用户名: 密码: 验证码:
SiO_2、ZnO空心微球及SiO_2/Ag复合微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,各种特殊结构形貌纳米材料的制备及其性能研究,引起人们极大兴趣,其中以空心微球和含金属纳米粒子介电复合微球的研究备受关注。空心微球作为一种新型功能材料,具有较大的比表面积,较小的密度,表面可渗透性,中空部分可容纳客体分子等优点;含金属纳米粒子介电复合微球,其金属纳米粒子自身的表面等离子体共振,以及它引起金属纳米粒子内部和周围附近局域电磁场增强等特性,赋予了复合微球材料很好的光、电、磁等性能。因此,对这些功能微球材料制备和应用的研究,有着深远的理论意义和应用前景。本论文分别在相同介质条件下通过“一步法”制备了单分散SiO_2、ZnO空心微球,整个制备过程无需溶剂溶解或高温煅烧等后处理模板步骤,形成空心微球方法操作简单;利用聚乙烯吡咯烷酮(PVP)还原与稳定双重作用,将贵金属Ag纳米粒子有效的复合到SiO_2微球表面,整个制备过程无需添加其它还原剂还原银盐以及对SiO_2表面进行修饰处理。而且,对这些功能微球材料所具有的光催化性能,催化性能以及表面增强拉曼光谱(SERS)性质分别做了研究,具体研究内容及结果如下:
     (1)基于本实验组独创制备微米级大粒径空心微球的基础上,进一步制备出小粒径单分散SiO_2空心微球。通过偶氮二异丁基脒盐酸盐(AIBA)为阳离子引发剂,聚乙烯吡咯烷酮(PVP)为稳定剂,采用无皂乳液聚合制备出小粒径聚苯乙烯(PS)微球分散液。经透析处理后,加入EtOH控制PS分散液固含量。在此PS分散液中加入氨水和正硅酸乙酯(TEOS),通过TEOS的水解-缩合反应形成SiO_2纳米粒子。由于PS微球表面带正电荷基团,而SiO_2粒子表面的羟基呈负电荷,因此可以通过静电相互作用将SiO_2吸附到PS微球表面,形成SiO_2包覆PS的复合微球。同时,由于催化剂氨水的加入,碱性的乙醇介质能够“溶解”刻蚀PS模板微球,形成空心SiO_2微球,从而实现了小粒径SiO_2空心微球在相同介质条件下的“一步法”制备,且空心微球形态以及壳层厚度可通过氨水,TEOS浓度进行调节控制。整个制备过程相对简单,不需要采用传统无机空心微球制备时所需的溶剂溶解、高温煅烧等后处理模板微球过程。
     (2)在上述“一步法”制备空心微球研究的基础之上,通过控制实验条件在相同介质下进一步制备出ZnO空心微球,并研究ZnO空心微球的光催化活性。采用分散聚合制备出单分散PS微球,并在浓H_2SO_4中发生磺化反应,形成表面带有磺酸基团壳层的PS微球。选用磺化PS微球为模板,分散于乙醇介质中,分别加入Zn(Ac)_2·2H_2O,NaOH乙醇溶液。当带正电荷的锌离子通过静电作用被完全吸附到磺化PS微球表面后,并与加入的NaOH,在60℃条件下反应形成ZnO纳米晶。这些新生成的ZnO纳米晶继续进行粒径增长,并逐渐在PS微球表面形成ZnO壳层。当在此过程中或过程后,磺化的PS微球被碱化的乙醇介质所“溶解”刻蚀,形成ZnO空心微球。与其它制备ZnO空心微球方法相比,不需再外加有机溶剂或通过高温煅烧来除去模板微球;同时制备条件相对温和,不需要很高的反应温度和很长反应时间来获得空心结构。制备的ZnO空心微球表现出很好光催化性能,可作为光催化剂在紫外光照射下光催化降解有机染料溶液。
     (3)以St(?)ber方法制备的SiO_2微球为模板,通过SiO_2微球表面Si-OH的静电作用,将[Ag(NH_3)_2]~+吸附到微球表面,利用聚乙烯吡咯烷酮(PVP)稳定和还原的双重作用,将[Ag(NH_3)_2]~+成功地还原成Ag纳米粒子,制备出稳定的SiO_2/Ag复合微球。与其它制备含银纳米粒子的复合微球方法相比,整个过程中无需再添加其它还原剂还原银盐以及对SiO_2表面进行修饰处理。且SiO_2微球表面的银纳米粒子大小和银粒子覆盖程度,可以通过[Ag(NH_3)_2]~+浓度控制。利用透射电镜(TEM)、扫描电镜(SEM)、X-射线光电子能谱(XPS),X-射线衍射仪(XRD)和紫外-可见分光光度计对形成的SiO_2/Ag复合微球进行了表征。同时研究表明制备出的SiO_2/Ag复合微球可以用于催化剂催化还原有机染料溶液,表现出很好的催化活性。SiO_2/Ag复合微球作为活性基底材料,使检测的对巯基苯胺拉曼光谱信号明显增强,表明SiO_2/Ag复合微球表现出表面增强拉曼光谱(SERS)特性。
In recent years, the strategy to fabricate nanomaterials with particular structures and morphologies like hollow spheres and core-shell composite spheres with metallic nanoshells is of burgeoning interest. Hollow spheres as new advanced functional materials are becoming one focused research field, principally because of their novel properties, such as low density, high specific surface areas and infiltration ability. Composite spheres with metallic nanoshells can display novel and enhanced properties (e.g. mechanical, chemical, electrical, rheological, magnetic and optical and so on),which is due to plasmon resonances excitation from metal nanoparticles and their enhancement of the electromagnetic field around metal naoparticles.In this study, inorganic hollow spheres SiO_2, ZnO were prepared via a facile method in the same media respectively, and SiO_2/Ag composite spheres were prepared by the aid of reducing and stabilizing function of polyvinylpyrrolidone (PVP). In addition, the photocatalytic, catalytic and surface-enhanced Raman scattering (SERS) performances of these spheres were investigated respectively. All the research contents and results are shown as follows:
