn and CoSn_2 alloys were systematically studied.A series of Co-Sn intermetallic compounds were prepared by mechanical ball-milling followed by annealing at appropriate temperature.The charge/discharge profile and cycling performance was compared as negative electrodes for lithium ion battery.Moreover,the insertion/extraction mechanism of these alloys were investigated through ex-situ XRD measurement.Further more,the cycle performance of Co-Sn alloy was improved by properly controlling the composition and addition of the graphite in the raw materials during ball-milling.It shows that the electrochemical performance of alloy anodes are closely related with their compositions, crystal structures,and the electronic structures.
     Firstly,In Chapter 5,a series of Ni doped Ni_xCu_(6-x)Sn_5(χ= 0,0.5,1,2,4) alloys were synthesized.The effects of doped-Ni amount on the structure and lithium intercalation were examined.The relationship between the electrochemical performance and the crystal structure was also studied using the first-principles calculation.The electrochemical tests show that the cycle performance improves while the reversible capacity decreases with the increasing amount of Ni content.A proper amount of Ni doped alloy,NiCu5Sn5 and Ni_2Cu_4Sn_5 show an improved cycling stability with a reversible capacity of 200 mAh/g(1680 mAh/ml).The first-principles calculations suggest that the lithiation depth of Cu_6Sn_5 can reach to Li_(4.4)Sn,however,the reversible capacity is very small for Ni_3Sn_2 and it may attribute to the high energy barrier required for the structure transformation from the hexagonal structure to the cubic structure.
     Secondly,in Chapter 6,a series of Co doped Co_xCu_(6-x)Sn5(0≤x≤2) alloys were prepared experimentally.The electrochemical performance,including the average intercalation/alloying voltage,the sharp of charge/discharge curve and the cycling performance,were studied using both the experiment and computational simulation.The results show that the meta-stable intermediate phases of Li_2Co_yCU_(1-y)Sn form during the Li-ion insertion process of Co_xCu_(6-x)Sn_5 and become unstable and even undetectable with increasing amount of Co substituted.A proper amount of Co doped alloy,CoCu_5Sn_5 showed improved cycling stability at the expense of litter capacity,whereas a heavy Co-doped alloy,Co_2Cu_4Sn_5,resulted in poor cycling ability.The crystal and electronic structure,thermodynamic stability of Co_xCu_(6-x)Sn5 and half-lithiated alloy,Li_2Co_yCu_(1-y)Sn, as well as the average voltage of alloying reaction in terms of different discharge depths were investigated using first-principles calculation.
     In the Chapter 7,the kinetics of Li-ion intercalation into Cu_6Sn_5 electrode was determined by galvanostatic intermittent titration technique(GITT) and electrochemical impedance spectroscopy(EIS) method.Although the Li-ion diffusion coefficient(DLi) values are relatively high(between 10~(-11) to10~(-10) cm~2/s) in the most voltage range,two minimums(below 10~(-11) cm~2/s) in the D_(Li) VS.voltage curve were observed at~0.4 V and 0.1 V,coinciding with the voltage plateau in the charge/discharge curves,indicating reversible structural phase transition or order/disorder transition in the compound.The D_(Li) derived from GITT and EIS were confirmed well both in the magnitudes and in the variation with Li composition(voltage) range.
引文
[1]. R. Kanno, Y. Kawamoto, Y. Takeda, et al., Carbon-Fiber as a Negative Electrode in Lithium Secondary Cells[J]. Journal of the Electrochemical Society, 1992. 139(12): p. 3397-3404.
    [2]. M. Mohri, N. Yanagisawa, Y. Tajima, et al., Rechargeable Lithium Battery Based on Pyrolytic Carbon as a Negative Electrode[J]. Journal of Power Sources, 1989. 26(3-4): p. 545-551.
    
    [3]. 郭炳煜,徐微,王先友,et al.,ed.第一版.长沙:中南大学出版社:2002.
    [4]. J. M. Tarascon, A. S. Gozdz, C. Schmutz, et al., Performance of Bellcore's Plastic Rechargeable Li-Ion Batteries[J]. Solid State Ionics, 1996. 86-8: p. 49-54.
    [5]. T. Zheng, J. N. Reimers, J. R. Dahn, Effect of Turbostratic Disorder in Graphitic Carbon Hosts on the Intercalation of Lithium[J]. Physical Review B, 1995. 51(2): p. 734-741.
    
