用户名: 密码: 验证码:
模板细乳液聚合法制备磁性复合微球及其在蛋白分离纯化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机-无机杂化复合微球,尤其是磁性复合微球正受到人们的广泛关注。由于磁性高分子微球同时具有无机磁性材料的磁响应性和有机高分子的表面功能性,在外加磁场下能方便、快速、高效的从介质中分离目标生物分子。因此,在生物医学和生物化学等领域显示广泛的应用前景。从诊断学的角度考虑,理想的磁性微球应具有均一的粒子尺寸、高的磁含量(快速的磁响应性)、功能化的表面。然而,现有制备磁性复合微球的方法要么破坏了磁性微球的单分散性,要么制备单分散的高磁含量的磁性微球的过程太复杂。并且,所制备的磁性分离载体存在吸附容量较低,偶联效率不高等问题。针对以上问题,本论文系统的围绕着磁性复合微球的制备、表面功能化修饰及其在蛋白分离纯化中的应用研究展开,主要取得了以下几个方面的结果:
     1)通过磁性模板细乳液聚合法制备粒径单分散的、磁含量可控的磁性复合微球Fe_3O_4@Poly(St/DVB),整个制备过程操作简单、容易放大,具有工业化应用前景。首先,通过超声乳化构造粒径均匀的磁性模板(磁性纳米粒子簇),然后将单体St和交联剂DVB加入到反应体系使之溶胀聚合,通过动态光散射(DLS)的结果表明单体聚合的主要场所在磁性模板细乳液中,聚合机理是细乳液聚合主导的模板细乳液聚合。所制备的磁性复合微球的尺寸有一个合理的均匀分布。DLS的表征结果表明:改变乳化剂的量,可以得到粒径在70-130 nm范围内的磁性复合微球。通过调节磁性模板细乳液与单体的比例,可以有效调节磁性复合微球磁含量于40-70 wt%之间。通过研究St/DVB的比率、乳化剂的量、助稳定剂、超声功率、引发剂类型、磁流体固含量、磁流体与单体的投料比等实验参数对磁性复合微球性能的影响,得到制备磁性复合微球的最佳配方。制备得到的磁性复合微球具有超顺磁性,可以作为优良的磁性载体而用于生物医学领域。此外,所提出的模板细乳液聚合法不仅能用于制备高磁含量、单分散的磁性复合微球,而且可以作为其它的高包封率的无机-有机杂化微球的制备方法。
     2)以磁性Fe_3O_4@Poly(St/DVB)复合微球为种子,通过种子乳液聚合制备得到表面富含环氧功能基团的核壳式磁性Fe_3O_4/Poly(St/DVB)@Poly(GMA/DVB)复合微球。TEM电镜的结果表明得到的核壳式磁性复合微球的粒径分布很均一。通过加入不同量的壳层单体,核壳式磁性复合微球的磁含量可控于23-43 wt%之间。硫代硫酸钠法滴定核壳式磁性复合微球表面的环氧基为0.126-0.190 mmol/g。通过亚氨基二乙酸(IDA)与磁性复合微球表面的环氧基团开环反应,在磁性复合微球表面引入IDA金属离子螯合基团,制备得到能螯合金属离子的磁性亲和分离载体。原子吸收光谱(AAS)和通过紫外光谱(UV)的分析结果表明磁性复合载体螯合Cu~(2+)的能力分别为0.068-0.072 mmol/g和0.091-0.110 mmol/g。
     3)将核壳式磁性分离载体Fe_3O_4/Poly(St-DVB)@Poly(GMA-DVB)-IDA-Ni~(2+)应用于S-腺苷甲硫氨酸合成酶(SAMS)的分离提纯。在外加磁场下作用下,磁性载体可以方便、迅速的纯化SAMS。通过详细研究反应介质初始SAMS蛋白浓度、咪唑洗脱液浓度、反应介质离子强度(NaCl浓度)、pH值、螯合金属离子种类等纯化条件对蛋白分离纯化的影响,从而得到磁性微球纯化SAMS蛋白的最佳分离条件。最后,在最佳分离条件下纯化不同初始浓度的SAMS蛋白,结果表明当初始蛋白浓度为3.0 mg/mL时,蛋白纯化量最大为50.0 mg/g,SDS-PAGE电泳结果显示所纯化的蛋白纯度很高,没有杂蛋白。
In recent years, the organic/inorganic composite polymer microspheres with magnetic properties have attracted more and more attention. Because these magnetic hybrid microspheres not only exhibit high magnetic susceptibility to an external magnetic field, but also easily further functionalized and surface-modified by the attachment of various bioactive molecules, they can conveniently separate the objective biomolecules from the medium with the help of magnets. These merits make magnetic hybrid microspheres a powerful tool for application in biomedicine and biochemistry fields. However, when diagnostics are considered, an ideal magnetic microspheres used in these applications should be exhibit the following properties: (1) a narrow size distribution allowing homogeneous particle behavior, (2) a high iron oxide (superparamagnetic) content for rapid separation under a magnetic field, (3) surface functionality for the covalent binding of biomolecules. However, either most of existing methods failed to produce uniform-sized hybrid microspheres with high magnetite content to enhance their susceptibility to magnetic field or the processes used to making such materials were too complicated. In addition, the obtained magnetic carriers possess the lower adsorption capability and binding efficiency. Based on the problems mentioned above, systematical study has been carried out on the preparation, surface modification and application of magnetic microspheres in protein separation and purification in this thesis. The main results are listed as follows:
     (1) Hybrid Fe_3O_4@Poly(St/DVB) microspheres with controllable magnetite content and narrow size distribution, composed of Fe_3O_4 nanoparticles encapsulated in a crosslinked polystyrene matrix, were synthesized by magneto-template (Fe_3O_4 minidroplets) miniemulsion polymerization, the synthetic procedure for fabrication of high-quality magnetic hybrid microspheres is simple and easily scaled up, which have a potential application in industry. In this process, firstly, the magneto-template (magnetic nanoparticles cluster) was fabricated by the ultrasonic emulsification. Secondly, monomer St and crosslinked agent DVB was added and polymerized. The DLS results confirmed that the formation process of the magnetic microspheres was dominated by miniemulsion polymerization that was initiated and polymerized in monomer-swollen magneto-templates (MSM). The formed magnetic microspheres had a reasonably narrow size distribution. The average particle size of the magnetic hybrid microspheres was in the range of 70-130 nm depending on the amount of the surfactant. The magnetite content of the magnetic hybrid microspheres can be effectively modulated in the range 40-70 wt % by feeding different amounts of ferrofluid. Based on the related parameters, for instance, a given St/DVB ratio, the amount of surfactant, hydrophobic agent, ultrasonic power, type of initiator, solid content of ferrofluid, the feed ratio of magneto-miniemulsion and monomer, an optimum recipe to prepare the magnetic hybrid microspheres were obtained. The magnetic hybrid microspheres are superparamagnetic, which allow them to serve as excellent candidates for biomedical applications. This simple procedure for preparation of uniform magnetic hybrid microspheres opens a new facile route for encapsulation of inorganic nanomaterials in polymer microspheres.
     (2) Fe_3O_4/Poly(St/DVB)@Poly(GMA/DVB) composite microspheres with core-shell structure were rationally fabricated by the seeded emulsion polymerization. TEM images show that the size of composite microspheres is uniform. The magnetite content of the magnetic composite microspheres can be effectively modulated in the range 23-43 wt % by polymerizing the different amounts of shell-monomer. The content of available epoxy groups was determined by Na_2S_2O_8 titration method and was found to be 0.126-0.190 mmol/g microspheres. By covalent coupling of iminodiacetic acid (IDA) chelator to the surface of the magnetic microspheres, a new immobilized metal affinity magnetic carrier was achieved. The amount of chelated Cu~(2+) in magnetic carriers to was 0.068-0.072 mmol/g and 0.091-0.110 mmol/g as determined by UV spectroscopy and atomic absorption spectrophotometry (AAS), respectively.
     (3) When magnetic carriers were used to purify S-adenosylmethionine synthetase (SAMS), the purified SAMS protein can be separated conveniently and rapidly with an external magnet. Based on the detailed investigation on the purification condition such as the initial SAMS concentration, the concentration of imidazole elution, the ionic strength (NaCl concentration), pH, the type of metal ion, an optimum purification condition for SAMS protein was obtained. By the optimum purification condition, various initial concentrations of SAMS protein was purified by the magnetic carriers. The experimental results indicated that the maximum protein purification capacity was 50.0 mg/g marries as for the 3.0 mg/L initial SAMS concentration. SDS-PAGE results shown that purified SAMS protein had high purity and low nonspecific adsorption.
引文
1.张立德.纳米材料,北京:化学工业出版社.2000.
    2.Judeinstein,P.and Sanchez,C.,Hybrid organic-inorganic materials:A land of multi-disciplinarity.J.Mater.Chem.,1996,6(4):511-525.
    3.Kickelbick,G.,Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale.Prog.Polym.Sci.,2003,28(1):83-114.
    4.Cuentas-Gallegos,A.K.and Gomez-Romero,P.,Triple hybrid materials:A novel concept within the field of organic-inorganic hybrids.J.Power Sources,2006,161(1):580-586.