     (1) In the first chapter, based on the method of preparation of the micro-size hollow spheres reported by our group, monodisperse hollow silica spheres with small sizes were further prepared via one-step method using around 260nm PS as template particles, which were synthesized via emulsifier-free emulsion polymerization usingα,α'-azodiisobutyramidine dihydrochloride (AIBA) as a initiator and polyvinylpyrrolidone (PVP) as a stabilizer. In this approach, the obtained polystyrene suspension was dialyzed in ethanol using cellulose membrane and the solid content of polystyrene suspension was tailored through the addition of ethanol. Then hydrolysis and condensation of TEOS was carried out in aqueous ammoniacal alcohol medium at 50℃, in which PS particles were "dissolved" subsequently even synchronously in the same medium to form hollow silica spheres. And the morphology and thickness of hollow silica spheres could be adjusted through the concentration of ammonia and TEOS in the formulation respectively. Neither additional dissolution nor calcination process was needed to remove the polystyrene cores.
     (2) In the second chapter, ZnO hollow spheres were further prepared via a facile method. Monodisperse PS spheres were first prepared by dispersion polymerization and then sulfonated by concentrated sulfuric acid. The formed sulfonated polystyrene core-shell spheres were used as template spheres, when Zn(Ac)_2·2H_2O was added into the ethanol dispersion of the template spheres, zinc ions were first adsorbed onto the surfaces of template spheres via electrostatic interaction. The NaOH solution was added into the mixture and reacted with zinc ions to form ZnO crystal nucleus which was followed by the growth step to form ZnO nanoshells.During the formation of ZnO nanoshells or later on, the sulfonated polystyrene core-shell spheres were "dissolved" in the same media to obtain ZnO hollow spheres directly. Neither additional dissolution nor calcination process was needed to remove the template cores, and reaction condition was mild, neither high temperature nor long time was needed. TEM, SEM, XPS and XRD were used to investigate the morphology, surface composition and crystalline structure of the ZnO hollow spheres, respectively. UV-visible spectra show these ZnO hollow spheres had very good photocatalytic activity.
     (3) In the last chapter, we described a novel method for fabrication of SiO_2/Ag composite spheres by the aid of reducing and stabilizing function of polyvinylpyrrolidone (PVP). In this approach, [Ag(NH_3)_2]~+ ions were first adsorbed onto the surfaces of silica spheres via electrostatic attraction between the silanol groups and ions, these [Ag(NH_3)_2]~+ ions adsorbed on silica spheres were then reduced and protected by PVP to obtain SiO_2/Ag composite spheres. Neither additional reducing agent nor the core surface modification was needed, the particle size and the coverage degree of silver nanoparticles on the silica spheres could be easily tuned through altering the concentration of the precursor-[Ag(NH_3)_2]~+ ions. UV-visible spectrometer analysis showed these composite spheres had very good catalytic property; Raman spectrometer measurement displayed that these composite spheres occupied excellent surface-enhanced Raman scattering (SERS) performance.
引文
1. Caruso F, Caruso R A , Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998,282: 1111-1113.
    