    [6]. L. Fransson, K. Edstron, Proc. Electrochem. Soc., 1999. 98-16: p. 108.
    [7]. H. Shi, J. Barker, M. Y. Saidi, et al., Structure and Lithium Intercalation Properties of Synthetic and Natural Graphite [J]. Journal of The Electrochemical Society, 1996. 143(11): p. 3466-3472.
    [8]. H. Huang, W. F. Liu, X. J. Huang, et al., Effect of a Rhombohedral Phase on Lithium Intercalation Capacity in Graphite[J]. Solid State Ionics, 1998. 110(3-4): p. 173-178.
    [9]. B. Simon, S. Flandrois, K. Guerin, et al., On the Choice of Graphite for Lithium Ion Batteries[J]. Journal of Power Sources, 1999. 82: p. 312-316.
    [10]. K. Tatsumi, N. Iwashita, H. Sakaebe, et al., The Influence of the Graphitic Structure on the Electrochemical Characteristics for the Anode of Secondary Lithium Batteries [J]. Journal of the Electrochemical Society, 1995. 142(3): p. 716-720.
    [11]. A. Mabuchi, K. Tokumitsu, H. Fujimoto, et al., Charge-Discharge Characteristics of the Mesocarbon Microbeads Heat-Treated at Different Temperatures[J]. Journal of the Electrochemical Society, 1995. 142(4): p. 1041-1046.
    [12]. A. Mabuchi, H. Fujimoto, K. Tokumitsu, et al., Charge-Discharge Mechanism of Graphitized Mesocarbon Microbeads [J]. Journal of the Electrochemical Society, 1995. 142(9): p. 3049-3051.
    [13]. M. Inaba, H. Yoshida, Z. Ogumi, In Situ Raman Study of Electrochemical Lithium Insertion into Mesocarbon Microbeads Heat-Treated at Various Temperature [J]. Journal of the Electrochemical Society, 1996. 143(8): p. 2572-2578.
    [14]. B. M. Way, J. R. Dahn, The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Lix(Bzcl-Z)6[J]. Journal of the Electrochemical Society, 1994. 141(4): p. 907-912.
    [15]. W. J. Weydanz, B. M. Way, T. Vanbuuren, et al., Behavior of Nitrogen-Substituted Carbon (Nzcl-Z) in Li/Li(Nzcl1-Z)6 Cells[J]. Journal of the Electrochemical Society,1994.141(4):p.900-906.
    [16].N.Takami,A.Satoh,T.Ohsaki,et al.,Large Hysteresis During Lithium Insertion into and Extraction from High-Capacity Disordered Carbons[J].Journal of the Electrochemical Society,1998.145(2):p.478-482.
    [17].Y.Jung,M.C.Suh,H.Lee,et al.,Electrochemical Insertion of Lithium into Polyacrylonitrile-Based Disordered Carbons[J].Journal of the Electrochemical Society,1997.144(12):p.4279-4284.
    [18].Y.P.Wu,S.B.Fang,Y.Y.Jiang,Carbon Anodes for a Lithium Secondary Battery Based on Polyacrylonitrile[J].Journal of Power Sources,1998.75(2):p.201-206.
    [19].Y.P.Wu,Y.X.Li,S.B.Fang,et al.,Carbon Anode Materials Based on Copolymers of Nitrogen-Containing Monomers with Dvb[J].Journal of Materials Science,1999.34(17):p.4253-4258.
    [20].吴宇平,万春荣,姜长印,锂离子二次电池[M].第1版ed.上海:化学工业出版社:2002,94.
    [21].Z.W.Fu,Y.Wang,X.L.Yue,et al.,Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes[J].Joumal Of Physical Chemistry B,2004.108(7):p.2236-2244.
    [22].Y.Takeda,M.Nishijima,M.Yamahata,et al.,Lithium Secondary Batteries Using a Lithium Cobalt Nitride,Li2.6co0.4n,as the Anode[J].Solid State Ionics,2000.130(1-2):p.61-69.
    [23].J.Yang,Y.Takeda,N.Imanishi,et al.,Tin-Containing Anode Materials in Combination with Li2.6co0.4n for Irreversibility Compensation[J].Journal of the Electrochemical Society,2000.147(5):p.1671-1676.
    [24].K.Wang,J.Yang,J.Y.Xie,et al.,Ball-Milling Synthesis and Electrochemical Study of Lithium(Transition) Metal Nitrides[J].Journal of Inorganic Materials,2003.18(4):p.843-848.
    [25].Y.Wang,Z.W.Fu,X.L.Yue,et al.,Electrochemical Reactivity Mechanism of Ni3n with Lithium[J].Joumal Of The Electrochemical Society,2004.151(4):p.E162-E167.
    [26].J.Yang,K.Wang,J.Y.Xie,Ballmilling Synthesis and Electrochemical Characterization of Temary Lithium Nitrides[J].Journal of the Electrochemical Society,2003.150(1):p.A140-a142.
    [27].N.Pereira,L.Dupont,J.M.Tarascon,et al.,Electrochemistry of Cu3n with Lithium - a Complex System with Parallel Processes[J].Journal Of The Electrochemical Society,2003.150(9):p.A1273-A1280.
    [28].N.Pereira,L.C.Klein,G.G.Amatucci,The Electrochemistry of Zn3n2 and Liznn - a Lithium Reaction Mechanism for Metal Nitride Electrodes[J].Journal Of The Electrochemical Society,2002.149(3):p.A262-A271.
    [29].N.Pereira,M.Balasubramanian,L.Dupont,et al.,The Electrochemistry of Germanium Nitride with Lithium[J].Journal Of The Electrochemical Society,2003.150(8):p.A1118-A1128.
    [30].K.Amezawa,N.Yamamoto,Y.Tomii,et al.,Single-Electrode Peltier Heats of Li-Si Alloy Electrodes in Licl-Kcl Eutectic Melt[J].Journal Of The Electrochemical Society, 1998. 145(6): p. 1986-1993.
    [31]. T. D. Hatchard, J. R. Dahn, In Situ Xrd and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon[J]. Journal Of The Electrochemical Society, 2004. 151(6): p. A838-A842.
    [32]. M. N. Obrovac, L. Christensen, Structural Changes in Silicon Anodes During Lithium Insertion/Extraction[J]. Electrochemical And Solid State Letters, 2004. 7(5): p. A93-A96.
    [33]. S. Bourderau, T. Brousse, D. M. Schleich, Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries[J]. Journal Of Power Sources, 1999. 82: p. 233-236.
    [34]. J. Graetz, C. C. Ahn, R. Yazami, et al., Highly Reversible Lithium Storage in Nanostructured Silicon[J]. Electrochemical And Solid State Letters, 2003. 6(9): p. A194-A197.
    [35]. H. J. Jung, M. Park, S. H. Han, et al., Amorphous Silicon Thin-Film Negative Electrode Prepared by Low Pressure Chemical Vapor Deposition for Lithium-Ion Batteries[J]. Solid State Communications, 2003. 125(7-8): p. 387-390.
    [36]. H. J. Jung, M. Park, Y. G. Yoon, et al., Amorphous Silicon Anode for Lithium-Ion Rechargeable Batteries[J]. Journal Of Power Sources, 2003. 115(2): p. 346-351.
    [37]. H. C. Shin, J. A. Corno, J. L. Gole, et al., Porous Silicon Negative Electrodes for Rechargeable Lithium Batteries[J]. Journal Of Power Sources, 2005. 139(1-2): p. 314-320.
    [38]. G. W. Zhou, H. Li, H. P. Sun, et al., Controlled Li Doping of Si Nanowires by Electrochemical Insertion Method[J]. Applied Physics Letters, 1999. 75(16): p. 2447-2449.
    [39]. B. Gao, S. Sinha, L. Fleming, et al., Alloy Formation in Nanostructured Silicon[J]. Advanced Materials, 2001. 13(11): p. 816-+.
    
    [40]. H. Li, X. J. Huang, L. Q. Chen, et al., The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature[J]. Solid State Ionics, 2000. 135(1-4): p. 181-191.
    [41]. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, et al., Colossal Reversible Volume Changes in Lithium Alloys[J]. Electrochemical And Solid State Letters, 2001. 4(9): p. A137-A140.
    [42]. M. Winter, J. O. Besenhard, Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites [J]. Electrochimica Acta, 1999. 45(1-2): p. 31-50.
    [43]. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, et al., Reaction of Li with Alloy Thin Films Studied by in Situ Afm[J]. Journal Of The Electrochemical Society, 2003. 150(11): p. A1457-A1464.
    [44]. L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, et al., The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys[J]. Journal Of The Electrochemical Society, 2003. 150(2): p. A149-A156.
    [45]. T. D. Hatchard, J. M. Topple, M. D. Fleischauer, et al., Electrochemical Performance of Sialsn Films Prepared by Combinatorial Sputtering[J]. Electrochemical And Solid State Letters, 2003. 6(7): p. A129-A132.
    [46]. T. D. Hatchard, J. R. Dahn, Study of the Electrochemical Performance of Sputtered Sil-Xsnx Films[J]. Journal Of The Electrochemical Society, 2004. 151(10): p.A1628-A1635.
    [47]. G. X. Wang, L. Sun, D. H. Bradhurst, et al., Nanocrystalline Nisi Alloy as an Anode Material for Lithium-Ion Batteries [J]. Journal Of Alloys And Compounds, 2000. 306(1-2): p. 249-252.
    [48]. G. X. Wang, L. Sun, D. H. Bradhurst, et al., Innovative Nanosize Lithium Storage Alloys with Silica as Active Centre[J]. Journal Of Power Sources, 2000. 88(2): p. 278-281.
    [49]. W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins, A Room Temperature Study of the Binary Lithium-Silicon and the Ternary Lithium-Chromium-Silicon System for Use in Rechargeable Lithium Batteries[J]. Journal Of Power Sources, 1999. 82: p. 237-242.
    [50]. M. Broussely, G. Archdale, Li-Ion Batteries and Portable Power Source Prospects for the Next 5-10 Years[J]. Journal Of Power Sources, 2004. 136(2): p. 386-394.
    [51]. J. O. Besenhard, J. Yang, M. Winter, Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?[J]. Journal Of Power Sources, 1997. 68(1): p. 87-90.
    [52]. M. Winter, J. O. Besenhard, M. E. Spahr, et al., Insertion Electrode Materials for Rechargeable Lithium Batteries[J]. Advanced Materials, 1998. 10(10): p. 725-763.
    [53]. D. A. Huansen, L. J. Chang, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1978. 25: p. 2392.
    