    5.Liu,B.and Qiang,L.S.,Progress of organic/inorganic hybrid optical-functional materials prepared by the sol-gel method.2005,17(1):85-90.
    6.Bourgeat-Lami,E.,Organic-inorganic nanostructured colloids.J.Nanosci.Nanotechnol.,2002,2(1):1-24.
    7.Wang,L.,Qi,T.,and Zhang,Y.,Novel organic-inorganic hybrid mesoporous materials for boron adsorption.Colloid Surf A-Physicochem.Eng.Asp.,2006,275(1-3):73-78.
    8.Brandes,S.,Denat,F.,Meyer,M.,and Guilard,R.,Organic-inorganic hybrid materials in separation chemistry:a molecular approach towards the design of purification processes.Actual Chim.,2005:108-117.
    9.Lligadas,G.,Callau,L.,Ronda,J.C.,Galia,M.,and Cadiz,V.,Novel organic-inorganic hybrid materials from renewable resources:Hydrosilylation of fatty acid derivatives.J.Polym.Sci.Pol.Chem.,2005,43(24):6295-6307.
    10.Jose,N.M.and Prado,L.,Hybrid organic-inorganic materials:Preparation and some applications.Quim.Nova,2005,28(2):281-288.
    11.Shen,S.L.,Wu,W.,Guo,K.,Meng,H.,and Chen,J.F.,A novel process to synthesize magnetic hollow silica microspheres.Colloid Surf A-Physicochem.Eng.Asp.,2007,311(1-3):99-105.
    12.Lin,S.,Lin,Z.X.,Yao,G.P.,Deng,C.H.,Yang,P.Y.,and Zhang,X.M.,Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.Rapid Commun.Mass Spectrom.,2007,21(23):3910-3918.
    13.Li,Y.,Yan,B.,Xu,X.Q.,Deng,C.H.,Yang,RY.,Shen,X.Z.,and Zhang,X.M.,On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Rapid Commun.Mass Spectrom,2007,21(14):2263-2268.
    14.Liu,Z.L.,Liu,RD.,Liu,C.C.,Yao,K.L.,Ning,Q.,Xi,D.,and Xu,H.P.,Characterization and application of magnetic P(St-co-MAA-co-AM)/SiO_2composite microspheres.J.Mater.Sci.,2007,42(13):5147-5151.
    15.Deng,Y.H.,Wang,C.C.,Shen,X.Z.,Yang,W.L.,An,L.,Gao,H.,and Fu,S.K.,Preparation,characterization,and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells.Chem.-Eur.J.,2005,11(20):6006-6013.
    16.Brock,R.and Jovin,T.M.,Quantitative image analysis of cellular protein translocation induced by magnetic microspheres:Application to the EGF receptor.Cytom.Part A,2003,52A(1):1-11.
    17.Cao,Y.,Tian,W.,Gao,S.Y.,Yu,Y.S.,Yang,W.B.,and Bai,G.,Immobilization staphylococcal protein A on magnetic cellulose microspheres for IgG affinity purification.Artif Cells Blood Substit.Biotechnol.,2007,35(5):467-480.
    18.Prikryl,P.,Horak,D.,Ticha,M.,and Kuderova,Z.,Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation.J.Sep.Sci.,2006,29(16):2541-2549.
    19.Kondo,A.and Fukuda,H.,Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses.Colloid Surf A-Physicochem.Eng.Asp.,1999,153(1-3):435-438.
    20.Kondo,A.and Fukuda,H.,Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization.J.Ferment.Bioeng.,1997,84(4):337-341.
    21. Wilson, R., Spiller, D.G., Prior, I.A., Bhatt, R., and Hutchinson, A., Magnetic microspheres encoded with photoluminescent quantum dots for multiplexed detection. J. Mater. Chem., 2007,17(41): 4400-4406.
    22. Ma, Z.Y., Guan, Y.P., and Lu, H.Z., Affinity adsorption of albumin on Cibacron Blue F3GA-coupled non-porous micrometer-sized magnetic polymer microspheres. React. Funct. Polym., 2006, 66(6): 618-624.
    23. Wang, H., Zeng, H., Shen, G.L., and Yu, R.Q., Immunophenotyping of acute leukemias using a quartz crystal microbalance and monoclonal antibody-coated magnetic microspheres. Anal. Chem., 2006, 78(8): 2571-2578.
    24. Friedlander, E., Arndt-Jovin, D.J., Nagy, P., Jovin, T.M., Szollsi, J., and Vereb, G, Signal transduction of erbB receptors in trastuzumab (Herceptin) sensitive and resistant cell lines: Local stimulation using magnetic microspheres as assessed by quantitative digital microscopy. Cytom. Part A, 2005, 67A(2): 161-171.
    25. Horak, D. and Hochel, I., Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food. e-Polymers, 2005.
    26. Krizova, J., Spanova, A., Rittich, B., and Horak, D., Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J. Chromatogr. A, 2005,1064(2): 247-253.
    27. Lubbe, A.S., Bergemann, C, Huhnt, W., Fricke, T., Riess, H., Brock, J.W., and Huhn, D., Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res., 1996, 56(20): 4694-4701.
    28. Rittich, B., Spanovda, A., Ohlashennyy, Y., Lenfeld, J., Rudolf, I., Horak, D., and Benes, M.J., Characterization of Deoxyribonuclease I Immobilized on Magnetic Hydrophilic Polymer Particles - Presented at the 2nd International Symposium on Separations in the Biosciences, Prague, September 17-20, 2001. J. Chromatogr. B, 2002, 774(1): 25-31.
    29. Ugelstad, J., Elaasser, M.S., and Vanderho.Jw, Emulsion Polymerization -Initiation of Polymerization in Monomer Droplets. 1973,11(8): 503-513.
    30. Chou, Y.J., Elaasser, M.S., and Vanderhoff, J.W., Mechanism of Emulsification of Styrene Using Hexadecyltrimethylammonium Bromide-Cetyl Alcohol Mixtures. J.Dispersion Sci.Technol.,1980,1(2):129-150.
    31.Reimers,J.L.and Schork,F.J.,Predominant droplet nucleation in emulsion polymerization.J.Appl.Polym.Sci.,1996,60(2):251-262.
    32.Schork,F.J.,Poehlein,G.W.,Wang,S.,Reimers,J.,Rodrigues,J.,and Samer,C.,Miniemulsion polymerization.1999,153(1-3):39-45.
    33.Mishchuk,N.A.,Verbich,S.V.,Dukhin,S.S.,Holt,O.,and Sjoblom,J.,Rapid Brownian coagulation in dilute polydisperse emulsions.J.Dispersion Sci.Technol.,1997,18(5):517-537.
    34.Ugelstad,J.,Hansen,F.K.,and Lange,S.,Emulsion Polymerization of Styrene with Sodium Hexadecyl Sulfate/Hexadecanol Mixtures as Emulsifiers - Initiation in Monomer Droplets.1974,175(2):507-521.
    35.Ugelstad,J.and Mork,P.C.,Swelling of Oligomer-Polymer Particles - New Methods of Preparation of Emulsions and Polymer Dispersions.Adv.Colloid Interface Sci.,1980,13(1-2):101-140.
    36.Landfester,K.,Bechthold,N.,Forster,S.,and Antonietti,M.,Evidence for the preservation of the particle identity in miniemulsion polymerization.Macromol.Rapid Commun.,1999,20(2):81-84.
    37.Asua,J.M.,Miniemulsion polymerization.Prog.Polym.Sci.,2002,27(7):1283-1346.
    38.Ruckenstein,E.and Krishnan,R.,Effect of Electrolytes and Mixtures of Surfactants on the Oil-Water Interfacial-Tension and Their Role in Formation of Micro-Emulsions.J.Colloid Interface Sci.,1980,76(1):201-211.
    39.Walstra,P.,Principles of Emulsion Formation.1993,48(2):333-349.
    40.Mason,T.J.,Industrial Sonochemistry-Potential and Practicality.Ultrasonics,1992,30(3):192-196.
    41.Landfester,K.,Bechthold,N.,Tiarks,F.,and Antonietti,M.,Formulation and stability mechanisms of polymerizable miniemulsions.Macromolecules,1999,32(16):5222-5228.
    42.Thickett,S.C.and Gilbert,R.G.,Emulsion polymerization:State of the art in kinetics and mechanisms.Polymer,2007,48(24):6965-6991.
    43.Chern,C.S.,Emulsion polymerization mechanisms and kinetics.Prog.Polym.Sci.,2006,31(5):443-486.
    44.Solans,C.,Izquierdo,P.,Nolla,J.,Azemar,N.,and Garcia-Celma,M.J.,Nano-emulsions.Curt.Opin.Colloid Interface Sci.,2005,10(3-4):102-110.
    45.Antonietti,M.and Landfester,K.,Polyreactions in miniemulsions.Prog.Polym.Sci.,2002,27(4):689-757.
    46.Schork,F.J.,Luo,Y.W.,Smulders,W.,Russum,J.P.,Butte,A.,and Fontenot,K.,Miniemulsion polymerization,in Polymer Particles.2005,Springer-Verlag Berlin:Berlin.p.129-255.