    2. Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298: 2176-2179.
    
    3. Washio I, Xiong Y J, Yin Y N, Xia Y N. Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates[J]. Adv. Mater. 2006,18: 1745-1749.
    
    4. Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. J. Am. Chem. Soc. 2002,124:7642-7643.
    
    5. Yin Y, Erdonmez C, Aloni S, Alivisatos A P. Faceting of Nanocrystals during Chemical Transformation: From Solid Silver Spheres to Hollow Gold Octahedra[J]. J. Am. Chem. Soc. 2006,128:12671-12673.
    
    6. Huang H Y, Remsen E E, Kowalewski T, Wooley K L. Nanocages Derived from Shell Cross-Linked Micelle Templates [J] J.Am.Chem.Soc.l999,121:3805 - 3806.
    
    7. Makarova O V, Ostafin A. E, Miyoshi H, Norris J R Jr, Meisel D. Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles[J].J.Phys.Chem.B. 1999,103: 9080-9084.
    
    8. Ostafin A E , Siegel M, Wang Q , Mizukami H. Fluorescence of Cascade BlueTM inside Nano-sized Porous Shells of Silicate[J]. Microporous. Mesoporous. Mater. 2003, 57: 47-55.
    
    9. Wang Y, Su F, Lee J Y, Zhao X S. Crystalline Carbon Hollow Spheres, Crystalline Carbon-SnO2 Hollow Spheres, and Crystalline SnO2 Hollow Spheres: Synthesis and Performance in Reversible Li-Ion Storage[J]. Chem. Mater. 2006,18:1347-1353.
    
    10. Mayer A B R, Grebner W, Wannemacher R. Preparation of Silver-Latex Composites [J]. J.Phys. Chem. B. 2000, 104: 7278-7285.
    
    11. Kim K, Kim H S, Park H K. Facile Method To Prepare Surface-Enhanced -Raman-Scattering-Active Ag Nanostructures on Silica Spheres[J]. Langmuir, 2006, 22: 8083-8088.
    12. Chen Z M, Gang T, Yan X, Li X, Zhang J H, Wang Y F, Chen X, Sun Z Q, Zhang K, Zhao B, Yang B. Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction[J]. Adv.Mater. 2006, 18: 924-929.
    
    13. Wang W, Asher S A. Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications [J]. J. Am. Chem. Soc. 2001,123: 12528-12535.
    
    14. Graf C, van Blaaderen A. Metallodielectric Colloidal Core-Shell Particles for Photonic Applications[J]. Langmuir 2002, 18: 524-534.
    
    15. Siiman O, Burshteyn A. Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads[J]. J. Phys. Chem. B. 2000,104: 9795-9810.
    
    16. Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles[J]. Chem. Mater. 2002, 14:1325-1331.
    
    17. Zhong Z,Yin Y, Gates B, Xia Y. Preparation of Mesoscale Hollow Spheres of TiO2and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Adv. Mater. 2000,12: 206-209.
    
    18. Okubo M, Minami H. Control of Hollow Size of Micron-sized Monodispersed Polymer Particles having a Hollow Structure[J]. Colloid. Polym. Sci. 1996, 274: 433-438.
    
    19. Okubo M, Ito A, Kanenobu T. Production of Submicron-sized Multihollow Polymer Particles by Alkali/cooling Method[J]. Colloid. Polym. Sci. 1996, 274: 801-804.
    
    20. Wang M, Jiang M, Ning F,Chen D, Liu S, Duan H. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene [J]. Macromolecules, 2002, 35: 5980 -5989.
    
    21. Zhang Y, Jiang M, Zhao J, Zhou J, Chen D. Hollow Spheres from Shell Cross-Linked, Noncovalently Connected Micelles of Carboxyl-Terminated Polybutadiene and Poly(vinyl alcohol) in Water[J]. Macromolecules, 2004, 37:1537-1543.
    22. Tartaj P, Gonzalez-Carreno T, Serna C J. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties [J]. Adv. Mater. 2001, 13: 1620-1624.
    
    23. Bruinsma P J, Kim A Y, Liu J, Baskaran S. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres[J]. Chem. Mater.1997, 9: 2507-2512.
    
    24. Imhof, A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells[J]. Langmuir, 2001,17:3579-3585.
    
    25. Wang X, Hu P, Fangli Y, Yu L. Preparation and Characterization of ZnO Hollow Spheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres as Templates[J]. J. Phys. Chem. C. 2007, 111: 6706-6712.
    