    [54]. W. Muller, H. Schafer, Z. Naturforsch. B, 1973. 28: p. 246.
    [55]. W. Muller, Z. Naturforsch. B, 1974. 29: p. 304.
    [56]. U. Frank, W. Muller, H. Schafer, Z. Naturforsch. B, 1975. 30: p. 1.
    [57]. U. Frank, W. Muller, H. Schafer, Z. Naturforsh. B, 1975. 30: p. 6.
    [58]. U. Frank, W. Muller, Z. Naturforsch. B, 1975. 30: p. 316.
    [59]. G. Gladyeshevskii, I. Oleksiv, P. I. Kripyakevich, Sov. Phys. Crystallogr., 1964. 9: p. 338.
    [60]. S. F. Yang, P. Y. Zavalij, M. S. Whittingham, Anodes for Lithium Batteries: Tin Revisited[J]. Electrochemistry Communications, 2003. 5(7): p. 587-590.
    [61]. A. H. Whitehead, J. M. Elliott, J. R. Owen, Nanostructured Tin for Use as a Negative Electrode Material in Li-Ion Batteries[J]. Journal Of Power Sources, 1999. 82: p. 33-38.
    [62]. N. Tamura, R. Ohshita, M. Fujimoto, et al., Study on the Anode Behavior of Sn and Sn-Cu Alloy Thin-Film Electrodes [J]. Journal Of Power Sources, 2002. 107(1): p. 48-55.
    [63]. W. Choi, J. Y. Lee, B. H. Jung, et al., Microstructure and Electrochemical Properties of a Nanometer-Scale Tin Anode for Lithium Secondary Batteries[J]. Journal Of Power Sources, 2004. 136(1): p. 154-159.
    [64]. R. Nesper, Bonding Patterns in Intermetallic Compounds[J]. Angewandte Chemie-International Edition In English, 1991. 30(7): p. 789-817.
    [65]. K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Lixcu6sn5 (0 < X < 13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries[J]. Electrochemical And Solid State Letters, 1999. 2(7): p. 307-309.
    [66]. K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Copper-Tin Anodes for Rechargeable Lithium Batteries: An Example of the Matrix Effect in an Intermetallic System[J]. Journal Of Power Sources, 1999. 82: p. 383-387.
    [67]. M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, et al., Intermetallic Insertion Electrodes Derived from Nias-, Ni2in-, and Li2cusn-Type Structures for Lithium-Ion Batteries[J]. Electrochemistry Communications, 1999. 1(3-4): p. 111-115.
    [68]. J. T. Vaughey, K. D. Kepler, R. Benedek, et al., Nias- Versus Zinc-Blende-Type Intermetallic Insertion Electrodes for Lithium Batteries: Lithium Extraction from Li2cusn[J]. Electrochemistry Communications, 1999. 1(11): p. 517-521.
    [69]. L. Fransson, E. Nordstrom, K. Edstrom, et al., Structural Transformations in Lithiated Eta '-Cu6sn5 Electrodes Probed by in Situ Mossbauer Spectroscopy and X-Ray Diffraction[J]. Journal Of The Electrochemical Society, 2002. 149(6): p. A736-A742.
    [70]. S. Sharma, L. Fransson, E. Sjostedt, et al., A Theoretical and Experimental Study of the Lithiation of Eta '-Cu6sn5 in a Lithium-Ion Battery [J]. Journal Of The Electrochemical Society, 2003. 150(3): p. A330-A334.
    [71]. D. Larcher, L. Y. Beaulieu, D. D. Macneil, et al., In Situ X-Ray Study of the Electrochemical Reaction of Li with Eta '-Cu6sn5[J]. Journal Of The Electrochemical Society, 2000. 147(5): p. 1658-1662.
    [72]. H. Kim, Y. J. Kim, D. G. Kim, et al., Mechanochemical Synthesis and Electrochemical Characteristics of Mg2sn as an Anode Material for Li-Ion Batteries[J]. Solid State Ionics, 2001. 144(1-2): p. 41-49.
    [73]. G. A. Roberts, E. J. Cairns, J. A. Reimer, An Electrochemical and Xrd Study of Lithium Insertion into Mechanically Alloyed Magnesium Stannide[J]. Journal Of The Electrochemical Society, 2003. 150(7): p. A912-A916.
    [74]. A. Bonakdarpour, K. C. Hewitt, R. L. Turner, et al., Electrochemical and in Situ Xrd Studies of the Li Reaction with Combinatorially Sputtered Mol-Xsnx (0 <= X <= 0.50) Thin Films[J]. Journal Of The Electrochemical Society, 2004. 151(3): p. A470-A483.
    [75]. Y. Y. Xia, T. Sakai, T. Fujieda, et al., Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal Of The Electrochemical Society, 2001. 148(5): p. A471-A481.
    [76]. J. Wolfenstine, S. Campos, D. Foster, et al., Nano-Scale Cu6sn5 Anodes[J]. Journal Of Power Sources, 2002. 109(1): p. 230-233.
    [77]. D. G. Kim, H. Kim, H. J. Sohn, et al., Nanosized Sn-Cu-B Alloy Anode Prepared by Chemical Reduction for Secondary Lithium Batteries [J]. Journal Of Power Sources, 2002. 104(2): p. 221-225.
    [78]. J. Wolfenstine, S. Campos, Effect of Fe on the Cycle Life of Cu6sn5 Anodes[J]. Materials Letters, 2002. 57(1): p. 24-27.
     [79]. N. Tamura, R. Ohshita, M. Fujimoto, et al., Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary Batteries[J]. Journal Of The Electrochemical Society, 2003. 150(6): p. A679-A683.
    [80]. S. D. Beattie, J. R. Dahn, Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-Ion Batteries[J]. Journal Of The Electrochemical Society, 2003. 150(7): p. A894-A898.
    [81]. H. Kim, J. Choi, H. J. Sohn, et al., The Insertion Mechanism of Lithium into Mg2si Anode Material for Li-Ion Batteries[J]. Journal Of The Electrochemical Society, 1999. 146(12): p. 4401-4405.
    [82]. T. I. Dyuzheva, N. A. Bendeliani, L. N. Dzhavadov, et al., Crystal-Growth of the High-Pressure Phase of Mg2sn[J]. Journal Of Alloys And Compounds, 1995. 223(1): p. 74-76.
    [83]. G. Urretavizcaya, G. O. Meyer, Metastable Hexagonal Mg2sn Obtained by Mechanical Alloying[J]. Journal Of Alloys And Compounds, 2002. 339(1-2): p. 211-215.
    [84]. G. M. Ehrlich, C. Durand, X. Chen, et al., Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries[J]. Journal Of The Electrochemical Society, 2000. 147(3): p. 886-891.
    [85]. O. Crosnier, T. Brousse, X. Devaux, et al., New Anode Systems for Lithium Ion Cells[J]. Journal Of Power Sources, 2001. 94(2): p. 169-174.
    
    [86]. Y. L. Kim, H. Y. Lee, S. W. Jang, et al., Nanostructured Ni3sn2 Thin Film as Anodes for Thin Film Rechargeable Lithium Batteries [J]. Solid State Ionics, 2003. 160(3-4): p. 235-240.
    
    [87]. Q. F. Dong, C. Z. Wu, M. G. Jin, et al., Preparation and Performance of Nickel-Tin Alloys Used as Anodes for Lithium-Ion Battery [J]. Solid State Ionics, 2004. 167(1-2): p. 49-54.
    
    [88]. H. Y. Lee, S. W. Jang, S. M. Lee, et al., Lithium Storage Properties of Nanocrystalline Ni3sn4 Alloys Prepared by Mechanical Alloying[J]. Journal Of Power Sources, 2002. 112(1): p. 8-12.
    [89]. H. Mukaibo, T. Sumi, T. Yokoshima, et al., Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries[J]. Electrochemical And Solid State Letters, 2003. 6(10): p. A218-A220.
    [90]. X. Q. Cheng, P. F. Shi, Electroless Cu-Plated Ni3sn4 Alloy Used as Anode Material for Lithium Ion Battery[J]. Journal Of Alloys And Compounds, 2005. 391(1-2): p. 241-244.
    [91]. H. Mukaibo, T. Momma, M. Mohamedi, et al., Structural and Morphological Moditications of a Nanosized 62 Atom Percent Sn-Ni Thin Film Anode During Reaction with Lithium[J]. Journal Of The Electrochemical Society, 2005. 152(3): p. A560-A565.
    [92]. H. Sakaguchi, H. Honda, T. Esaka, Synthesis and Anode Behavior of Lithium Storage Intermetallic Compounds with Various Crystallinities[J]. Journal Of Power Sources, 1999. 82: p. 229-232.
    [93]. H. Sakaguchi, H. Honda, Y. Akasaka, et al., Ce-Sn Intermetallic Compounds as New Anode Materials for Rechargeable Lithium Batteries[J]. Journal Of Power Sources, 2003. 119: p. 50-55.
    [94]. J. T. Yin, M. Wada, S. Yoshida, et al., New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries[J]. Journal Of The Electrochemical Society, 2003. 150(8): p.A1129-A1135.
    [95]. H. Li, G. Y. Zhu, X. J. Huang, et al., Synthesis and Electrochemical Performance of Dendrite-Like Nanosized Snsb Alloy Prepared by Co-Precipitation in Alcohol Solution at Low Temperature [J]. Journal Of Materials Chemistry, 2000. 10(3): p. 693-696.
    [96]. H. Li, L. H. Shi, W. Lu, et al., Studies on Capacity Loss and Capacity Fading of Nanosized Snsb Alloy Anode for Li-Ion Batteries[J]. Journal Of The Electrochemical Society, 2001. 148(8): p. A915-A922.
    [97]. J. Yang, M. Wachtler, M. Winter, et al., Sub-Microcrystalline Sn and Sn-Snsb Powders as Lithium Storage Materials for Lithium-Ion Batteries[J]. Electrochemical And Solid State Letters, 1999. 2(4): p. 161-163.
    [98]. J. Yang, Y. Takeda, N. Imanishi, et al., Ultrafine Sn and Snsb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries [J]. Journal Of The Electrochemical Society, 1999. 146(11): p. 4009-4013.
    [99]. J. O. Besenhard, M. Wachtler, M. Winter, et al., Kinetics of Li Insertion into Polycrystalline and Nanocrystalline 'Snsb' Alloys Investigated by Transient and Steady State Techniques [J]. Journal Of Power Sources, 1999. 82: p. 268-272.
    [100]. X. D. Wu, Z. X. Wang, L. Q. Chen, et al., Surface Compatibility in a Carbon-Alloy Composite and Its Influence on the Electrochemical Performance of Lihon Batteries[J]. Carbon, 2004. 42(10): p. 1965-1972.
    [101]. W. X. Chen, J. Y. Lee, Z. L. Liu, The Nanocomposites of Carbon Nanotube with Sb and Snsb0.5 as Li-Ion Battery Anodes[J]. Carbon, 2003. 41(5): p. 959-966.
    