    47.Jagielski,N.,Sharma,S.,Hombach,V.,Mailander,V.,Rasche,V.,and Landfester,K.,Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials.Macromol.Chem.Phys.,2007,208(19-20):2229-2241.
    48.Crespy,D.,Stark,M.,Hoffmann-Richter,C.,Ziener,U.,and Landfester,K.,Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets.Macromolecules,2007,40(9):3122-3135.
    49.Landfester,K.,Pawelzik,U.,and Antonietti,M.,Polydimethylsiloxane latexes and copolymers by polymerization and polyaddition in miniemulsion.Polymer,2005,46(23):9892-9898.
    50.Tiarks,F.,Landfester,K.,and Antonietti,M.,Preparation of polymeric nanocapsules by miniemulsion polymerization.Langmuir,2001,17(3):908-918.
    51.Barrere,M.and Landfester,K.,High molecular weight polyurethane and polymer hybrid particles in aqueous miniemulsion.Macromolecules,2003,36(14):5119-5125.
    52.Montenegro,R.,Antonietti,M.,Mastai,Y.,and Landfester,K.,Crystallization in miniemulsion droplets.J.Phys.Chem.B,2003,107(21):5088-5094.
    53.Willert,M.,Rothe,R.,Landfester,K.,and Antonietti,M.,Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals.Chem.Mat.,2001,13(12):4681-4685.
    54.Landfester,K.,Polyreactions in miniemulsions.Macromol.Rapid Commun., 2001, 22(12): 896-936.
    55. Landfester, K., Tiarks, F., Hentze, H.P., and Antonietti, M., Polyaddition in miniemulsions: A new route to polymer dispersions. Macromol. Chem. Phys., 2000,201(1): 1-5.
    56. Erdem, B., Sudol, E.D., Dimonie, V.L., and El-Aasser, M.S., Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J. Polym. Sci. Pol. Chem., 2000, 38(24): 4419-4430.
    57. Erdem, B., Sudol, E.D., Dimonie, V.L., and El-Aasser, M.S., Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO_2 particles. J. Polym. Sci. Pol. Chem., 2000, 38(24): 4431-4440.
    58. Erdem, B., Sudol, E.D., Dimonie, V.L., and El-Aasser, M.S., Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation. J. Polym. Sci. Pol. Chem., 2000, 38(24): 4441-4450.
    59. Bechthold, N., Tiarks, R, Willert, M., Landfester, K., and Antonietti, M., Miniemulsion polymerization: Applications and new materials. Macromol. Symp., 2000, 151: 549-555.
    60. Tiarks, R, Landfester, K., and Anonietti, M., Encapsulation of carbon black by miniemulsion polymerization. Macromol. Chem. Phys., 2001, 202(1): 51-60.
    61. Ramirez, L.P. and Landfester, K., Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys., 2003, 204(1): 22-31.
    62. Zhang, S.W., Zhou, S.X., Weng, Y.M., and Wu, L.M., Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir, 2005, 21(6): 2124-2128.
    63. Joumaa, N., Lansalot, M., Theretz, A., and Elaissari, A., Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir, 2006, 22(4): 1810-1816.
    64. Lu, A.H., Salabas, E.L., and Schuth, R, Magnetic nanoparticles: Synthesis, protection,functionalization,and application.2007,46(8):1222-1244.
    65.Khalafalla,S.E.,Reimers,G.W.,Magnetic liquids[P].US:3843540.1974.
    66.Cushing,B.L.,Kolesnichenko,V.L.,and O'Connor,C.J.,Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.,2004,104(9):3893-3946.
    67.Sun,S.H.,Zeng,H.,Robinson,D.B.,Raoux,S.,Rice,P.M.,Wang,S.X.,and Li,G.X.,Monodisperse MFe204(M = Fe,Co,Mn) nanoparticles.J.Am.Chem.Soc.,2004,126(1):273-279.
    68.Park,J.,Lee,E.,Hwang,N.M.,Kang,M.S.,Kim,S.C.,Hwang,Y.,Park,J.G.,Noh,H.J.,Kini,J.Y.,Park,J.H.,and Hyeon,T.,One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles.Angew.Chem.-Int.Edit.,2005,44(19):2872-2877.
    69.Rockenberger,J.,Scher,E.C.,and Alivisatos,A.P.,A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides.J.Am.Chem.Sot.,1999,121(49):11595-11596.
    70.Hyeon,T.,Lee,S.S.,Park,J.,Chung,Y.,and Bin Na,H.,Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.J.Am.Chem.Soc.,2001,123(51):12798-12801.
    71.Sun,S.H.and Zeng,H.,Size-controlled synthesis of magnetite nanoparticies.J.Am.Chem.Soc.,2002,124(28):8204-8205.
    72.Jana,N.R.,Chert,Y.F.,and Peng,X.G.,Size- and shape-controlled magnetic(Cr,Mn,Fe,Co,Ni) oxide nanocrystals via a simple and general approach.2004,16(20):3931-3935.
    73.Deng,H.,Li,X.L.,Peng,Q.,Wang,X.,Chen,J.P.,and Li,Y.D.,Monodisperse magnetic single-crystal ferrite microspheres.Angew.Chem.-Int.Edit.,2005,44(18):2782-2785.
    74.Wang,X.,Zhuang,J.,Peng,Q.,and Li,Y.D.,A general strategy for nanocrystal synthesis.Nature,2005,437(7055):121-124.
    75.Paul,B.K.and Moulik,S.P.,Uses and applications of microemulsions.Curt.Sci.,2001,80(8):990-1001.
    76. Liu, C, Zou, B.S., Rondinone, A.J., and Zhang, Z.J., Reverse micelle synthesis and characterization of superparamagnetic MnFe_2O_4 spinel ferrite nanocrystallites. J. Phys. Chem. 5,2000, 104(6): 1141-1145.
    77. Woo, K., Lee, H.J., Ahn, J.P., and Park, Y.S., Sol-gel mediated synthesis of Fe_2O_3 nanorods. Adv. Mater, 2003, 15(20): 1761-1764.
    78. Denizli, A., Ozkan, G, and Arica, M.Y., Preparation and characterization of magnetic polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu(II), Cd(II), Pb(II), and Hg(II) from aqueous solutions. J. Appl. Polym. Sci., 2000, 78(1): 81-89.
    79. Gupta, P.K., Hung, C.T., Lam, F.C., and Perrier, D.G, Albumin Microspheres .3. Synthesis and Characterization of Microspheres Containing Adriamycin and Magnetite. Int. J. Pharm., 1988, 43(1-2): 167-177.
    80. Liu, G.J., Yang, H.S., and Zhou, J.Y., Preparation of magnetic microspheres from water-in-oil emulsion stabilized by block copolymer dispersant. Biomacromolecules, 2005, 6(3): 1280-1288.
    81. U gelstad, J., E llingsen, T.,B erge, A., H elgee, B., Magnetic polymer particles[P]. WO 8303920, US 4774265. 1983.
    82. Zhang, J.G., Xu, S.Q., and Kumacheva, E., Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc, 2004, 126(25): 7908-7914.
    83. Ma, Z.Y., Guan, Y.P., and Liu, H.Z., Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci. Pol. Chem., 2005, 43(15): 3433-3439.
    84. Huang, J.S., Wan, S.R., Guo, M., and Yan, H.S., Preparation of narrow or mono-disperse crosslinked poly((meth)acrylic acid)/iron oxide magnetic microspheres. J. Mater. Chem., 2006, 16(46): 4535-4541.
    85. Denkbas, E.B., Kilicay, E., Birlikseven, C, and Ozturk, E., Magnetic chitosan microspheres: preparation and characterization. React. Funct. Polym., 2002, 50(3): 225-232.
    86. Xue, B. and Sun, Y, Fabrication and characterization of a rigid magnetic matrix for protein adsorption.J.Chromatogr.A,2002,947(2):185-193.
    87.Noguchi,H.,Yanase,N.,Uchida,Y.,and Suzuta,T.,Preparation and Characterization by Thermal-Analysis of Magnetic Latex-Particles.1993,48(9):1539-1547.
    88.Yanase,N.,Noguchi,H.,Asakura,H.,and Suzuta,T.,Preparation of Magnetic Latex-Particles by Emulsion Polymerization of Styrene in the Presence of a Ferrofluid.J.Appl.Polym.Sci.,1993,50(5):765-776.
    89.Xu,X.L.,Friedman,G.,Humfeld,K.D.,Majetich,S.A.,and Asher,S.A.,Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals.Chem.Mat.,2002,14(3):1249-1256.
    90.Shang,H.,Chang,W.S.,Kan,S.,Majetich,S.A.,and Lee,G.U.,Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization.Langmuir,2006,22(6):2516-2522.
    91.Montagne,F.,Mondain-Monval,O.,Pichot,C.,and Elaissari,A.,Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions.J.Polym.Sci.Pol.Chem.,2006,44(8):2642-2656.
    92.Gu,S.C.,Onishi,J.Y.,Kobayashi,Y.,Nagao,D.,and Konno,M.,Preparation and colloidal stability of monodisperse magnetic polymer particles.J.Colloid Interface Sci.,2005,289(2):419-426.