    26. Yang Z Z, Niu Z W, Lu Y F, Hu Z B, Han C C. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles[J]. Angew. Chem. Int. Ed. 2003,42: 1943-1945.
    
    27. Niu Z W, Yang Z Z, Hu Z B, Lu Y F, Han C C. Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres [J].Adv. Funct. Mater. 2003,13: 949-954.
    
    28. Decher G, Hong J D, Schmitt J.Build up of Ultrathin Multilayer Films by a Self-assembly Process.III.Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces [J]. Thin Solid Films, 1992,210:831-835.
    
    29. Caruso F, Lichtenfeld H, Giersig M, Mohwald H. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J].J.Am. Chem. Soc. 1998, 120: 8523-8524.
    
    30. Caruso F.,Caruso R.A., Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282: 1111-1113.
    
    31. Caruso F, Mohwald H. Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique[J].J.Am. Chem. Soc. 1999,121: 6039-6046.
    
    32. Caruso F, Caruso R A, Mohwald H. Production of Hollow Microspheres from Nanostructured Composite Particles[J]. Chem. Mater. 1999, 11: 3309-3314.
    
    33. Caruso F,Spasova M, Susha A, Giersig M, Caruso R A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater. 2001, 13:109-116.
    
    34. Caruso F, Shi X Y, Caruso R A, Susha A. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J]. Adv. Mater. 2001, 13, 740-744.
    
    35. Huang J X, Xie Y, Li B, Liu Y, Qian Y, Zhang S. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres[J]. Adv. Mater. 2000,12:808-811.
    
    36. Okubo M, Ito A, Kanenobu T. Production of Submicron-sized Multihollow Polymer Particles by Alkali/cooling Method[J]. Colloid. Polym. Sci. 1996, 274: 801-804.
    
    37. Okubo M, Minami H. Control of Hollow Size of Micron-sized Monodispersed Polymer Particles having a Hollow Structure[J]. Colloid. Polym. Sci. 1996, 274: 433-438.
    
    38. Huang H Y, Remsen E E. Kowalewski T , Wooley K L. Nanocages Derived from Shell Cross-Linked Micelle Templates[J].J. Am. Chem. Soc. 1999,121:3805-3806.
    
    39. Wang M, Jiang M, Ning F,Chen D, Liu S, Duan H. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene [J]. Macromolecules, 2002, 35: 5980 -5989.
    
    40. Zhang Y, Jiang M, Zhao J, Zhou J, Chen D. Hollow Spheres from Shell Cross-Linked, Noncovalently Connected Micelles of Carboxyl-Terminated Polybutadiene and Poly(vinyl alcohol) in Water[J]. Macromolecules, 2004, 37:1537-1543.
    
    41. Tartaj P, Gonzalez-Carreno T, Serna C J. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties [J]. Adv. Mater. 2001, 13: 1620-1624.
    
    42. Bruinsma P J, Kim A Y, Liu J, Baskaran S. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres[J]. Chem. Mater. 1997, 9: 2507-2512.
    
    43. Iida M,Sasaki T,Watanabe M. Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell[J]. Chem. Mater. 1998,10: 3780-3782.
    
    44. Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan L M. Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating[J]. Chem. Mater. 2001, 13:1630-1633.
    
    45. Zhang J H, Liu J B, Wang S Z, Zhan P, Wang Z L, Ming N B. Facile Methods to Coat Polystyrene and Silica Colloids with Metal[J]. Adv.Funct.Mater.2004,14: 1089-1096.
    
    46. Jiang Z J, Liu C Y. Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere[J]. J. Phys. Chem. B. 2003,107: 12411-12415.
    
    47. Pol V G, Srivastava D N, Palchik O, Palchik V, Slifkin M A, Weiss A M, Gedanken A. Sonochemical Deposition of Silver Nanoparticles on Silica Spheres[J]. Langmuir,2002, 18:3352-3357.
    
    48. Pol V G, Grisaru H, Gedanken A. Coating Noble Metal Nanocrystals (Ag, Au, Pd, and Pt) on Polystyrene Spheres via Ultrasound Irradiation [J]. Langmuir, 2005, 21: 3635-3640.
    
    49. Kobayashi Y, Tadaki Y, Nagao D, Konno M. Deposition of Gold Nanoparticles on Silica Spheres by Electroless Metal Plating Technique[J]. J Colloid Interface Sci, 2005, 283: 601-604.
    
