用户名: 密码: 验证码:
纳米SiO_2对淀粉浆料改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对淀粉浆料性能的不足,利用纳米SiO_2的特殊结构和性能对淀粉浆料改性,并探讨纳米SiO_2影响淀粉浆料浆膜和浆纱性能的作用机理。
     通过实验优选了纳米SiO_2的分散方法以及选用分散剂的种类和浓度,确定了添加质量分数为3%的六偏磷酸钠作为分散剂,用超声波对纳米SiO_2进行有效分散的方法,并用分散效率、分散液中纳米SiO_2的粒径、分散液的表面性状等表征分散效果,同时讨论了分散液的稳定性。
     将分散后的纳米SiO_2按一定质量分数与淀粉调制纳米SiO_2改性淀粉浆,并制成浆膜,利用耐磨试验机及ZWICK万能材料试验机分别测试浆膜的机械性能,结合AFM、SEM、视频变焦显微镜等分析纳米SiO_2质量分数以及超声波分散时间对浆膜机械性能的影响。结果表明,添加质量分数为3~4%的纳米SiO_2,超声波分散50分钟制成的纳米SiO_2改性淀粉浆可以获得较好的浆膜机械性能。
     用自制的纳米SiO_2改性淀粉浆在浆纱机上对纯棉纱和涤棉纱进行上浆试验,系统测试比较浆纱的各项性能指标,结合SEM、视频变焦显微镜等分析纳米SiO_2对浆纱性能的影响。结果表明,纳米SiO_2质量分数为3~4%时,浆纱的各项性能表现较好,纳米SiO_2对纯棉纱上浆的作用优于涤棉混纺纱。
     对纳米SiO_2改性淀粉浆进行物理化学结构分析,通过对纳米SiO_2与淀粉分子间及纤维分子间作用的分析、浆膜的热学性能和热稳定性的分析,探讨纳米SiO_2对淀粉浆料的改性机理。
     研究表明,纳米SiO_2对淀粉浆料改性主要是因为纳米SiO_2具有超强的表面活性和独特的三维立体网状结构以及小尺寸效应和宏观量子隧道效应,使其表面的活性羟基极易同淀粉和纱线纤维中的羟基结合,提高了淀粉分子间、纤维分子间、淀粉与纤维分子间的作用力,大大增加了淀粉胶层的内聚强度,增强了淀粉本身的内聚力和浆液对纤维的粘附力,有效改善了淀粉浆液的成膜性和对纤维的粘附性。适量的纳米SiO_2以纳米级粒径均匀分散在淀粉浆液中,可使淀粉浆料的浆膜和浆纱性能得以改善。
In order to improve the deficient sizing properties of the traditional starch, the starch was modified by SiO_2 Nanoparticles, which own the special structure and performance. Also, the interaction mechanism of the effect of SiO_2 Nanoparticles on the properties of starch film and the sizing performance of starch was investigated.
     The dispersion method、the sort and consistency of the dispersants were optimized by experiments. It is an effective method that 3% sodium hexametahposphate was added as a dispersant using ultrasonic wave cleaner to disperse the SiO_2 Nanoparticles. And the dispersion properties were analyzed with the dispersion efficiency、particle diameter in the dispersed liquid and the surface traits of the dispersed liquid. At the same time, its stability was discussed.
     The certain proportion dispersed SiO_2 was added into the starch films to prepare the SiO_2 nanoparticles modified starch. The mechanical properties of these films were measured by a wear tester and a universal material testing machine. The influences of SiO_2 Nanoparticles quality fraction and the its dispersion time on the mechanical properties of the films were analyzed by the Atom Force Microscope, Scanning Electronic Microscope, and High Magnification Optical Microscope and so on. The results showed that the best mechanical properties of composite film were achieved when the quality fraction of SiO_2 Nanoparticles for the 3 to 4 percent was in the composite sizing and ultrasonic intermittently dispersed 50 minutes.
     Using the self-made SiO_2 Nanoparticles/starch slashed the cotton yarn and T/C yarn by a sizing machine, each performance of the slashed yarns systematically was tested and the influence of the SiO_2 Nanoparticles on the performance of the slashed yarns was analyzed by the Scanning Electronic Microscope, the High Magnification Optical Microscope and so on. The results showed that the slashed yarns had the best performances when the SiO_2 Nanoparticles content was 3% to 4% and the cotton yarn gained the advantage over the T/C yarns.