    [102]. W. X. Chen, J. Y. Lee, Z. L. Liu, Electrochemical Lithiation and De-Lithiation of Carbon Nanotube-Sn2sb Nanocomposites[J]. Electrochemistry Communications, 2002. 4(3): p. 260-265.
    [103]. D. Larcher, L. Y. Beaulieu, O. Mao, et al., Study of the Reaction of Lithium with Isostructural a(2)B and Various Alxb Alloys[J]. Journal Of The Electrochemical Society, 2000. 147(5): p. 1703-1708.
    [104]. A. Kawabata, Y. Xia, T. Sakai, New V-Sn Alloys Prepared by Matallurgy for Lithium Battery Negative Electrode[J]. Japan. Soc. of Powder Metallurgy, 2002. 49: p. 37-43.
    [105]. Y. L. Kim, S. J. Lee, H. K. Baik, et al., Sn-Zr-Ag Alloy Thin-Film Anodes[J].Journal Of Power Sources, 2003. 119: p. 106-109.
    [106]. C. H. Mi, X. G. Zhang, G. S. Cao, Synthesis and Characteristics of Cosn and Cu-Sn Alloys as Anode Materials in Lithium-Ion Cell[J]. Chinese Journal Of Inorganic Chemistry, 2003. 19(3): p. 283-286.
    [107]. N. Tamura, A. Fujimoto, M. Kamino, et al., Mechanical Stability of Sn-Co Alloy Anodes for Lithium Secondary Batteries[J]. Electrochimica Acta, 2004. 49(12): p. 1949-1956.
    [108]. L. Fang, B. V. R. Chowdari, Sn-Ca Amorphous Alloy as Anode for Lithium Ion Battery[J]. Journal Of Power Sources, 2001. 97-8: p. 181-184.
    [109]. K. C. Hewitt, L. Y. Beaulieu, J. R. Dahn, Electrochemistry of Insb as a Li Insertion Host Problems and Prospects[J]. Journal Of The Electrochemical Society, 2001. 148(5): p. A402-A410.
    [110]. J. T. Vaughey, J. O'hara, M. M. Thackeray, Intermetallic Insertion Electrodes with a Zinc Blende-Type Structure for Li Batteries: A Study of Lixinsb (0 <= X <= 3)[J]. Electrochemical And Solid State Letters, 2000. 3(1): p. 13-16.
    [111]. J. M. Tarascon, M. Morcrette, L. Dupont, et al., On the Electrochemical Reactivity Mechanism of Cosb3 Vs. Lithium[J]. Journal Of The Electrochemical Society, 2003. 150(6): p. A732-A741.
    [112]. X. B. Zhao, G. S. Cao, C. P. Lv, et al., Electrochemical Properties of Some Sb or Te Based Alloys for Candidate Anode Materials of Lithium-Ion Batteries[J]. Journal Of Alloys And Compounds, 2001. 315(1-2): p. 265-269.
    [113]. R. Alcantara, F. J. Fernandez-Madrigal, P. Lavela, et al., Electrochemical Reaction of Lithium with the Cosb3 Skutterudite[J]. Journal Of Materials Chemistry, 1999. 9(10): p. 2517-2521.
    [114]. L. M. L. Fransson, J. T. Vaughey, R. Benedek, et al., Phase Transitions in Lithiated Cu2sb Anodes for Lithium Batteries: An in Situ X-Ray Diffraction Study[J]. Electrochemistry Communications, 2001. 3(7): p. 317-323.
    [115]. H. Okuda, S. Senba, H. Sato, et al., Electronic Structure of Mnsb and Mnp[J]. Journal Of Electron Spectroscopy And Related Phenomena, 1999. 103: p. 657-660.
    [116]. J. T. Vaughey, L. Fransson, H. A. Swinger, et al., Alternative Anode Materials for Lithium-Ion Batteries: A Study of Ag3sb[J]. Journal Of Power Sources, 2003. 119: p. 64-68.
    [117]. J. T. Yin, M. Wada, S. Tanase, et al., Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries[J]. Journal Of The Electrochemical Society, 2004. 151(4): p. A583-A589.
    [118]. M. Wada, J. T. Yin, S. Tanase, et al., Electrochemical Performance and Li-Induced Structural Changes of Ag-Sb-Sn Anode Material for Next Generation Li-Ion Batteries[J]. Journal Of The Japan Institute Of Metals, 2004. 68(2): p. 46-49.
    [119]. O. Mao, R. A. Dunlap, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries -1. The Sn2fe-C System[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 405-413.
    [120]. O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries - Ii. The Snfe System[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 414-422.
    [121]. O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries - Iii. Sn2fe : Snfe3c Active/Inactive Composites[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 423-427.
    [122]. L. Y. Beaulieu, J. R. Dahn, The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying [J]. Journal Of The Electrochemical Society, 2000. 147(9): p. 3237-3241.
    [123]. L. Y. Beaulieu, D. Larcher, R. A. Dunlap, et al., Reaction of Li with Grain-Boundary Atoms in Nanostructured Compounds[J]. Journal Of The Electrochemical Society, 2000. 147(9): p. 3206-3212.
    
    [124]. L. Beaulieu, D. Larcher, R. A. Dunlap, et al., Nanocomposites in the Sn-Mn-C System Produced by Mechanical Alloying[J]. Journal Of Alloys And Compounds, 2000. 297(1-2): p. 122-128.
    [1] P. Hohenberg and W. Kohn. Phys. Rev., 136:864B, 1964.
    
    [2] R. O. Jones and O. Gunnarsson. Rev. Mod. Phys., 61:689,1989.
    
    [3] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542, (1927).
    
    [4] E. Fermi, Z. Phys. 48, 73, (1928).[Levy] M. Levy, Phys. Rev. A 26, 1200 (1982).
    
    [5] W. Kohn and L. J. Sham. Phys. Rev., 140:1133A, 1965.
    
    [6] Mahan, G.D. (1990) Many Particle Physics, Plenum Publishing, New York.
    
    [7] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)
    
    [8] D. M. Ceplerley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)
    
    [9] Ma, S.-K. and Brueckner, K.A. (1968) Phys. Rev., 165, 18.
    
    [10] Perdew, J.P. (1985) Phys. Rev. Lett., 55, 1665.
    
    [11] Perdew, J.P. and Wang, Y. (1991) Phys. Rev. B, 45, 13 244.
    
    [12] Perdew, J.P, Burke, K., and Ernzerhof, M. (1996) Phys. Rev. Lett., 77, 3865.
    