    50. Jackson J B, Halas N J. Silver Nanoshells: Variations in Morphologies and Optical Properties[J]. J. Phys. Chem. B. 2001, 105: 2743-2746.
    
    51. Warshawsky A,Upson D A. Zerovalent metal polymer composites. I. Metallized beads [J]. J. Polym. Sci. Part. A: Polym. Chem. 1989, 27: 2963-2994.
    
    52. Caruso F,Trau D, Mohwald H, Renneberg R. Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules[J]. Langmuir, 2000,16 :1485-1488.
    
    53. Gao C,Leporatti S,Donath E,Mohwald H. Surface Texture of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethylammonium chloride) Micron-Sized Multilayer Capsules: A Scanning Force and Confocal Microscopy Study [J]. J . Phys. Chem. B,2000, 104: 7144-7149.
    
    54. Chang T M S. Pharmaceutical and Therapeutic Applications of Artificial Cells including Microencapsulation [J].Eur. J . Pharm. Biopharm.1998 ,45 : 3-8.
    
    55. Li Z Z, Wen L X, Shao L Chen J F. Fabrication of Porous Hollow Silica Nanoparticles and Their Applications in Drug Release Control [J].J Controlled Release 2004,98:245-254.
    
    56. Liang H P, Zhang H M, Hu J S, Guo Y G, Wan L J, Bai C L.Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts[J]. Angew. Chem. Int. Ed. 2004, 43: 1540-1543.
    
    57. Charnay C, Lee A, Man S Q, Moran C E, Radloff C, Bradley R K, Halas N J. Reduced Symmetry Metallodielectric Nanoparticles: Chemical Synthesis and Plasmonic Properties [J]. J. Phys. Chem. B , 2003 ,107 : 7327-7333.
    
    58. Kim K, Lee H S. Effect of Ag and Au Nanoparticles on the SERS of 4-Aminobenzenethiol Assembled on Powdered Copper[J]. J. Phys. Chem. B. 2005, 109: 18929-18934.
    
    59. Kim K, Yoon J K. Raman Scattering of 4-Aminobenzenethiol Sandwiched between Ag/Au Nanoparticle and Macroscopically Smooth Au Substrate[J]. J. Phys. Chem. B. 2005,109:20731-20736.
    
    60. Jiang Z J, Liu C Y, Sun L W. Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres[J]. J. Phys. Chem. B. 2005,109: 1730-1735.
    1. Huang H Y, Remsen E E, Kowalewski T, Wooley K L. Nanocages Derived from Shell Cross-Linked Micelle Templates [J] J.Am.Chem.Soc. 1999,121:3805 - 3806.
    
    2. Makarova 0 V, Ostafin A. E, Miyoshi H, Norris J R Jr, Meisel D. Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles[J].J.Phys.Chem.B. 1999,103: 9080-9084.
    
    3. Ostafin A E , Siegel M, Wang Q , Mizukami H. Fluorescence of Cascade BlueTM inside Nano-sized Porous Shells of Silicate[J]. Microporous. Mesoporous. Mater. 2003, 57: 47 -55.
    
    4. Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. J. Am. Chem. Soc. 2002, 124: 7642-7643.
    
    5. Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles[J]. Chem. Mater. 2002, 14:1325-1331.
    
    6. Yang Z Z, Niu ZW, Lu Y F, Hu Z B, Han C C. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles[J]. Angew.Chew. 2003,115:1987-1989.
    
    7. Zhong Z,Yin Y, Gates B, Xia Y. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Adv. Mater. 2000,12: 206-209.
    
    8. Okubo M, Minami H. Control of Hollow Size of Micron-sized Monodispersed Polymer Particles having a Hollow Structure[J]. Colloid. Polym. Sci. 1996, 274: 433-438.
    
    9. Okubo M, Ito A, Kanenobu T. Production of Submicron-sized Multihollow Polymer Particles by Alkali/cooling Method[J]. Colloid. Polym. Sci. 1996,274: 801-804.
    
    10. Wang M, Jiang M, Ning F,Chen D, Liu S, Duan H. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene [J]. Macromolecules, 2002, 35: 5980 -5989.
    11. Zhang Y, Jiang M, Zhao J, Zhou J, Chen D. Hollow Spheres from Shell Cross-Linked, Noncovalently Connected Micelles of Carboxyl-Terminated Polybutadiene and Poly(vinyl alcohol) in Water[J]. Macromolecules, 2004, 37:1537-1543.
    
    12. Tartaj P, Gonzalez-Carrefio T, Serna C J. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties [J]. Adv. Mater. 2001, 13: 1620-1624.
    