     The physical and chemical structure of the SiO_2 Nanoparticles/starch films was analyzed by investigating the influence of SiO_2 Nanoparticles on the acting force between the starch molecules and fiber molecules, and the thermal properties、thermal stability of the films. The mechanism about SiO_2 Nanoparticles modified starch was also discussed
     It showed that SiO_2 Nanoparticles modified starch mainly may due to its super surface activity, unique three-dimensional network structure and the small size effect and macro-quantum tunneling effect, which made its surface active hydroxyl easily combined with the hydroxyl existed in the starch and fibre surface. It increased acting force existed in the starch intermolecular, interfibrous, starch and fibre midst, which improved effectively the performance of starch and cellulose fibre and enhanced cohesive strength of the glue starch film、its cohesion and adhesive force significantly. It also improved the starch film forming and its adhesiveness effectively. It played an active part in starch sizing improvement and the slashed yarn's performance when an adequate quality of SiO_2 Nanoparticles dispersed uniformly in the starch.
引文
1.高卫东,范雪荣,王鸿博.经纱上浆浆料及浆纱机的现状与发展[J].天津纺织工学院学报,1998,17(4):108-112
    2.周永元.变性淀粉作为经纱浆料的现状和前景[J].中国纺织,1996(8):44-47
    3.陈丽华,吴少英.纺织浆料的应用与发展[J].天津纺织工学院学报,1999,18(1):98-102
    4.苏学军,郑典摸.纳米SiO_2的应用研究进展[J].江西化工,2002(1):6-10
    5.武海良,明科,沈艳琴.纺织浆料的开发与环境保护[J].棉纺织技术,2001,2(8):460-462
    6.张宏伟,陈绍辉,丁一光.丙烯酸丁酯接枝淀粉浆料的研制及上浆性能分析[J].吉林工学院学报,2002,21(3):51-53
    7.王钢,赵淑芬,朱江琴.浅析纺织浆料对环境的污染.黑龙江纺织[J].2003(3):16-17
    8.徐祖苗.淀粉浆料的展望[A].全国浆料和浆纱技术2002年论文集[C].上海,2002:9-10
    9.许并社.纳米材料及应用技术[M].北京:化学工业出版社,2003:6-12
    10.代平祥.浅谈纳米材料的应用[J].大众科技,2006(8):37
    11.周瑞发,韩雅方,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003
    12.张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000
    13.Hidetoshi K.Advances in optical materials SIPE[J].J Mater sciLett,1995(14):206-210
    14.C Sutyanarayana.Nano-crystalline Material[J].Intern Mater Reviews,1995(40):41-46
    15.T Tepper,S bcrger.Correlation between microstructure,particle size,dielectric constant,and electrical resistivity of nano-size amorphous SiO2 power[J].Nanostructure Mater,1999,11(8):1081-1089
    16.S.Sadasivan,D.H.Rasmussen,F.P.Chen,et al.Preparation and Characterization of Ultrafine Silica.Collloids and Surfaces[J].Physicochemical and Engineering Aspect,1998,132(1):4552
    17.Z.G.Li,X.Q.Shen,H.C.Yao,et al.Preparation of Ultrafine Silica Powders[J].Journal of Materials Scienee Lettes,2002,21(13):995-997
    18.J.R.Heley,D.Jackson,P.F.James.Production of Ultrafine Silica Powders from Silicon Tetrachloride:Control ofthe Primary ParticleSize[J].Journalof Sol-Gel Science and Technology,1997,8(1-3):177-181