    93.Pich,A.,Bhattacharya,S.,Ghosh,A.,and Adler,H.J.P.,Composite magnetic particles:2.Encapsulation of iron oxide by surfactant-free emulsion polymerization.Polymer,2005,46(13):4596-4603.
    94.Pich,A.,Bhattacharya,S.,and Adler,H.J.P.,Composite magnetic particles:1.Deposition of magnetite by heterocoagulation method.Polymer,2005,46(4):1077-1086.
    95.Xu,Z.Z.,Xia,A.,Wang,C.C.,Yang,W.L.,and Fu,S.K.,Synthesis of raspberry-like magnetic polystyrene microspheres.Mater.Chem.Phys.,2007,103(2-3):494-499.
    96.Wang,P.C.,Chiu,W.Y.,Lee,C.F.,and Young,T.H.,Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: Nucleation mechanism and morphology. J. Polym. Sci. Pol. Chem., 2004, 42(22): 5695-5705.
    97. Hoar, T.P. and Schulman, J.H., Transparent water-in-oil dispersions the oleopathic hydro-micelle. Nature, 1943,152: 102-103.
    98. Dresco, P.A., Zaitsev, V.S., Gambino, R.J., and Chu, B., Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 1999, 15(6): 1945-1951.
    99. Yang, X.T., Xu, L.G., Choon, N.S., and Hardy, C.S.O., Magnetic and electrical properties of polypyrrole-coated gamma-Fe_2O_3 nanocomposite particles. Nanotechnology, 2003,14(6): 624-629.
    100.Deng, Y., Wang, L., Yang, W., Fu, S., and Elaissari, A., Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater., 2003, 257(1): 69-78.
    101.Zhang, J.H., Ding, X.B., Peng, Y.X., and Mang, W., Magnetic polymer microsphere with photoconductivity: preparation and characterization of iron(III) phthalocyanine covalently bonded on to polystyrene microsphere surface. Polym. Int., 2002, 51(7): 617-621.
    102. Richard, J., Latex of calibrated monodiperse magnetizable microsphere, process of preparation and use of said latex in chemistry or in biology [P]. US 5976426 1999.
    103.Horak, D. and Benedyk, N., Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. J. Polym. Sci. Pol. Chem., 2004, 42(22): 5827-5837.
    104.Horak, D., Lednicky, F., Petrovsky, E., and Kapicka, A., Magnetic characteristics of ferrimagnetic microspheres prepared by dispersion polymerization. Macromol. Mater. Eng, 2004, 289(4): 341-348.
    105.Horak, D., Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J. Polym. Sci. Pol. Chem., 2001, 39(21): 3707-3715.
    106.Horak, D., Bohacek, J., and Subrt, M., Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization. J. Polym. Sci. Pol. Chem., 2000, 38(7): 1161-1171.
    107.Horak, D., Semenyuk, N., and Lednicky, F., Effect of the reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferrofluid. J. Polym. Sci. Pol. Chem., 2003, 41(12): 1848-1863.
    108.Liu, X.Q., Guan, Y.P., Ma, Z.Y., and Liu, H.Z., Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir, 2004, 20(23): 10278-10282.
    109.Lu, S.H. and Forcada, J., Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. J. Polym. Sci. Pol. Chem., 2006, 44(13): 4187-4203.
    110.Mori, Y. and Kawaguchi, H., Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization. Colloid Surf. B-Biointerfaces, 2007, 56(1-2): 246-254.
    111.Xu, H., Cui, L.L., Tong, N.H., and Gu, H.C., Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc, 2006,128(49): 15582-15583.
    112. Vestal, C.R. and Zhang, Z.J., Atom transfer radical polymerization synthesis and magnetic characterization of MnFe_2O_4/polystyrene core/shell nanoparticles. J. Am. Chem. Soc, 2002,124(48): 14312-14313.
    113. Wang, Y, Teng, X.W., Wang, J.S., and Yang, FL, Solvent-free atom transfer radical polymerization in the synthesis of Fe_2O_3@polystyrene core-shell nanoparticles. Nano Lett., 2003, 3(6): 789-793.
    114. Caruso, F., Susha, A.S., Giersig, M., and Mohwald, H., Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater., 1999,11(11): 950-953.
    115. Huang, Z.B. and Tang, F.Q., Preparation, structure, and magnetic properties of polystyrene coated by Fe_3O_4 nanoparticles. J. Colloid Interface Sci., 2004, 275(1): 142-147.
    116.Wang,P.C.,Lee,C.F.,Young,T.H.,Lin,D.T.,and Chiu,W.Y.,Preparation and clinical application of immunomagnetic latex.J.Polym.Sci.Pol.Chem.,2005,43(7):1342-1356.
    117.Liu,X.Q.,Guan,Y.P.,Xing,J.M.,Ma,Z.Y.,and Liu,H.H.,Synthesis and properties of micron-size magnetic polymer spheres with epoxy groups.Chin.J.Chem.Eng.,2003,11(6):731-735.
    118.Khng,H.P.,Cunliffe,D.,Davies,S.,Turner,N.A.,and Vulfson,E.N.,The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins.Biotechnol.Bioeng.,1998,60(4):419-424.
    119.Liu,X.Y.,Ding,X.B.,Zheng,Z.H.,Peng,Y.X.,Long,X.P.,Wang,X.C.,Chan,A.S.C.,and Yip,C.W.,Synthesis of novel magnetic polymer microspheres with amphiphilic structure.J.Appl.Polym.Sci.,2003,90(7):1879-1884.
    120.Chen,L.,Guo,C.,Guan,Y.R,and Liu,H.Z.,Isolation of lactoferrin from acid whey by magnetic affinity separation.Sep.Purif.Technol.,2007,56(2):168-174.
    121.Yang,C.L.,Guan,Y.P.,Xing,J.M.,Jia,G.H.,and Liu,H.Z.,Synthesis and protein immobilization of monodisperse magnetic spheres with multifunctional groups.React.Funct.Polym.,2006,66(2):267-273.
    122.Ueda,E.K.M.,Gout,P.W.,and Morganti,L.,Current and prospective applications of metal ion-protein binding.J.Chromatogr A,2003,988(1):1-23.
    123.Gaberc-Porekar,V.and Menart,V.,Perspectives of immobilized-metal affinity chromatography.J.Biochem.Biophys.Methods,2001,49(1-3):335-360.
    124.Porath,J.,High-Performance Immobilized-Metal-Ion Affinity-Chromatography of Peptides and Proteins.1988,443:3-11.
    125.Mondal,K.and Gupta,M.N.,The affinity concept in bioseparation:Evolving paradigms and expanding range of applications.Biomol.Eng.,2006,23(2-3):59-76.
    126.Roque,A.C.A.,Silva,C.S.O.,and Yaipa,M.A.,Affinity-based methodologies and ligands for antibody purification:Advances and perspectives.J.Chromatogr.A,2007,1160(1-2):44-55.
    127.Wang,F.,Guo,C.,Liu,H.Z.,and Liu,C.Z.,Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles.J.Chem.Technol.Biotechnol.,2008,83(1):97-104.
    128.Altintas,E.B.,Tuezmen,N.,Candan,N.,and Denizli,A.,Use of magnetic poly(glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system.J.Chromatogr.B,2007,853(1-2):105-113.
    129.Jiang,X.Y.,Bai,S.,and Sun,Y.,Fabrication and characterization of rigid magnetic monodisperse microspheres for protein adsorption.J.Chromatogr.B,2007,852(1-2):62-68.
    130.Kramer,P.A.,Albumin Microspheres as Vehicles for Achieving Specificity in Drug Delivery.J.Pharm.Sci.,1974,63(10):1646-1647.
    131.Morimoto,Y.,Sugibayashi,K.,Okumura,M.,and Kato,Y.,Biomedical Applications of Magnetic Fluids.1.Magnetic Guidance of Ferro-Colloid-Entrapped Albumin Microsphere for Site Specific Drug Delivery Invivo.1980,3(5):264-267.
    132.Gupta,P.K.and Hung,C.T.,Targeted Delivery of Low-Dose Doxorubicin Hydrochloride Administered Via Magnetic Albumin Microspheres in Rats.J.Microencapsul.,1990,7(1):85-94.
    133.Gupta,P.K.and Hung,C.T.,Comparative Disposition of Adriamycin Delivered Via Magnetic Albumin Microspheres in Presence and Absence of Magnetic-Field in Rats.Life Sci.,1990,46(7):471-479.
    134.Hung,C.T.,McLeod,A.D.,and Gupta,P.K.,Formulation and Characterization of Magnetic Polyglutaraldehyde Nanoparticles as Carriers for Poly-l-Lysine-Methotrexate.Drug Dev.Ind.Pharm.,1990,16(3):509-521.
    135.Iannotti,J.P.,Baradet,T.C.,Tobin,M.,Alavi,A.,and Staum,M.,Synthesis and Characterization of Magnetically Responsive Albumin Microspheres Containing Cis-Hydroxyproline for Scar Inhibition.J.Orthop.Res.,1991,9(3):432-444.