    [13]Lieb, E.H. and Oxford, S. (1981) Int. J. Quantum Chem., 19, 427.
    
    [14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045(1992).
    
    [15] S. G. Louie, K. M. Ho, and M. Cohen, Phys. Rev. B., 19, 1774(1979).
    
    [16] C. Elsasser, N. Takeuchi, K. M. Ho, C. T. Chan, P. Braun, and M. Fannie, J. Phys.: Condens. Matter., 2, 4374(1990).
    
    [17] K. M. Ho, C. Elsasser, C. T. Chan, and M. Fahnle, J. Phys.: Condens. Matter., 4,5189(1992).
    
    [18] E. Fermi, Nuovo Cimento 11, 157 (1934).
    
    [19] H. Hellmann, Acta Physiochimica URSS, 1, 913(1935).
    
    [20] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett., 43, 1494(1979).
    
    [21] D. Vanderbilt, Phys. Rev. B., 41, 7892(1990).
    
    [22] P. E. Blochl, Phys. Rev. B., 50, 17953(1994).
    
    [23] W. E. Pickett, Comp. Phys. Rep., 9, 115(1989).
    
    [24] G. Kresse and J. Hafner, J. Phys.: Condens. Matter., 6, 8245(1994).
    
    [25] J. R. Chelikowsky and Y. Saad, Electronic Structure of Clusters and Nanocrystals, Handbook of Theoretical and Computational Nanotechnology, Edited by M. Rieth and W.Schommers. (American Scientific), in press.
    
    [26] S.G. Louie, S. Froyen, and M.L. Cohen, Phys. Rev. B., 26, 1738 (1982).
    [27] W. C. Topp and J. J. Hopfiel, Phys. Rev. B., 7, 1295(1973).
    
    [28] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett., 43, 1494(1979).
    
    [29] H. Hellmann, Einfuhrung in die Quantumchemie, Deuticke, Leipzig(1937)
    
    [30] R. P. Feynman, Phys. Rev., 56, 340(1939).
    
    [31] M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259(1982).
    
    [32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, Cambridge University Press, 2 ed. (1996).
    
    [33] K. M. Ho, C. L. Fu, and B. N. Harmon, Phys. Rev. B. 28,6687(1983).
    
    [34] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    
    [35] http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
    
    [36] G. Kresse and J. Hafner, J. Phys: Cond. Mat. 6, 8245(1994).
    
    [37] G. Kresse and D. Joubert, Phys. Rev. B., 59, 1758(1999).
    
    [38] E. Polak, Computational Methods in Optimization, Academic, New York (1971).
    
    [39] E. R. Davidson, In G. H. F. Diercksen, and S. Wilson, eds., Methods in Computational Molecular Physics, vol 113 of NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences, p. 95. Plenum, New York.
    
    [40] P. Pulay, Chem. Phys. Lett. 73, 393(1980).
    
    [41] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188(1976).
    
    [42] O. Jepsen and O.K. Andersen, Solid State Commun. 9, 1763 (1971)
    
    [43] P.E. Blochl, O. Jepsen and O.K. Andersen, Phys. Rev. B 49, 16t223 (1994).
    
    [44] C.-L. Fu and K.-M. Ho, Phys. Rev. B 28, 5480 (1983).
    
    [45] M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).
    [1]. J. N. Reimers, Can First Principles Calculations Aid in Lithium-Ion Battery Design[J]. Journal of Power Sources, 1995. 54(1): p. 16-19.
    [2]. M. K. Aydinol, G. Ceder, First-Principles Prediction of Insertion Potentials in Li-Mn Oxides for Secondary Li Batteries [J]. Journal of the Electrochemical Society, 1997. 144(11): p. 3832-3835.
    [3]. M. K. Aydinol, A. F. Kohan, G. Ceder, Ab Initio Calculation of the Intercalation Voltage of Lithium Transition Metal Oxide Electrodes for Rechargeable Batteries[J]. Journal of Power Sources, 1997. 68(2): p. 664-668.
    [4]. G. Ceder, M. K. Aydinol, A. F. Kohan, Application of First-Principles Calculations to the Design of Rechargeable Li-Batteries[J]. Computational Materials Science, 1997. 8(1-2): p. 161-169.
    [5]. G. Ceder, Y. M. Chiang, D. R. Sadoway, et al., Identification of Cathode Materials for Lithium Batteries Guided by First-Principles Calculations[J]. Nature, 1998. 392(6677): p. 694-696.
    [6]. A. Van Der Ven, M. K. Aydinol, G. Ceder, et al., First-Principles Investigation of Phase Stability in Lixcoo2[J]. Physical Review B, 1998. 58(6): p. 2975-2987.
    [7]. C. Wolverton, A. Zunger, Prediction of Li Intercalation and Battery Voltages in Layered Vs. Cubic Lixcoo2[J]. Journal of the Electrochemical Society, 1998. 145(7): p. 2424-2431.
    [8]. L. A. Montoro, M. Abbate, J. M. Rosolen, Changes in the Electronic Structure of Chemically Deintercalated Licoo2[J]. Electrochemical and Solid State Letters, 2000. 3(9): p. 410-412.
    [9]. A. Van Der Ven, G. Ceder, Electrochemical Properties of Spinel Lixcoo2: A First-Principles Investigation[J]. Physical Review B, 1999. 59(2): p. 742-749.
    [10]. D. Carlier, A. Van Der Ven, C. Delmas, et al., First-Principles Investigation of Phase Stability in the O-2-Licoo2 System[J]. Chemistry of Materials, 2003. 15(13): p. 2651-2660.
    [11]. S. K. Mishra, G. Ceder, Structural Stability of Lithium Manganese Oxides[J]. Physical Review B, 1999. 59(9): p. 6120-6130.
    [12]. G. Ceder, S. K. Mishra, The Stability of Orthorhombic and Monoclinic-Layered Limno2[J]. Electrochemical and Solid State Letters, 1999. 2(11): p. 550-552.
    [13]. A. Van Der Ven, C. Marianetti, D. Morgan, et al., Phase Transformations and Volume Changes in Spinel Lixmn2o4[J]. Solid State Ionics, 2000. 135(1-4): p. 21-32.
    [14]. K. Suzuki, Y. Oumi, S. Takami, et al., Structural Properties of Lixmn2o4 as Investigated by Molecular Dynamics and Density Functional Theory [J]. Japanese Journal of Applied Physics Part 1 -Regular Papers Short Notes & Review Papers, 2000. 39(7B): p. 4318-4322.
    [15]. Y. Ito, Y. Idemoto, Y. Tsunoda, et al., Relation between Crystal Structures, Electronic Structures, and Electrode Performances of Limn2-Xmxo4 (M = Ni, Zn) as a Cathode Active Material for 4v Secondary Li Batteries [J]. Journal of Power Sources, 2003. 119: p. 733-737.
    [16]. S. Q. Shi, D. S. Wang, S. Meng, et al., First-Principles Studies of Cation-Doped Spinel Limn2o4 for Lithium Ion Batteries[J]. Physical Review B, 2003. 67(11).
    [17]. S. Madhavi, G. V. S. Rao, B. V. R. Chowdari, et al., Effect of Aluminium Doping on Cathodic Behaviour of Lini0.7co0.3o2[J]. Journal of Power Sources, 2001. 93(1-2): p. 156-162.
    [18]. M. De Dompablo, A. Van Der Ven, G Ceder, First-Principles Calculations of Lithium Ordering and Phase Stability on Lixnio2[J]. Physical Review B, 2002. 66(6).
    [19]. M. De Dompablo, G. Ceder, First-Principles Calculations on Lixnio2: Phase Stability and Monoclinic Distortion[J]. Journal of Power Sources, 2003. 119: p. 654-657.
    [20]. M. E. A. Y. De Dompablo, G. Ceder, First-Principles Calculations on Lixnio2: Phase Stability and Monoclinic Distortion[J]. Journal of Power Sources, 2003. 119: p. 654-657.
    [21]. Y. Koyama, N. Yabuuchi, I. Tanaka, et al., Solid-State Chemistry, and Electrochemistry of Lico1/3ni1/3mn1/3o2 for Advanced Lithium-Ion Batteries -I. First-Principles Calculation on the Crystal and Electronic Structures [J]. Journal of the Electrochemical Society, 2004. 151(10): p. A1545-A1551.
    [22]. Y. Koyama, Y. Makimura, I. Tanaka, et al., Systematic Research on Insertion Materials Based on Superlattice Models in a Phase Triangle of Licoo2-Linio2-Limno2. I. First-Principles Calculation on Electronic and Crystal Structures, Phase Stability and New Lini1/2mn1/2o2 Material [J]. Journal of the Electrochemical Society, 2004. 151(9): p. A1499-A1506.
    [23]. D. Morgan, A. Van Der Ven, G. Ceder, Li Conductivity in Lixmpo4 (M = Mn, Fe, Co, Ni) Olivine Materials[J]. Electrochemical and Solid State Letters, 2004. 7(2): p. A30-A32.
    [24]. O. Le Bacq, A. Pasturel, First-Principles Study of Limpo4 Compounds (M=Mn, Fe, Co, Ni) as Electrode Material for Lithium Batteries[J]. Philosophical Magazine, 2005. 85(16): p. 1747-1754.
    [25]. J. S. Braithwaite, C. R. A. Catlow, J. D. Gale, et al., Lithium Intercalation into Vanadium Pentoxide: A Theoretical Study [J]. Chemistry of Materials, 1999. 11(8): p. 1990-1998.
    [26]. X. Rocquefelte, F. Boucher, P. Gressier, et al., First-Principle Study of the Intercalation Process in the Lixv2o5 System[J]. Chemistry of Materials, 2003. 15(9): p. 1812-1819.
    [27]. G. Kresse, J. Hafner, Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium[J]. Physical Review B, 1994. 49(20): p. 14251-14269.
    [28]. G. Kresse, J. Furthmuller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Computational Materials Science, 1996. 6(1): p. 15-50.
    [29]. G. Kresse, J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996. 54(16): p. 11169-11186.
    