    13. Bruinsma P J, Kim A Y, Liu J, Baskaran S. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres[J]. Chem. Mater. 1997,9: 2507-2512.
    
    14. Caruso F,Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282: 1111-1113.
    
    15. Caruso F. Nanoengineering of Particle Surfaces [J]. Adv.Mater. 2001,13: 11-22.
    
    16. Caruso F, Lichtenfeld H, Giersig M, Mohwald H. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J].J.Am. Chem.Soc. 1998,120: 8523-8524.
    
    17. Caruso F, Mohwald H. Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique[J].J.Am. Chem. Soc. 1999, 121: 6039-6046.
    
    18. Caruso F, Caruso R A, Mohwald H. Production of Hollow Microspheres from Nanostructured Composite Particles[J]. Chem. Mater. 1999,11: 3309-3314.
    
    19. Caruso F,Spasova M, Susha A, Giersig M, Caruso R A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater. 2001, 13:109-116.
    
    20. Caruso F, Shi X Y, Caruso R A, Susha A. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J]. Adv. Mater. 2001, 13: 740-744.
    
    21. Chen M, Wu L M, Zhou S X, You B.A Method for the Fabrication of Monodisperse Hollow Silica Spheres[J]. Adv. Mater. 2006,18:801-806.
    
    22. Chen M., Zhou S X, You B, Wu L M. A Novel Preparation Method of Raspberry-like PMMA/SiO2 Hybrid Microspheres[J]. Macromolecules, 2005, 38: 6411-6417.
    23. Chen M., Wu L M, Zhou S X, You B. Synthesis of Raspberry-like PMMA/SiO2 Nanocomposite Particles via a Surfactant-Free Method [J]. Macromolecules, 2004, 37: 9613-9619.
    
    24. Lu Y, McLellan J, Xia Y. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells[J]. Langmuir, 2004,20: 3464-3470.
    1. Jang E S, Won J H, Hwang S J, Choy J H. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity [J] .Adv. Mater.2006,18: 3309- 3312.
    
    2. Hu Y, Jiang Z, Xu C, Mei T, Guo J, White T. Monodisperse ZnO Nanodots: Synthesis, Charaterization, and Optoelectronic Properties[J].J.Phys.Chem.C. 2007,111:9757-9760.
    
    3. Gao Y, Nagai M. Morphology Evolution of ZnO Thin Films from Aqueous Solutions and Their Application to Solar Cells[J]. Langmuir, 2006,22: 3936-3940.
    
    4. Song J,Wang X, Liu J, Liu H, Li Y, Wang Z L. Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer[J].Nano Lett. 2008, 8: 203-207.
    
    5. Gao Y, Nagai M, Chang T, Shyue J. Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells [J].Cryst.Growth.Des.2007,7: 2467- 2471.
    
    6. Jiang Z Y, Xie Z X, Zhang X H, Lin S C, Xu T, Xie SY, Huang R B, Zheng L S. Synthesis of Single-Crystalline ZnO Polyhedral Submicrometer-Sized Hollow Beads Using Laser-Assisted Growth with Ethanol Droplets as Soft Templates[J]. Adv. Mater. 2004, 16: 904-907.
    
    7. Yan C L, Xue D F. Room Temperature Fabrication of Hollow ZnS and ZnO Architectures by a Sacrificial Template Route[J].J.Phys.Chem.B.2006,110: 7102- 7106.
    
    8. Yan C L, Xue D F. Morphosynthesis of Hierarchical Hydrozincite with Tunable Surface Architectures and Hollow Zinc Oxide[J]. J. Phys. Chem. B. 2006, 110:11076-11080.
    
    9. Wang X, Hu P, Fangli Y, Yu L. Preparation and Characterization of ZnO Hollow Spheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres as Templates[J]. J. Phys. Chem. C. 2007, 111: 6706-6712.
    
    10. Agrawal M, Pich A, Zafeiropoulos N E, Gupta S, Pionteck J, Simon F, Stamm M. Polystyrene-ZnO Composite Particles with Controlled Morphology[J].Chem.Mater. 2007, 19: 1845-1852.
    
    11. Neves M C, Trindade T, Timmons A M B, Pedrosa de Jesus J D.Synthetic hollow zinc oxide microparticles[J]. Mater. Res. Bull. 2001, 36:1099-1108.
    12. Zhou H, Fan T X, Zhang D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J]. Microporous. Mesoporous. Mater. 2007, 100: 322-327.
    