    136.邱广亮,邱广明,石晶瑜,李咏兰,韩毅强,磁性靶向顺铂白蛋白微球的研究.广州化工.2000,28(4):103-105.
    137.Nakamura,M.,Decker,K.,Chosy,J.,Comella,K.,Melnik,K.,Moore,L.,Lasky,L.C.,Zborowski,M.,and Chalmers,J.J.,Separation of a breast cancer cell line from human blood using a quadrupole magnetic flow sorter.Biotechnol.Prog.,2001,17(6):1145-1155.
    138.Chatterjee,J.,Haik,Y.,and Chen,C.J.,Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres.J.Magn.Magn.Mater.,2001,225(1-2):21-29.
    139.Bjerke,1".,Nielsen,S.,Helgestad,J.,Nielsen,B.W.,and Schiotz,P.O.,Purification of Human Blood Basophils by Negative Selection Using Immunomagnetic Beads.J.Immunol.Methods',1993,157(1-2):49-56.
    140.Friedl,P.,Noble,P.B.,and Zanker,K.S.,T-Lymphocyte Locomotion in a 3-Dimensional Collagen Matrix-Expression and Function of Cell-Adhesion Molecules.J.Immunol.,1995,154(10):4973-4985.
    141.Wedemeyer,N.and Potter,T.,Flow cytometry:an 'old' tool for novel applications in medical genetics.Clin.Genet.,2001,60(1):1-8.
    142.Rembaum,A.,Yen,R.C.K.,Kempner,D.H.,and Ugelstad,J.,Cell Labeling and Magnetic Separation by Means of Immunoreagents Based on Polyacrolein Microspheres.J.Immunol.Methods,1982,52(3):341-351.
    143.del Campo,A.,Sen,T.,Lellouche,J.P.,and Bruce,I.J.,Multifunctional magnetite and silica-magnetite nanoparticles:Synthesis,surface activation and applications in life sciences.J.Magn.Magn.Mater.,2005,293(1):33-40.
    144.Yoza,B.,Arakaki,A.,Maruyama,K.,Takeyama,H.,and Matsunaga,T.,Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer.J.Biosci.Bioeng.,2003,95(1):21-26.
    145.Horak,D.,Rittich,B.,Spanova,A.,and Benes,M.J.,Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics.Polymer,2005,46(4):1245-1255.
    146.Zhao,X.J.,Tapec-Dytioco,R.,Wang,K.M.,and Tan,W.H.,Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers.Anal.Chem.,2003,75(14):3476-3483.
    147.Wang,J.,Xu,D.K.,and Polsky,R.,Magnetically-induced solid-state electrochemical detection of DNA hybridization.J.Am.Chem.Soc.,2002,124(16):4208-4209.
    148.Timko,M.,Koneracka,M.,Kopcansky,P.,Ramchand,C.N.,Vekas,L.,and Bica,D.,Application of magnetizable complex systems in biomedicine.Czech.J.Phys.,2004,54:D599-D606.
    149.Arica,M.Y.,Yavuz,H.,Patir,S.,and Denizli,A.,Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate)microspheres:characterization and application to a continuous flow reactor.J.Mol.Catal.B-Enzym.,2000,11(2-3):127-138.
    150.邱广亮,邱广明,李咏兰,格特乐,期同古楞,磁性淀粉微球固定化乙酰乳酸脱羧酶及应用.广州化工.2000,28(4):24-27.
    151.Bilkova,Z.,Slovakova,M.,Lycka,A.,Horak,D.,Lenfeld,J.,Turkova,J.,and Churacek,J.,Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres.J.Chromatogr.B,2002,770(1-2):25-34.
    152.Basinska,T.,Hydrophilic core-shell microspheres:A suitable support for controlled attachment of proteins and biomedical diagnostics.Macromol.Biosci.,2005,5(12):1145-1168.
    153.Xu,C.J.,Xu,K.M.,Gu,H.W.,Zhong,X.F.,Guo,Z.H.,Zheng,R.K.,Zhang,X.X.,and Xu,B.,Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins.J.Am.Chem.Soc.,2004,126(ii):3392-3393.
    154.Ma,Z.Y.,Guan,Y.R,Liu,X.Q.,and Liu,H.Z.,Covalent immobilization of albumin on micron-sized magnetic poly(methyl methacrylate-divinylbenzene-glycidyl methacrylate) microspheres prepared by modified suspension polymerization.2005,16(7):554-558.
    155.Ma,Z.Y.,Guan,Y.P.,Liu,X.Q.,and Liu,H.Z.,Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization.Langmuir,2005,2I(15):6987-6994.
    156.Chan,D.C.F.,Kirpotin,D.B.,and Bunn,P.A.,Synthesis and Evaluation of Colloidal Magnetic Iron-Oxides for the Site-Specific Radiofrequency-Induced Hyperthermia of Cancer.J.Magn.Magn.Mater.,1993,122(1-3):374-378.
    157.Thali,M.J.,Dirnhofer,R.,Becker,R.,Oliver,W.,and Potter,K.,Is 'virtual histology' the next step after the 'virtual autopsy'? Magnetic resonance microscopy in forensic medicine.Magn.Reson.Imaging,2004,22(8):1131-1138.
    158.Safarikova,M.and Safarik,I.,Magnetic solid-phase extraction.1999,194(1-3):108-112.
    159.Kemmner,W.,Moldenhauer,G.,Schlag,P.,and Brossmer,R.,Separation of Tumor-Cells from a Suspension of Dissociated Human Colorectal-Carcinoma Tissue by Means of Monoclonal Antibody-Coated Magnetic Beads.J.Immunol.Methods,1992,147(2):197-200.
    160.Xu,H.H.K.,Smith,D.T.,and Simon,C.G.,Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.2004,25(19):4615-4626.
    1.Liu,H.B.,Guo,J.,Jin,L.,Yang,W.L.,and Wang,C.C.,Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres.J.Phys.Chem.B,2008,112(11):3315-3321.
    2.Meldrum,F.C.,Heywood,B.R.,and Mann,S.,Magnetoferritin-Invitro Synthesis of a Novel Magnetic Protein.Science,1992,257(5069):522-523.
    3.Elaissari,A.,Reactive polymer based colloids for biomedical applications.Macromol.Syrup.,2005,229:47-55.
    4.Lee,H.,Lee,E.,Kim,D.K.,Jang,N.K.,Jeong,Y.Y.,and Jon,S.,Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging.J.Am.Chem.Soc.,2006,128(22):7383-7389.
    5.Cheng,F.Y.,Su,C.H.,Yang,Y.S.,Yeh,C.S.,Tsai,C.Y.,Wu,C.L.,Wu,M.T.,and Shieh,D.B.,Characterization of aqueous dispersions of Fe304 nanoparticles and their biomedical applications.Biomaterials,2005,26(7):729-738.
    6.Arshady,R.,Microspheres for Biomedical Applications-Preparation of Reactive and Labeled Microspheres.Biomaterials,1993,I4(1):5-15.
    7.Banerjee,S.S.and Chen,D.H.,Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery.Chem.Mat.,2007,19(25):6345-6349.
    8.Li,D.,Teoh,W.Y.,Selomulya,C.,Woodward,R.C.,Areal,R.,and Rosche,B.,Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles:Synthesis,characterization,and protein adsorption-desorption.Chem.Mat.,2006,18(26):6403-6413.
    9.Akgol,S.,Kacar,Y.,Denizli,A.,and Arica,M.Y.,Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres.Food Chem.,2001,74(3):281-288.
    10.Yang,J.,Lee,T.I.,Lee,J.,Lim,E.K.,Hyung,W.,Lee,C.H.,Song,Y.J.,Sub,J.S.,Yoon,H.G.,Huh,Y.M.,and Haam,S.,Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid.Chem.Mat., 2007,19(16):3870-3876.
    11.Kawashita,M.,Tanaka,M.,Kokubo,T.,Inoue,Y.,Yao,T.,Hamada,S.,and Shinjo,T.,Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer.Biomaterials,2005,26(15):2231-2238.
    12.Gupta,A.K.and Gupta,M.,Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,2005,26(18):3995-4021.
    13.Ueda,E.K.M.,Gout,P.W.,and Morganti,L.,Current and prospective applications of metal ion-protein binding.J.Chromatogr.A,2003,988(1):1-23.
    14.Elaissari,A.,Sauzedde,F.,Montagne,F.,Pichot,C.,In Colloidal Polymers:Synthesis and Characterization;Elaissari,A.,Ed.;Marcel Dekker:New York.2003:Vol.116,Chapter 11,pp 285-318.
    15.Xu,X.L.,Friedman,G.,Humfeld,K.D.,Majetich,S.A.,and Asher,S.A.,Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals.Chem.Mat.,2002,14(3):1249-1256.
    16.Wang,P.C.,Chiu,W.Y.,Lee,C.F.,and Young,T.H.,Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles:Nucleation mechanism and morphology.J.Polym.Sci.Pol.Chem.,2004,42(22):5695-5705.
    17.Deng,Y.,Wang,L.,Yang,W.,Fu,S.,and Elaissari,A.,Preparation of magnetic polymeric particles via inverse microemulsion polymerization process.J.Magn.Magn.Mater.,2003,257(1):69-78.