    19.Tazaki,Keiko et al.Method for growth of silica particles[M].Nissan:Chemical Industries,1990
    20.He Peng,ZhaoAnchi.Nano-SiO_2 filled HDPE composite[J].Plastics.2001.30(1):39-43
    21.黄志杰,左美祥.纳米SiO_(2-x)的应用[J].上海建材,1999,(4):21-22
    22.Per Hanarp,Duncan S,Julie Gold.Control of nanoparticle film structure for colloidal lithography[J].coiloids and surfaces,2003(214):23-26
    23.SuanQW,Mark JE.Reinforcement of poly(dimethylsiloxane)networks by blended and insitugenerated silica filler shaving various sizes,size distributions,and moditled surfaces[J].Macromolecular Chemistry and Physics,1999,200(1):206-209
    24.李正.日本NIMS研发水溶性二氧化硅纳米材料[J].精细与专用化学品,2004(20):67-69
    25.杨莺歌.环保纺织助剂[J].材料工业,2006(7):20-22
    26.章杰.我国环保染料和助剂开发现状[J].染整技术,2005,27(2):32-34
    27.费云山,胡勇.胶粉与无机浆料的应用及效果[J].棉纺织技术,2006,34(10):12-14
    28.吴敏,程秀萍,葛明桥.纳米添加剂对纺织浆料浆膜性能的影响[J].纺织学报,2005,26(4):70-72
    29.窦浩良,李云庆,吴敏.KHM浆料应用实践[J].棉纺织技术,2005,33(6):52-53
    30.杭芳,沈昀,凡巨山.高强平滑剂在纯棉品种上浆中的应用[J].棉纺织技术,2005,33(1):54-55
    31.陈新祥.KHM-01高效平滑剂用于在纯棉产品的上浆实践[J].棉纺织技术,2005,3(2):49-50
    1.汪斌华,黄婉霞,刘雪峰等.纳米SiO_2的光学特性研究[J].材料科学与工程学报,2003,21(4):514-517
    2.刘景春,韩建成.纳米SiO_2材料的应用[J].硅酸盐通报,1998,(6):52-54
    3.徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002:3-4
    4.Kaliszewski M S,Heuer A H.Alcohol interaction with zireonia powders[J].J Am Ceram Soc,1990,73:1504-1509
    5.Alok Maskra,Douglas M Smith.Agglomeration during the drying of fine silica powders,part Ⅱ:The role of particle solubility[J].J Am Ceram Soc,1997,80:1715-1722
    6.Pam paeh R,Haberkc K.Ceramic Powders[M].Amsterdam:Elsevier Scientific Pub Company,1983:623
    7.马文有,田秋,曹茂盛,高正娟,陈玉金,朱静.纳米颗粒分散技术研究进展——分散方法与机理[J].中国粉体技术,2002,(03):31-34
    8.Kaliszewski M S,Heuer A H.Alcohol interaction with zireonia powders[J].J Am Ceram Soc,1990,73:1504
    9.Russel W B,Saville D A,Schowalter W R Colloidal Dispersions[M].Cambridge:Cambridge University Press,1989
    10.刘粤惠,王迎军,吴东晓,等.超细粉透射电镜试样分散新方法[J].中国陶瓷,1997,(5):16-17
    11.黄茂福.纺织助剂的基本特性,检测与应用(三)分散剂[J].染整科技,1996(5):46-52
    12.任俊,卢寿慈,沈健等.超微颗粒的静电抗团聚分散[J].科学通报,2000(11):2289-2292
    13.张茜,汪济奎,程树军.纳米二氧化硅改性CPE的研究[J].功能高分子学报,2002,15(3):271-275
    14.高濂,孙静,刘阳桥.纳米粉体的分散及表面改姓[M].北京:化学工业出版社,2003(12):145-146
    15.张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2000:7-29
    16.Birdi,K.S.Scanning Probe Microscopes[M].Boca Raton:Applications in Science and Technology,CRC Press,2003
    17.Yu,W.G.,Chen,X.W.Nano Material and Its Application in Textile Industry[J].Journal of Dong hua university(natural science edition),2001,27(6):123-127
    18.罗永明,潘伟,陈健.分散剂对纳米碳化硅粉末在水中分散的影响[J].材料导报,2000(10):345-351
    19.吴敏,程秀萍,葛明桥.纳米SiO_2的分散研究[J].纺织学报,2006,27(4):80-82
    20.曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社.2001.5-14
    1.丁星兆,柳襄杯.纳米材料的结构性能及应用[J].材料导报,1997(4):1
    2.干蜀毅.常规扫描电子显微镜的特点和发展[J].分析仪器,2000(1):51-53