    13. Mo M S, Yu J C, Zhang L Z, Li S K A. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres[J]. Adv. Mater. 2005,17, 756-760.
    
    14. Li Z Q,Xie Y,Xiong Y J, Zhang R. A Novel Non-template Solution Approach to Fabricate ZnO Hollow Spheres with a Coordination Polymer as a Reactant[J]. New J.Chem.2003,27:1581-1521.
    
    15. Yang Z Z, Li D, Rong J H, Yan W D, Niu Z W. Opal Hydrogels Derived by Sulfonation of Polystyrene Colloidal Crystals[J]. Macromol.Mater.Eng.2002,287: 627-633.
    
    16. Yang Z Z, Niu Z W, Lu Y F, Hu Z B, Han C C. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles[J]. Angew. Chem. Int. Ed. 2003, 42: 1943-1945.
    
    17. Spanhel L, Anderson M A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. J. Am. Chem. Soc. 1991,113:2826-2833.
    
    18. Hu Z S, Oskam G, Perm R L, Pesika N, Searson P C. The Influence of Anion on the Coarsening Kinetics of ZnO Nanoparticles[J].J.Phys.Chem.B. 2003,107: 3124-3130.
    
    19. PengYY, Hsieh T E, Hsu C H. White-light Emitting ZnO-SiO2 Nanocomposite Thin Films prepared by the Target-attached Sputtering Method[J]. Nanotechnology ,2006,17: 174-180.
    
    20. Ramgir N S, Late D J, Bhise A B,More M A, Mulla I S, Joag D S, Vijayamohanan K. ZnO Multipods, Submicron Wires, and Spherical Structures and Their Unique Field Emission Behavior[J]. J. Phys, Chem. B. 2006,110: 18236-18242.
    
    21. Ye J D, Gu S L, Qin F, Zhu S M, Liu S M, Zhou X, Liu W, Hu L Q, Zhang R, Shi Y, Zheng Y D, Ye Y D. MOCVD Growth and Properties of ZnO Films using Dimethylzinc and Oxygen[J]. Appl.Phys. A 2005, 81:809-812.
    22. Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S. X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy studies of Al-doped ZnO Films [J].Appl. Surf. Sci. 2000, 158:134-140.
    
    23. Coppa B J.; Davis R F, Nemanich R J. Gold Schottky Contacts on Oxygen Plasma-treated, n-type ZnO [J]. Appl. Phys. Lett. 2003, 82: 400-402.
    
    24. Pal B,Sharon M. Enhanced Photocatalytic Activity of Highly Porous ZnO Thin Films Prepared by Sol-gel Process[J]. Mater. Chem. Phys. 2002, 76: 82-87.
    
    25. Wang H H, Xie C S, Zhang W, Cai S Z, Yang Z H, Gui Y H. Comparison of Dye Degradation Efficiency using ZnO Powders with Various Size Scales[J]. J. Hazard. Mater. 2006, 141:645-652.
    
    26. Pauporte T, Rathousky J. Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants [J]. J. Phys. Chem. C. 2007, 111:7639-7644.
    
    27. Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J] Chem.Rev.1995, 95: 69-96.
    1. Mayer A B R, Grebner W, Wannemacher R. Preparation of Silver-Latex Composites [J]. J.Phys. Chem. B. 2000,104: 7278-7285.
    
    2. Kim K, Kim H S, Park H K. Facile Method To Prepare Surface-Enhanced-Raman-Scattering-Active Ag Nanostructures on Silica Spheres[J]. Langmuir 2006, 22: 8083-8088.
    
    3. Chen Z M, Gang T, Yan X, Li X, Zhang J H, Wang Y F, Chen X, Sun Z Q, Zhang K, Zhao B, Yang B. Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction[J]. Adv.Mater. 2006,18: 924-929.
    
    4. Jiang Z J, Liu C Y. Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere[J]. J. Phys. Chem. B. 2003, 107: 12411-12415.
    
    5. Wang W, Asher S A. Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications[J]. J. Am. Chem. Soc. 2001,123: 12528-12535.
    
    6. Graf C, van Blaaderen A. Metallodielectric Colloidal Core-Shell Particles for Photonic Applications[J]. Langmuir 2002, 18: 524-534.
    
    7. Siiman O, Burshteyn A. Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads[J]. J. Phys. Chem. B. 2000,104: 9795-9810.
    