    18.Liu,X.Q.,Guan,Y.P.,Ma,Z.Y.,and Liu,H.Z.,Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization.Langmuir,2004,20(23):10278-10282.
    19.Lu,S.H.and Forcada,J.,Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization.J.Polym.Sci.Pol.Chem.,2006,44(13):4187-4203.
    20.Ramirez,L.P.and Landfester,K.,Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes.Macromol.Chem.Phys'.,2003,204(1):22-31.
    21.Horak,D.and Benedyk,N.,Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids.J.Polym.Sci.Pol.Chem.,2004,42(22):5827-5837.
    22.Vestal,C.R.and Zhang,Z.J.,Atom transfer radical polymerization synthesis and magnetic characterization of MnFe204/polystyrene core/shell nanoparticles.J.Am Chem.Soc.,2002,124(48):14312-14313.
    23.Antonietti,M.and Landfester,K.,Polyreactions in miniemulsions.Prog.Polym.Sci.,2002,27(4):689-757.
    24.Schork,F.J.,Luo,Y.W.,Smulders,W.,Russum,J.P.,Butte,A.,and Fontenot,K.,Miniemulsion polymerization,in Polymer Particles.2005,Springer-Verlag Berlin:Berlin.p.129-255.
    25.Landfester,K.,Polyreactions in miniemulsions.Abstr.Pap.Am.Chem.Soc.,2002,224:U500-U500.
    26.Erdem,B.,Sudol,E.D.,Dimonie,V.L.,and E1-Aasser,M.S.,Encapsulation of inorganic particles via miniemulsion polymerization.II.Preparation and characterization of styrene miniemulsion droplets containing TiO_2 particles.J.Polym.Sci.Pol.Chem.,2000,38(24):4431-4440.
    27.Bechthold,N.,Yiarks,F.,Willert,M.,Landfester,K.,and Antonietti,M.,Miniemulsion polymerization:Applications and new materials.Macromol.Symp.,2000,151:549-555.
    28.Yiarks,F.,Landfester,K.,and Anonietti,M.,Encapsulation of carbon black by miniemulsion polymerization.Macromol.Chem.Phys.,2001,202(1):51-60.
    29.Tong,Z.H.and Deng,Y.L.,Synthesis of water-based polystyrene-nanoclay composite suspension via miniemulsion polymerization.Ind.Eng.Chem.Res.,2006,45(8):2641-2645.
    30.Zhang,S.W.,Zhou,S.X.,Weng,Y.M.,and Wu,L.M.,Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization.Langmuir,2005,21(6):2124-2128.
    31.Joumaa,N.,Lansalot,M.,Theretz,A.,and Elaissari,A.,Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir,2006,22(4):1810-1816.
    32.Mori,Y.and Kawaguchi,H.,Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization.Colloid Surf B-Biointerfaces,2007,56(1-2):246-254.
    33.Xu,H.,Cui,L.L.,Tong,N.H.,and Gu,H.C.,Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization.J.Am.Chem.Soc.,2006,128(49):15582-I 5583.
    34.Montagne,F.,Mondain-Monval,O.,Pichot,C.,and Elaissari,A.,Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions.J.Polym.Sci.Pol.Chem.,2006,44(8):2642-2656.
    35.Mabille,C.,Schmitt,V.,Gorria,P.,Calderon,F.L.,Faye,V.,Deminiere,B.,and Bibette,J.,Rheological and shearing conditions for the preparation of monodisperse emulsions.Langmuir,2000,16(2):422-429.
    36.Guo,J.,Yang,W.L.,Deng,Y.H.,Wang,C.C.,and Fu,S.K.,Organic-dye-coupted magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsutes.Small,2005,1(7):737-743.
    37.Deng,Y.H.,Yang,W.L.,Wang,C.C.,and Fu,S.K.,A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure.Adv.Mater.,2003,15(20):1729-1732.
    38.Shen,L.F.,Laibinis,P.E.,and Hatton,T.A.,Bilayer surfactant stabilized magnetic fluids:Synthesis and interactions at interfaces.Langmuir,1999,15(2):447-453.
    39.Li,Z.,Wei,L.,Gao,M.Y.,and Lei,It.,One-pot reaction to synthesize biocompatible magnetite nanoparticles.Adv.Mater.,2005,17(8):1001-1005.
    40.Sahoo,Y.,Pizem,H.,Fried,T.,Golodnitsky,D.,Burstein,L.,Sukenik,C.N.,and Markovich,G.,Alkyl phosphonate/phosphate coating on magnetite nanoparticles:A comparison with fatty acids.Langmuir,2001,17(25):7907-7911.
    41.Montagne,F.,Mondain-Monval,O.,Pichot,C.,Mozzanega,H.,and Elaissari,A.,Preparation and characterization of narrow sized(o/w) magnetic emulsion.J.Magn.Magn.Mater.,2002,250(1-3):302-312.
    42.Xia,A.,Hu,J.H.,Wang,C.C.,and Jiang,D.L.,Synthesis of magnetic microspheres with controllable structure via potymerization-triggered self-positioning of nanocrystals.Small,2007,3(10):1811-1817.
    43.van Zyl,A.J.P.,Sanderson,R.D.,de Wet-Roos,D.,and Klumperman,B.,Core/shell particles containing liquid cores:Morphology prediction,synthesis,and characterization.Macromolecules,2003,36(23):8621-8629.
    44.Bechthold,N.and Landfester,K.,Kinetics of miniemulsion polymerization as revealed by calorimetry.Macromolecules,2000,33(13):4682-4689.
    45.Landfester,K.,Bechthold,N.,Tiarks,F.,and Antonietti,M.,Formulation and stability mechanisms of polymerizable miniemulsions.Macromolecules,1999,32(16):5222-5228.
    1.Gupta,A.K.and Gupta,M.,Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,2005,26(18):3995-4021.
    2.Horak,D.,Babic,M.,Mackova,H.,and Benes,M.J.,Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations.J.Sep.Sci.,2007,30(11):1751-1772.
    3.Bayburtskiy,F.S.,Magnetic-guided carriers in biological and medical investigations.A review.Oxid.Commun.,2006,29(3):529-544.
    4.Akgol,S.,Kacar,Y.,Denizli,A.,and Arica,M.Y.,Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres.Food Chem.,2001,74(3):281-288.
    5.Arshady,R.,Microspheres for Biomedical Applications-Preparation of Reactive and Labeled Microspheres.Biomaterials,1993,14(1):5-15.
    6.Dobson,J.,Magnetic nanoparticles for drug delivery.Drug Dev.Res.,2006,67(1):55-60.
    7.Bayramoglu,G.and Arica,M.Y.,Synthesis and spectroscopic characterization of superparamagnetic beads of copolymers of methacrylic acid,methyl,methacrylate and ethylene glycol dimethacrylate and their application to protein separation.Polym.Int.,2008,57(1):70-76.
    8.Prikryl,R,Horak,D.,Ticha,M.,and Kuderova,Z.,Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation.J.Sep.Sci.,2006,29(16):2541-2549.
    9.Elaissari,A.,Sauzedde,F.,Montagne,F.,Pichot,C.,In Colloidal Polymers:Synthesis and Characterization;Elaissari,A.,Ed.;Marcel Dekker:New York.2003:Vol.116,Chapter 11,pp 285-318.
    10.Liu,X.Q.,Guan,Y.P.,Xing,J.M.,Ma,Z.Y.,and Liu,H.H.,Synthesis and properties of micron-size magnetic polymer spheres with epoxy groups.Chin.J.Chem.Eng.,2003,11(6):731-735.
    11.Guo,J.,Yang,W.L.,Deng,Y.H.,Wang,C.C.,and Fu,S.K.,Organic-dye-coupted magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsutes.Small,2005,1(7):737-743.
    12.Khng,H.E,Cunliffe,D.,Davies,S.,Turner,N.A.,and Vulfson,E.N.,The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins.Biotechnol.Bioeng.,1998,60(4):419-424.
    13.Liu,X.Y.,Ding,X.B.,Zheng,Z.H.,Peng,Y.X.,Long,X.E,Wang,X.C.,Chart,A.S.C.,and Yip,C.W.,Synthesis of novel magnetic polymer microspheres with amphiphilic structure.J.Appl.Polym.Sci.,2003,90(7):1879-1884.
    14.Chen,L.,Guo,C.,Guan,Y.P.,and Liu,H.Z.,Isolation of lactoferrin from acid whey by magnetic affinity separation.Sep.Purif Technol.,2007,56(2):168-174.
    15.Yang,C.L.,Guan,Y.E,Xing,J.M.,Jia,G.H.,and Liu,H.Z.,Synthesis and protein immobilization of monodisperse magnetic spheres with multifunctional groups.React.Funct.Polym.,2006,66(2):267-273.
    16.Ueda,E.K.M.,Gout,P.W.,and Morganti,L.,Current and prospective applications of metal ion-protein binding.J.Chromatogr.A,2003,988(1):1-23.
    17.Gomez-Lopera,S.A.,Plaza,R.C.,and Delgado,A.V.,Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles.J.Colloid Interface Sci.,2001,240(1):40-47.