    [30]. J. P. Perdew, Y. Wang, Phys. Rev. B, 1986. 33: p. 8800.
    
    [31]. E. Deiss, A. Wokaun, J. L. Barras, et al., Average Voltage, Energy Density, and Specific Energy of Lithium-Ion Batteries - Calculation Based on First Principles[J]. Journal of the Electrochemical Society, 1997. 144(11): p. 3877-3881.
    [32]. R. Benedek, M. M. Thackeray, Lithium Reactions with Intermetallic-Compound Electrodes[J]. Journal of Power Sources, 2002. 110(2): p. 406-411.
    [33]. I. A. Courtney, J. S. Tse, O. Mao, et al., Ab Initio Calculation of the Lithium-Tin Voltage Profile[J]. Physical Review B, 1998. 58(23): p. 15583-15588.
    [34]. J. T. Vaughey, J. O'hara, M. M. Thackeray, Intermetallic Insertion Electrodes with a Zinc Blende-Type Structure for Li Batteries: A Study of Lixinsb (0 <= X <= 3)[J]. Electrochemical and Solid State Letters, 2000. 3(1): p. 13-16.
    [35]. C. S. Johnson, J. T. Vaughey, M. M. Thackeray, et al., Electrochemistry and in-Situ X-Ray Diffraction of Insb in Lithium Batteries[J]. Electrochemistry Communications, 2000. 2(8): p. 595-600.
    [36]. K. C. Hewitt, L. Y. Beaulieu, J. R. Dahn, Electrochemistry of Insb as a Li Insertion Host Problems and Prospects [J]. Journal of the Electrochemical Society, 2001. 148(5): p.A402-a410.
    [37]. A. J. Kropf, H. Tostmann, C. S. Johnson, et al., An in Situ X-Ray Absorption Spectroscopy Study of Insb Electrodes in Lithium Batteries[J]. Electrochemistry Communications, 2001. 3(5): p. 244-251.
    [38]. H. Tostmann, A. J. Kropf, C. S. Johnson, et al., In Situ X-Ray Absorption Studies of Electrochemically Induced Phase Changes in Lithium-Doped Insb[J]. Physical Review B, 2002. 66(1).
    [39]. S. Sharma, J. K. Dewhurst, C. Ambrosch-Drax1, Lithiation of Insb and Cu2sb: A Theoretical Investigation[J]. Physical Review B, 2004. 70(10): p. 4110-.
    [40]. Y. Y. Xia, T. Sakai, T. Fujieda, et al., Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal Of The Electrochemical Society, 2001. 148(5): p. A471-A481.
    [41]. D. Larcher, L. Y. Beaulieu, D. D. Macneil, et al., In Situ X-Ray Study of the Electrochemical Reaction of Li with Eta '-Cu6sn5[J]. Journal of the Electrochemical Society, 2000. 147(5): p. 1658-1662.
    [42]. O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries - Ii. The Snfe System[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 414-422.
    [43]. J. J. Zhang, Y. Y. Xia, Co-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of the Electrochemical Society, 2006. 153(8):p.A1466-A1471.
    [44]. J. J. Zhang, Y. M. Zhang, X. Zhang, et al., Nixcu6-Xsn5 Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of Power Sources,2007.167(1):p.171-177.
    [1]. Y. Idota, T. Kubota, A. Matsufuji, et al., Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material[J]. Science, 1997. 276(5317): p. 1395-1397.
    [2]. D. Larcher, L. Y. Beaulieu, O. Mao, et al., Study of the Reaction of Lithium with Isostructural a(2)B and Various Alxb Alloys[J]. Journal of the Electrochemical Society, 2000. 147(5): p. 1703-1708.
    [3]. K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Copper-Tin Anodes for Rechargeable Lithium Batteries: An Example of the Matrix Effect in an Intermetallic System[J]. Journal Of Power Sources, 1999. 82: p. 383-387.
    [4]. D. Larcher, L. Y. Beaulieu, D. D. Macneil, et al., In Situ X-Ray Study of the Electrochemical Reaction of Li with Eta '-Cu6sn5[J]. Journal Of The Electrochemical Society, 2000. 147(5): p. 1658-1662.
    [5]. Y. Y. Xia, T. Sakai, T. Fujieda, et al., Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal Of The Electrochemical Society, 2001. 148(5): p. A471-A481.
    [6]. G. M. Ehrlich, C. Durand, X. Chen, et al., Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries[J]. Journal Of The Electrochemical Society, 2000. 147(3): p. 886-891.
    [7]. H. Y. Lee, S. W. Jang, S. M. Lee, et al., Lithium Storage Properties of Nanocrystalline Ni3sn4 Alloys Prepared by Mechanical Alloying[J]. Journal Of Power Sources, 2002. 112(1): p. 8-12.
    [8]. O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries - Ii. The Snfe System[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 414-422.
    [9]. O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries - Iii. Sn2fe : Snfe3c Active/Inactive Composites[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 423-427.
    [10]. O. Mao, R. A. Dunlap, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries -1. The Sn2fe-C System[J]. Journal Of The Electrochemical Society, 1999. 146(2): p. 405-413.
    [11]. L. Y. Beaulieu, J. R. Dahn, The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying [J]. Journal Of The Electrochemical Society, 2000. 147(9): p. 3237-3241.
    [12]. M. Ellner, Crystal Chemical Parameters of Nias Type Phases Containing Ni, Co and Fe[J]. Journal of the Less-Common Metals, 1976. 48(1): p. 21-52.
    [13]. K. C. Jain, M. Ellner, K. Schubert, Co3sn2-Ortho[J]. Z. Metallk., 1972. 63: p. 258 - 260.
    
    [14]. O. Nial, Cosn2 and Cosn[J]. Z. Anorg. Allg. Chem., 1938. 238: p. 287.
    