    8. Doremus R H. Optical Properties of Small Silver Particles[J]. J. Chem. Phys. 1965, 42: 414-417.
    
    9. Oldenburg S J , Averitt R D , Westcott S L , Halas N J. Nanoengineering of Optical Resonances[J]. Chem. Phys. Lett. 1998 , 288 : 243 -247.
    
    10. Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan L M. Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating[J]. Chem. Mater. 2001,13:1630-1633.
    
    11. Zhang J H, Liu J B, Wang S Z, Zhan P, Wang Z L, Ming N B. Facile Methods to Coat Polystyrene and Silica Colloids with Metal[J]. Adv.Funct.Mater.2004,14: 1089-1096.
    
    12. Pol V G, Srivastava D N, Palchik O, Palchik V, Slifkin M A, Weiss A M, Gedanken A. Sonochemical Deposition of Silver Nanoparticles on Silica Spheres[J]. Langmuir,2002, 18:3352-3357.
    
    13. Pol V G, Grisaru H, Gedanken A. Coating Noble Metal Nanocrystals (Ag, Au, Pd, and Pt) on Polystyrene Spheres via Ultrasound Irradiation[J]. Langmuir, 2005, 21: 3635-3640.
    
    14. Henglein A, Giersig M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate[J]. J. Phys. Chem. B. 1999, 103: 9533-9539.
    
    15. Gao F,Lu Q, Komarneni S. Interface Reaction for the Self-Assembly of Silver Nanocrystals under Microwave-Assisted Solvothermal Conditions[J]. Chem. Mater. 2005, 17: 856-860.
    
    16. Huang H H, Ni X P, Loy G L, Chew C H, Tan K L, Loh F C, Deng J F, Xu G Q. Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone) [J]. Langmuir, 1996,12: 909-912.
    
    17. Pastoriza-Santos I, Liz-Marzan L M. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002,18: 2888-2894.
    
    18. Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science 2002, 298: 2176-2179.
    
    19. Wang Y Z, Li Y X, Yang S T, Zhang G L, An D M, Wang C, Yang Q B, Chen X S, Jing X B, Wei Y. A Convenient Route to Polyvinyl pyrrolidone/Silver Nanocomposite by Electrospinning [J]. Nanotechnology 2006, 17: 3304-3307.
    
    20. Hoppe C E, Lazzari M, Pardinas-Blanco I, Lopez-Quintela M A. One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-vinyl-2-pyrroIidone) as a Reducing Agent[J]. Langmuir 2006, 22: 7027-7034.
    
    21. Xiong Y J, Washio I, Chen JY, Cai H G, Li Z Y, Xia YN. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions[J]. Langmuir 2006, 22:8563-8570.
    
    22. Washio I, Xiong Y J, Yin Y N, Xia Y N. Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates [J]. Adv. Mater. 2006, 18: 1745-1749.
    
    23. Jiang P, Li SY, Xie S S, Gao Y, Li S. Machinable Long PVP-Stabilized Silver
    ??Nanowires[J]. Chem. Eur. J. 2004,10: 4817-4821.
    
    24. Pattanaik M, Bhaumik S K. Adsorption Behaviour of Polyvinyl Pyrrolidone on Oxide Surfaces[J]. Mater. Lett. 2000,44: 352-360.
    
    25. Elechiguerra J L, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman M J. Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles[J]. Chem. Mater. 2005,17:6042-6052.
    
    26. Ahmadi T, Wang Z L, Green T C, Henglein A, El-sayed M A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles[J]. Science 1996, 272:1924-1925.
    
    27. Pal T, Sau T K, Jana N R. Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Media[J]. Langmuir, 1997, 13: 1481-1485.
    
    28. Jiang Z J, Liu C Y, Sun L W. Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres[J]. J. Phys. Chem. B. 2005,109: 1730-1735.
    
    29. Jana N R, Sau T K, Pal T. Growing Small Silver Particle as Redox Catalyst[J]. J. Phys. Chem.B. 1999,103:115-121.
    
    30. Jana N R, Pal T. Redox Catalytic Property of Still-Growing and Final Palladium Particles: A Comparative Study[J]. Langmuir, 1999,15: 3458-3463.
    
    31. Kim K, Lee H S. Effect of Ag and Au Nanoparticles on the SERS of 4-Aminobenzenethiol Assembled on Powdered Copper[J]. J. Phys. Chem. B. 2005, 109: 18929-18934.
    
    32. Kim K, Yoon J K. Raman Scattering of 4-Aminobenzenethiol Sandwiched between Ag/Au Nanoparticle and Macroscopically Smooth Au Substrate[J]. J. Phys. Chem. B. 2005,109:20731-20736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700