    18.Mondal,K.and Gupta,M.N.,The affinity concept in bioseparation:Evolving paradigms and expanding range of applications.2006,23(2-3):59-76.
    19.Roque,A.C.A.,Silva,C.S.O.,and Taipa,M.A.,Affinity-based methodologies and ligands for antibody purification:Advances and perspectives.2007,1160(1-2):44-55.
    20.Ma,Z.Y.,Guan,Y.P.,Liu,X.Q.,and Liu,H.Z.,Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization.Langmuir,2005,21(15):6987-6994.
    21.Ma,Z.Y.,Guan,Y.P.,Liu,X.Q.,and Liu,H.Z.,Preparation and characterization of micron-sized non-porous magnetic polymer microspheres with immobilized metal affinity ligands by modified suspension polymerization.J.Appl.Polym.Sci.,2005,96(6):2174-2180.
    22.Wang,F.,Guo,C.,Liu,H.Z.,and Liu,C.Z.,Immobilization of Pycnoporus anguineus laccase by metal affinity adsorption on magnetic chelator particles.J.Chem.Technol.Biotechnol.,2008,83(1):97-104.
    23.Wang,F.,Guo,C.,Liu,H.Z.,and Liu,C.Z.,Reversible immobilization of glucoamylase by metal affinity adsorption on magnetic chelator particles.J.Mol.Catal.B-Enzym.,2007,48(1-2):1-7.
    24.Ma,Z.Y.,Guan,Y.P.,and Liu,H.Z.,Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption.J.Magn.Magn.Mater.,2006,301(2):469-477.
    25.Yang,C.L.,Guan,Y.P.,Xing,J.M.,and Liu,H.Z.,Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg.Polymer,2006,47(7):2299-2304.
    26.Ma,Z.Y.,Liu,X.Q.,Guan,Y.P.,and Liu,H.Z.,Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins.Colloid Surf A-Physicochem.Eng.Asp.,2006,275(1-3):87-91.
    27.Liu,X.Q.,Guan,Y.P.,Liu,H.Z.,Ma,Z.Y.,Yang,Y.,and Wu,X.B.,Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity.J.Magn.Magn.Mater.,2005,293(1):111-118.
    28.Ma,Z.Y.,Guan,Y.P.,and Liu,H.Z.,Synthesis of monodisperse nonporous crosslinked poly(glycidyl methacrylate) particles with metal affinity ligands for protein adsorption.Polym.Int.,2005,54(11):1502-1507.
    29.Sundberg,L.and Porath,J.,Preparation of adsorbents for biospecific affinity chromatography.1.Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes.1974,90(1):87-98.
    30.Landfester,K.,Bechthold,N.,Tiarks,F.,and Antonietti,M.,Formulation and stability mechanisms of polymerizable miniemulsions.Macromolecules,1999,32(16):5222-5228.
    31.Sahoo,Y.,Pizem,H.,Fried,T.,Golodnitsky,D.,Burstein,L.,Sukenik,C.N.,and Markovich,G.,Alkyl phosphonate/phosphate coating on magnetite nanoparticles:A comparison with fatty acids.Langmuir,2001,17(25):7907-7911.
    32.Ramirez,L.P.and Landfester,K.,Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes.Macromol.Chem.Phys.,2003,204(1):22-31.
    33.Bayramoglu,G.,Kaya,B.,and Arica,M.Y.,Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres.Food Chem.,2005,92(2):261-268.
    1.景沛,腺苷甲硫氨酸,生命化学.1995,15(2):49-50.
    2.Wang,Y.,Wang,Y.G.,Chu,J.,Zhuang,Y.P.,Zhang,L.X.,and Zhang,S.L.,Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase.Appl.Microbiol.Biotechnol.,2007,75(4):837-842.
    3.Grillo,M.A.and Colombatto,S.,S-adenosylmethionine and its products.Amino Acids,2008,34(2):187-193.
    4.Greenberg,A.K.,Rimal,B.,Felner,K.,Zafar,S.,Hung,J.,Eylers,E.,Phalan,B.,Zhang,M.,Goldberg,J.D.,Crawford,B.,Rom,W.N.,Naidich,D.,and Merali,S.,S-adenosylmethionine as a biomarker for the early detection of lung cancer.Chest,2007,132(4):1247-1252.
    5.Purohit,V.,Abdelmalek,M.F.,Barve,S.,Benevenga,N.J.,Halsted,C.H.,Kaplowitz,N.,Kharbanda,K.K.,Liu,Q.Y.,Lu,S.C.,McClain,C.J.,Swanson,C.,and Zakhari,S.,Role of S-adenosylmethionine,folate,and betaine in the treatment of alcoholic liver disease:summary of a symposium.Am.J.Clin.Nutr.,2007,86(1):14-24.
    6.Luo,Y.X.,Yuan,Z.Y.,Luo,G.M.,and Zhao,F.K.,Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization,one-step purification,and immobilization.Biotechnol.Prog.,2008,24(1):214-220.
    7.Booker,S.J.,Cicchillo,R.M.,and Grove,T.L.,Self-sacrifice in radical S-adenosylmethionine proteins.Curr.Opin.Chem.Biol.,2007,11(5):543-552.
    8.Wang,S.C.and Frey,P.A.,Binding energy in the one-electron reductive cleavage of S-Adenosylmethionine in lysine 2,3-aminomutase,a radical SAM enzyme.Biochemistry,2007,46(45):12889-12895.
    9.陈小龙,王远山,郑裕国,腺苷甲硫氨酸合成酶的提取纯化研究.2005,15(1):61-63.
    10.Ueda,E.K.M.,Gout,P.W.,and Morganti,L.,Current and prospective applications of metal ion-protein binding.J.Chromatogr A,2003,988(1):1-23.
    11.Arnold,F.H.,Metal-Affinity Separations-a New Dimension in Protein Processing.Bio-Technology,1991,9(2):151-156.
    12.Arnold,F.H.and Haymore,B.L.,Engineered Metal-Binding Proteins-Purification to Protein Folding.Science,1991,252(5014):1796-1797.
    13.Begum,R.R.,Newbold,R.J.,and Whitford,D.,Purification of the membrane binding domain of cytochrome b(5) by immobilised nickel chelate chromatography.2000,73 7(1-2):119-130.
    14.Chaga,G.S.,Twenty-five years of immobilized metal ion affinity chromatography:past,present and future.2001,49(1-3):313-334.
    15.Gaberc-Porekar,V.and Menart,V.,Perspectives of immobilized-metal affinity chromatography.J.Biochem.Biophys.Methods,2001,49(1-3):335-360.
    16.Porath,J.,High-Performance Immobilized-Metal-Ion Affinity-Chromatography of Peptides and Proteins.1988,443:3-11.
    17.Gutierrez,R.,del Valle,E.M.M.,and Galan,M.A.,Immobilized metal-ion affinity chromatography:Status and trends.2007,36(1):71-111.
    18.Mondal,K.and Gupta,M.N.,The affinity concept in bioseparation:Evolving paradigms and expanding range of applications.2006,23(2-3):59-76.
    19.Obrien,S.M.,Thomas,O.R.T.,and Dunnill,P.,Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption.J.Biotechnol.,1996,50(1):13-25.
    20.Obrien,S.M.,Sloane,R.R,Thomas,O.R.T.,and Dunnill,P.,Characterisation of non-porous magnetic chelator supports and their use to recover polyhistidine-tailed T4 lysozyme from a crude E-coli extract.J.Biotechnol.,1997,54(1):53-67.
    21.Roque,A.C.A.,Silva,C.S.O.,and Taipa,M.A.,Affinity-based methodologies and ligands for antibody purification:Advances and perspectives.2007,1160(1-2):44-55.
    22.Wang,F.,Guo,C.,Liu,H.Z.,and Liu,C.Z.,Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles.J. Chem.Technol.Biotechnol.,2008,83(I):97-104.
    23.Wang,E,Guo,C.,Liu,H.Z.,and Liu,C.Z.,Reversible immobilization of glucoamylase by metal affinity adsorption on magnetic chelator particles.J.Mol.Catal.B-Enzym.,2007,48(1-2):1-7.
    24.Chen,L.,Guo,C.,Guan,Y.E,and Liu,H.Z.,Isolation of lactoferrin from acid whey by magnetic affinity separation.Sep.Purif Technol.,2007,56(2):168-174.
    25.Yang,C.L.,Guan,Y.E,Xing,J.M.,Jia,G.H.,and Liu,H.Z.,Synthesis and protein immobilization of monodisperse magnetic spheres with multifunctional groups.React.Funct.Polym.,2006,66(2):267-273.
    26.Ma,Z.Y.,Liu,X.Q.,Guan,Y.P.,and Liu,H.Z.,Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins.Colloid Surf A-Physicochem.Eng.Asp.,2006,275(1-3):87-91.
    27.Liu,X.Q.,Guan,Y.P,Shen,R.,and Liu,H.Z.,Immobilization of lipase onto micron-size magnetic beads.J.Chromatogr.B,2005,822(1-2):91-97.28.Ma,Z.Y.,Guan,Y.P,Liu,X.Q.,and Liu,H.Z.,Synthesis of magnetic chelator for high-capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization.Langmuir,2005,21(15):6987-6994.