    [15]. J. Wolfenstine, S. Campos, D. Foster, et al., Nano-Scale Cu6sn5 Anodes[J]. Journal of Power Sources, 2002. 109(1): p. 230-233.
    [16]. J. Yang, Y. Takeda, N. Imanishi, et al., Ultrafine Sn and Snsb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 1999. 146(11): p. 4009-4013.
    [17]. M. Singh, N. P. Singh, Co3sn[J]. Phys. Status Solidi A [PSSABA], 1987. 100A: p. K111-K116.
     [18]. H. H. Stadelmaier, L. J. Huetter, Co3snc[J]. Acta Met. [AMETAR], 1959. 7: p. 415-419.
    [1].G.Kresse,J.Furthmuller,Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J].Computational Materials Science,1996.6(1):p.15-50.
    [2].G.Kresse,J.Furthmuller,Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J].Physical Review B,1996.54(16):p.11169-11186.
    [3].Y.Koyama,Y.Makimura,I.Tanaka,et al.,Systematic Research on Insertion Materials Based on Superlattice Models in a Phase Triangle of Licoo2-Linio2-Limno2.I.First-Principles Calculation on Electronic and Crystal Structures,Phase Stability and New Lini 1/2mn 1/2o2 Material[J].Joumal of the Electrochemical Society,2004.151(9):p.A 1499-A1506.
    [4].A.K.Larsson,L.Stenberg,S.Lidin,The Superstructure of Domain-Twinned Eta'-Cu6sn5[J].Acta Crystallographica Section B-Structural Science,1994.50:p.636-643.
    [5].M.Ellner,Ni3sn2 Structure[J].J.Less-Common Metals,1976.48:p.21-52.
    [6].M.Liu,L.-G.Liu,Structure of Metal-Sn[J].High Temp.High Pressures,1986.18:p.79-85.
    [7].J.Yang,Y.Takeda,N.Imanishi,et al.,Ultrafine Sn and Snsb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries[J].Journal of the Electrochemical Society,1999.146(11):p.4009-4013.
    [8].M.M.Thackeray,J.T.Vaughey,A.J.Kahaian,et al.,Intermetallic Insertion Electrodes Derived from Nias-,Ni2in-,and Li2cusn-Type Structures for Lithium-Ion Batteries[J].Electrochemistry Communications,1999.1(3-4):p.111-115.
    [9].D.Larcher,L.Y.Beaulieu,D.D.Macneil,et al.,In Situ X-Ray Study of the Electrochemical Reaction of Li with Eta '-Cu6sn5[J].Journal Of The Electrochemical Society,2000.147(5):p.1658-1662.
    [10].S.Sharma,L.Fransson,E.Sjostedt,et al.,A Theoretical and Experimental Study of the Lithiation of Eta '-Cu6sn5 in a Lithium-Ion Battery[J].Joumal of the Electrochemical Society,2003.150(3):p.A330-a334.
    [11].H.-U.Schuster,Li2cusn Structure[J].Naturwissenschaften,1966.53:p.360-361.
    [12].U.Frank,W.Muller,Li7sn2 Structure[J].Z.Naturforsch.B,1975.30:p.316.
    [13].J.R.Dahn,I.A.Courtney,O.Mao,Short-Range Sn Ordering and Crystal Structure of Li4.4sn Prepared by Ambient Temperature Electrochemical Methods[J].Solid State Ionics,1998.111(3-4):p.289-294.
    [14].I.A.Courtney,J.S.Tse,O.Mao,et al.,Ab Initio Calculation of the Lithium-Tin Voltage Profile[J].Physical Review B,1998.58(23):p.15583-15588.
    [1]. K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Lixcu6sn5 (0 < X < 13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries[J]. Electrochemical And Solid State Letters, 1999. 2(7): p. 307-309.
    [2]. D. Larcher, L. Y. Beaulieu, D. D. Macneil, et al, In Situ X-Ray Study of the Electrochemical Reaction of Li with Eta '-Cu6sn5[J]. Journal Of The Electrochemical Society, 2000. 147(5): p. 1658-1662.
    [3]. O. Mao, R. A. Dunlap, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries -1. The Sn2fe-C System[J]. Journal of the Electrochemical Society, 1999. 146(2): p. 405-413.
    
    [4]. J. J. Zhang, Y. Y. Xia, Co-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J]. Journal Of The Electrochemical Society, 2006. 153(8):p.A1466.
    [5]. G. Kresse, J. Furthmuller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Computational Materials Science, 1996. 6(1): p. 15-50.
    [6]. G. Kresse, J. FurthmuUer, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996. 54(16): p. 11169-11186.
    [7]. Y. Koyama, Y. Makimura, I. Tanaka, et al., Systematic Research on Insertion Materials Based on Superlattice Models in a Phase Triangle of Licoo2-Linio2-Limno2. I. First-Principles Calculation on Electronic and Crystal Structures, Phase Stability and New Lini1/2mn1/2o2 Material[J]. Journal of the Electrochemical Society, 2004. 151(9): p. A1499-A1506.
    [8]. L. Fransson, E. Nordstrom, K. Edstrom, et al., Structural Transformations in Lithiated Eta '-Cu6sn5 Electrodes Probed by in Situ Mossbauer Spectroscopy and X-Ray Diffraction[J]. Journal Of The Electrochemical Society, 2002. 149(6): p. A736-A742.
    [1]. T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell[J]. Journal of the Electrochemical Society, 1993. 140(9): p. 2490-2498.
    [2]. M. Inaba, H. Yoshida, Z. Ogumi, et al., In-Situ Raman-Study on Electrochemical Li-Intercalation into Graphite [J]. Journal of the Electrochemical Society, 1995. 142(1): p. 20-26.
    [3]. M. D. Levi, D. Aurbach, Simultaneous Measurements and Modeling of the Electrochemical Impedance and the Cyclic Voltammetric Characteristics of Graphite Electrodes Doped with Lithium[J]. Journal of Physical Chemistry B, 1997. 101(23): p. 4630-4640.
    [4]. A. Funabiki, M. Inaba, Z. Ogumi, et al., Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder [J]. Journal of the Electrochemical Society, 1998. 145(1): p. 172-178.
    [5]. M. Inaba, Z. Siroma, A. Funabiki, et al., Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution[J]. Langmuir, 1996. 12(6): p. 1535-1540.
    [6]. D. Billaud, F. X. Henry, P. Willmann, Electrochemical Synthesis of Binary Graphite-Lithium Intercalation Compounds[J]. Materials Research Bulletin, 1993. 28(5): p. 477-483.
    [7]. A. Funabiki, M. Inaba, Z. Ogumi, Ac Impedance Analysis of Electrochemical Lithium Intercalation into Highly Oriented Pyrolytic Graphite[J]. Journal of Power Sources, 1997. 68(2): p. 227-231.
    [8]. H. Momose, H. Honbo, S. Takeuchi, et al., X-Ray Photoelectron Spectroscopy Analyses of Lithium Intercalation and Alloying Reactions on Graphite Electrodes[J]. Journal of Power Sources, 1997. 68(2): p. 208-211.
    
    [9]. W. W. Huang, P. Frech, In Situ Raman Studies of Graphite Surface Structures During Lithium Electrochemical Intercalation[J]. Journal of the Electrochemical Society, 1998. 145(3): p. 765-770.
    [10]. V. A. Nalimova, D. Guerard, M. Lelaurain, et al., X-Ray-Investigation of Highly Saturated Li-Graphite Intercalation Compound[J]. Carbon, 1995. 33(2): p. 177-181.
    [11]. D. Aurbach, M. D. Levi, E. Levi, et al., Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides[J]. Journal of the Electrochemical Society, 1998. 145(9): p. 3024-3034.
    [12]. M. D. Levi, D. Aurbach, Diffusion Coefficients of Lithium Ions During Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes[J]. Journal of Physical Chemistry B, 1997. 101(23): p. 4641-4647.
    
    [13]. M. D. Levi, E. A. Levi, D. Aurbach, The Mechanism of Lithium Intercalation in Graphite Film Electrodes in Aprotic Media .2. Potentiostatic Intermittent Titration and in Situ Xrd Studies of the Solid-State Ionic Diffusion[J]. Journal of Electroanalytical Chemistry, 1997. 421(1-2): p. 89-97.
    
    [14]. M. D. Levi, D. Aurbach, The Mechanism of Lithium Intercalation in Graphite Film Electrodes in Aprotic Media .1. High Resolution Slow Scan Rate Cyclic Voltammetric Studies and Modeling[J]. Journal of Electroanalytical Chemistry, 1997. 421(1-2): p. 79-88.
    