    29.Liu,X.Q.,Guan,Y.E,Liu,H.Z.,Ma,Z.Y.,Yang,Y.,and Wu,X.B.,Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity.J.Magn.Magn.Mater.,2005,293(1):111-118.
    30.Altintas,E.B.,Yuezmen,N.,Candan,N.,and Denizli,A.,Use of magnetic poly(glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system.J.Chromatogr.B,2007,853(1-2):105-113.
    31.Jiang,X.Y.,Bai,S.,and Sun,Y.,Fabrication and characterization of rigid magnetic monodisperse microspheres for protein adsorption.J.Chromatogr.B,2007,852(1-2):62-68.
    32.Bradford,M.M.,Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding.Anal.Biochem.,1976,72(1-2):248-254.
    33.Laemmli,U.K.,Cleavage of Structural Proteins During Assembly of Head of Bacteriophage-T4.Nature,1970,227(5259):680-&.
    34.Yang,C.L.,Guan,Y.P.,Xing,J.M.,and Liu,H.Z.,Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg.2006,47(7):2299-2304.
    35.Ma,Z.Y.,Guan,Y.P.,and Liu,H.Z.,Synthesis of monodisperse nonporous crosslinked poly(glycidyl methacrylate) particles with metal affinity ligands for protein adsorption.2005,54(11):1502-1507.
    36.Lee,J.J.,Bruley,D.F.,and Kang,K.A.,Effect ofpH and imidazole on Protein C purification from Cohn Fraction IV-1 by IMAC,in Oxygen Transport to Tissue Xxviii.2007.p.61-66.
    37.Tsumoto,K.,Ejima,D.,Senczuk,A.M.,Kita,Y.,and Arakawa,T.,Effects of salts on protein-surface interactions:Applications for column chromatography.J.Pharm.Sci.,2007,96(7):1677-1690.
    38.Reif,O.W.,Nier,V.,Bahr,U.,and Freitag,R.,Immobilized Metal Affinity Membrane Adsorbers as Stationary Phases for Metal Interaction Protein Separation.J.Chromatogr.A,1994,664(1):13-25.
    39.Kubota,N.,Nakagawa,Y.,and Eguchi,Y.,Recovery of serum proteins using cellulosic affinity membrane modified by immobilization of Cu2+ ion.J.Appl.Polym.Sci.,1996,62(8):1153-1160.
    40.Chen,W.Y.,Wu,C.F.,and Liu,C.C.,Interactions of imidazole and proteins with immobilized Cu(Ⅱ) ions:Effects of structure,salt concentration,and pH in affinity and binding capacity.J.Colloidlnterface Sci.,1996,180(I):135-143.
    41.Zhang,C.M.,Reslewic,S.A.,and Glatz,C.E.,Suitability of immobilized metal affinity chromatography for protein purification from canola.Biotechnol.Bioeng.,2000,68(1):52-58.
    42.Clemmitt,R.H.and Chase,H.A.,Facilitated downstream processing of a histidine-tagged protein from unclarified E-coli homogenates using immobilized metal affinity expanded-bed adsorption.Biotechnol.Bioeng.,2000,67(2):206-216.
    43.Sundberg,R.J.and Martin,R.B.,Interactions of Histidine and Other Imidazole Derivatives with Transition-Metal Ions in Chemical and Biological-Systems.Chem.Rev.,1974,74(4):471-517.
    44.Sidenius,U.,Farver,O.,Jons,O.,and Gammelgaard,B.,Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma.J.Chromatogr.B,1999,735(1):85-91.
    45.Mateo,C.,Fernandez-Lorente,G.,Cortes,E.,Garcia,J.L.,Fernandez-Lafuente,R.,and Guisan,J.M.,One-step purification,covalent immobilization,and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports.Biotechnol.Bioeng.,2001,76(3):269-276.
    46.Li,Y.,Arawal,A.,Sakon,J.,and Beitle,R.R.,Characterization of metal affinity of green fluorescent protein and its purification through salt promoted,immobilized metal affinity chromatography.J.Chromatogr.A,2001,909(2):183-190.
    1.Ugelstad,J.,Stenstad,P.,Kilaas,L.,Prestvik,W.S.,Rian,A.,Nustad,K.,Herje,R.,and Berge,A.,Biochemical and biomedical application of monodisperse polymer particles.1996,101:491-500.
    2.Urban D,T.K.,Polymer dispersions and their industrial applications.Wiley-VCH,Weinheim,.2002:p 408.
    3.Fudouzi,H.and Xia,Y.N.,Photonic papers and inks:Color writing with colorless materials.Adv.Mawr.,2003,15(11):892-896.
    4.Covolan,V.L.,Mei,L.H.I.,and Rossi,C.L.,Chemical modifications on polystyrene latex:Preparation and characterization for use in immunological applications.1997,8(1):44-50.
    5.Hattori,M.,Sudol,E.D.,and Elaasser,M.S.,Highly Cross-Linked Polymer Particles by Dispersion Polymerization.1993,50(11):2027-2034.
    6.Shim,S.E.,Yang,S.H.,Choi,H.H.,and Choe,S.,Fully crosslinked poly(styrene-co-divinylbenzene) microspheres by precipitation polymerization and their superior thermal properties.2004,42(4):835-845.
    7.Cui,Y.J.,Zhao,M.,Tang,X.Z.,and Luo,Y.P.,Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix.2004,25(3):451-457.
    8.Prokop,A.,Kozlov,E.,Carlesso,G.,and Davidson,J.M.,Hydrogel-based colloidal polymeric system for protein and drug delivery." Physical and chemical characterization,permeability control and applications,in Filled Elastomers Drug Delivery Systems.2002.p.119-173.
    9.Yang,W.,Hu,J.,Tao,Z.,Li,L.,Wang,C.,and Fu,S.,Dispersion copolymerization of styrene and glycidyl methacrylate in polar solvents.1999,277(5):446-451.
    10.Yang,W.L.,Yang,D.,Hu,J.H.,Wang,C.C.,and Fu,S.K.,Dispersion copolymerization of styrene and other vinyl monomers in polar solvents.2001,39(4):555-561.
    11.Yang,W.L.,Tao,Z.H.,Hu,J.H.,Wang,C.C.,and Fu,S.K.,Morphological investigations of polymer microspheres prepared by dispersion copolymerization.2000,150:211-217.
     12.Choi,J.,Kwak,S.Y.,Kang,S.,Lee,S.S.,Park,M.,Lim,S.,Kim,J.,Choe,C.R.,and Hong,S.I.,Synthesis of highly crosslinked monodisperse polymer particles:Effect of reaction parameters on the size and size distribution.2002,40(23):4368-4377.
    13.Kim,J.W.,Ko,J.Y.,and Suh,K.D.,A useful poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock crosslinker in a diffusion-controlled polymerization method.2001,22(4):257-261.
    14.Downey,J.S.,McIsaac,G.,Frank,R.S.,and Stover,H.D.H.,Poly(divinylbenzene)microspheres as an intermediate morphology between microgel,macrogel,and coagulum in cross-linking precipitation polymerization.2001,34(13):4534-4541.
    15.Thomson,B.,Rudin,A.,and Lajoie,G.,Dispersion copolymerization of styrene and divinylbenzene.2.Effect of crosslinker on particle morphology.1996,59(13):2009-2028.
    16.Horak,D.,Karpisek,M.,Yurkova,J.,and Benes,M.,Hydrazide-functionalized poly(2-hydroxyethyl methacrylate) microspheres for immobilization of horseradish peroxidase.1999,15(2):208-215.
    17.Song,J.S.,Tronc,F.,and Winnik,M.A.,Two-stage dispersion polymerization toward monodisperse,controlled micrometer-sized copolymer particles.2004,126(21):6562-6563.
    18.Song,J.S.and Winnik,M.A.,Cross-linked,monodisperse,micron-sized polystyrene particles by two-stage dispersion polymerization.2005,38(20):8300-8307.
    19.Zou,D.,Derlich,V.,Gandhi,K.,Park,M.,Sun,L.,Kriz,D.,Lee,Y.D.,Kim,G.,Aklonis,J.J.,and Salovey,R.,Model Filled Polymers.1.Synthesis of Cross-Linked Monodisperse Polystyrene Beads.1990,28(7):1909-1921.
    20.Chen,S.A.and Chang,H.S.,Kinetics and Mechanism of Emulsifier-Free Emulsion Polymerization.3.Styrene Nonionic Comonomer(2-Hydroxyethyl Methacrylate) System.1990,28(9):2547-2561.
    21.Kamei,S.,Okubo,M.,and Matsumoto,T.,Studies on Suspension and Emulsion.88.Production of Anomalous Particles in the Process of Emulsifier-Free Emulsion Copolymerization of Styrene and 2-Hydroxyethyl Methacrylate.1986,24(11):3109-3116.
    22.Ou,J.L.,Yang,J.K.,and Chen,H.,Styrene/potassium persulfate/water systems:effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size.2001,37(4):789-799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700