    [15]. P. Yu, B. N. Popov, J. A. Ritter, et al., Determination of the Lithium Ion Diffusion Coefficient in Graphite[J]. Journal of the Electrochemical Society, 1999. 146(1): p. 8-14.
    
    [16]. B. Markovsky, M. D. Levi, D. Aurbach, The Basic Electroanalytical Behavior of Practical Graphite-Lithium Intercalation Electrodes [J]. Electrochimica Acta, 1998. 43(16-17): p. 2287-2304.
    
    [17]. T. Piao, S. M. Park, C. H. Doh, et al., Intercalation of Lithium Ions into Graphite Electrodes Studied by Ac Impedance Measurements [J]. Journal of the Electrochemical Society, 1999. 146(8): p. 2794-2798.
    [18]. J. S. Gnanaraj, M. D. Levi, E. Levi, et al., Comparison between the Electrochemical Behavior of Disordered Carbons and Graphite Electrodes in Connection with Their Structure[J]. Journal of the Electrochemical Society, 2001. 148(6):p.A525-a536.
    [19]. K. Dokko, M. Mohamedi, Y. Fujita, et al., Kinetic Characterization of Single Particles of Licoo2 by Ac Impedance and Potential Step Methods[J]. Journal of the Electrochemical Society, 2001. 148(5): p. A422-a426.
    [20]. E. Barsoukov, D. H. Kim, H. S. Lee, et al., Comparison of Kinetic Properties of Licoo2 and LitiO.05mgO.05niO.7coO.2o2 by Impedance Spectroscopy [J]. Solid State Ionics, 2003. 161(1-2): p. 19-29.
    [21]. Y. H. Rho, K. Kanamura, Li+-Ion Diffusion in Licoo2 Thin Film Prepared by the Poly(Vinylpyrrolidone) Sol-Gel Method[J]. Journal of the Electrochemical Society, 2004. 151(9): p. A1406-al411.
    [22]. M. D. Levi, G. Salitra, B. Markovsky, et al., Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Lil-Xcoo2: Simultaneous Application of Electroanalytical Techniques Sscv, Pitt, and Eis[J]. Journal of the Electrochemical Society, 1999. 146(4): p. 1279-1289.
    [23]. T. Ohzuku, A. Ueda, Phenomenological Expression of Solid-State Redox Potentials of Licoo2, Lico1/2ni1/2o2, and Linio2 Insertion Electrodes[J]. Journal of the Electrochemical Society, 1997. 144(8): p. 2780-2785.
    [24]. T. Ohzuku, A. Ueda, Solid-State Redox Reactions of Licoo2 (R(3)over-Bar-M) for 4 Volt Secondary Lithium Cells[J]. Journal of the Electrochemical Society, 1994. 141(11): p. 2972-2977.
    [25]. A. Van Der Ven, G. Ceder, M. Asta, et al., First-Principles Theory of Ionic Diffusion with Nondilute Carriers[J]. Physical Review B, 2001. 6418(18): p. 184307.
    [26]. A. M. Stephan, Y. Saito, Ionic Conductivity and Diffusion Coefficient Studies of Pvdf-Hfp Polymer Electrolytes Prepared Using Phase Inversion Technique [J]. Solid State Ionics, 2002. 148(3-4): p. 475-481.
    [27]. M. Y. Saidi, J. Barker, R. Koksbang, Structural and Electrochemical Investigation of Lithium Insertion in the Li1-Xmn2o4 Spinel Phase [J]. Electrochimica Acta, 1996. 41(2): p. 199-204.
    [28]. L. Q. Chen, X. J. Huang, E. Kelder, et al., Diffusion Enhancement in Lixmn2o4[J]. Solid State Ionics, 1995. 76(1-2): p. 91-96.
    [29]. A. K. Hjelm, G. Lindbergh, Experimental and Theoretical Analysis of Limn2o4 Cathodes for Use in Rechargeable Lithium Batteries by Electrochemical Impedance Spectroscopy (Eis)[J]. Electrochimica Acta, 2002. 47(11): p. 1747-1759.
    [30]. S. Bach, J. Farcy, J. P. Pereira-Ramos, An Electrochemical Investigation of Li Intercalation in the Sol-Gel Limn2o4 Spinel Oxide[J]. Solid State Ionics, 1998. 110(3-4): p. 193-198.
    [31]. K. Dokko, M. Mohamedi, M. Umeda, et al., Kinetic Study of Li-Ion Extraction and Insertion at Limn2o4 Single Particle Electrodes Using Potential Step and Impedance Methods[J]. Journal of the Electrochemical Society, 2003. 150(4): p. A425-A429.
    [32]. X. C. Tang, X. W. Song, P. Z. Shen, et al., Capacity Intermittent Titration Technique (Citt): A Novel Technique for Determination of Li+ Solid Diffusion Coefficient of Limn2o4[J]. Electrochimica Acta, 2005. 50(28): p. 5581-5587.
    [33]. X. C. Tang, L. Q. Li, B. Y. Huang, et al., Phenomenon of Enhanced Diffusion of Lithium-Ion in Limn2o4 Induced by Electrochemical Cycling[J]. Solid State Ionics, 2006. 177(7-8): p. 687-690.
    [34]. X. C. Tang, B. Y. Huang, Y. H. He, Determination of Li+ Solid Diffusion Coefficient in Limn2o4 by Citt[J]. Journal of Central South University of Technology, 2005. 12: p. 1-4.
    [35]. X. C. Tang, B. Y. Huang, Y. H. He, Dependence of Li+ Diffusion Coefficients in Limn2o4 on Charge/Discharge Cycles [J]. Acta Physico-Chimica Sinica, 2005. 21(9): p. 957-960.
    [36]. Y. H. Rho, K. Dokko, K. Kanamura, Li+ Ion Diffusion in Limn2o4 Thin Film Prepared by Pvp Sol-Gel Method[J]. Journal of Power Sources, 2006. 157(1): p. 471-476.
    [37]. C. Y. Ouyang, S. Q. Shi, Z. X. Wang, et al., Ab Initio Molecular-Dynamics Studies on Lixmn2o4 as Cathode Material for Lithium Secondary Batteries[J]. Europhysics Letters, 2004. 67(1): p. 28-34.
    [38]. C. Y. Ouyang, S. Q. Shi, Z. X. Wang, et al., Experimental and Theoretical Studies on Dynamic Properties of Li Ions in Lixmn2o4[J]. Solid State Communications, 2004. 130(7): p. 501-506.
    [39]. K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Electrochemical Kinetic Studies of Li-Ion in O-2-Structured Li-2/3(Ni1/3mn2/3)O-2 and Li(2/3)+X(Ni1/3mn2/3)O-2 by Eis and Gitt[J]. Journal of the Electrochemical Society, 2003. 150(1): p. A1-a13.
    [40]. C. Ho, I. D. Raistrick, R. A. Huggins, Application of a-C Techniques to the Study of Lithium Diffusion in Tungstem Trioxide Thin Films[J]. Journal of the Electrochemical Society, 1980. 127(2): p. 343-350.
    [41]. M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough, Ac Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Lil-Xcoo2[J]. journal of the Electrochemical Society, 1985. 132(7): p. 1521-1528.
    [42]. K. M. Shaju, G V. S. Rao, B. V. R. Chowdari, Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li(Ni1/3co1/3mn1/3)O-2[J]. Journal of the Electrochemical Society, 2004.151(9): p. A1324-a1332.
    [43]. N. Takami, A. Satoh, M. Hara, et al., Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries [J]. Journal of the Electrochemical Society, 1995. 142(2): p. 371-379.
    [44]. J. Barker, R. Pynenburg, R. Koksbang, Determination of Thermodynamic, Kinetic and Interfacial Properties for the Li//Lixmn2o4 System by Electrochemical Techniques [J]. Journal of Power Sources, 1994. 52(2): p. 185-192.
    [45]. P. P. Prosini, M. Lisi, D. Zane, et al., Determination of the Chemical Diffusion Coefficient of Lithium in Lifepo4[J]. Solid State Ionics, 2002. 148(1-2): p. 45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700