    3.黄志杰,左美祥.纳米SiO_(2-x)的应用[J].上海建材,1999(4):21-22
    4.张茜,汪济奎,程树军.纳米二氧化硅改性CPE的研究[J].功能高分子学报,2002,15(3):271-275
    5.Friedlander S K.Polymer-like behavior of inorganic nanoparticle chain aggregates[J].Journal of Nanoparticle Research,1999,1(1):9-15
    6.Mascia L.The role of additive in plastics[M].London:Applied Science Publicshers,1974:215
    7.张以河,付绍云,李国耀,李广涛,严庆.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯,2004(15):99-105
    8.吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000,2(1):99-104
    9.李庆芬,胡胜海,朱世范.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998
    10.Kragealsii.V.I,Martchea.E.E.Modern Concerpt on Wear and the Classification of the types of Wear[M].3rd International Tribology Congress,Warsaw:Elsevier Scientific,1982:271-280
    11.Ludema,Kenneth.C.Class of Wear[J].International & Engineering Chemistry,Product Research and Development,1980,3(19):335-337
    12.QuinnT.F.J.,Sullival.J.L.Review of Oxidational wear[J].ASHRAE Journal,1971,(3):110-115
    13.杨桂娣,林巧佳,刘景宏.纳米SiO_2改性脲醛树脂的研究[J].木材工业,2004,18(3):87-91
    14.Yan F Y,Xue Q J,Wang X B.Tribological action of metallic fillers in poly (tetrafluoroethylene) composites[J].Journal of Applied Polymer Science,2002,83(9):1832-1840
    15.何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001:33-34
    16.李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998:126-130
    17.Pam pach R,Haberkc K.Ceramic Powders[M].Amsterdam:Elsevier Scientific Pub.Company,1983:623
    18.李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003:142-143
    1.范雪荣,高卫东,赵凌云.浆料黏附性能测试方法的研究[J].棉纺织技术,1994,27(4):11-13
    2.王萌,吴敏,葛明桥.纳米SiO_2影响淀粉浆膜耐磨损性能的研究[J].纺织学报,2006,27(7):67-70
    3.段海霞,单小红.氨纶弹性疲劳性能的研究[J].新疆大学学报,2007,24(1):121-126
    4.G.K.Tyagi等著.涤纶转杯纺纱线和摩擦纺纱线的性质[J].国外纺织技术,2002(6):16-18
    5.王萌,吴敏,葛明桥.纳米SiO_2增强淀粉浆膜的研究[J].棉纺织技术,2006,34(10):43-46
    6.吴敏,程秀萍,葛明桥.纳米添加剂对纺织浆料浆膜性能的影响[J].纺织学报,2005,26(4):70-72
    7.张召阳,杨红英,刘让同,崔世忠不同纱线耐磨仪的实验对比分析[J].中原工学院学报,2007,18(3):5-8
    8.杨元.浆纱浆液渗透及被覆测试方法的比较[J].上海纺织科技,2005,33(7):60-64
    9.Zong-Hong Lin,C.R.Chris Wang.Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles[J].Science direct.,2005(92):591-594
    10.Friedlander S K,Jang H D,Ryu K H.Elastic behavior of nanoparticle chain aggregates[J].App Phys Lett,1998,72:173-175
    11.吴敏,王萌.纳米SiO_2的分散对淀粉浆膜力学性能的影响[J].纺织学报,2007,28(2):60-63
    1.张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2000:7-29
    2.康青.红外辐射材料的研究现状与发展趋势[J].材料导报,1996(2):46-47
    3.马建中,刘凌云,张志杰.纳米二氧化硅改性丙烯酸树脂的研究[J].中国皮革,2004,23(9):31-35
    4.卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989:8
    5.张翼,杨颙.氢键研究进展[J].化学教育,2002(2):7-9
    6.Laperre J.Nanotechnology for Textile production[J].Textile Asia,2002,(8):23-27
    7.田军等.纳米材料的制备技术与在纺织上的应用[J].纺织学报,2001(5):332-334
    8.丁伟东,储才元.纺织物理[M].上海:东华大学出版社,2002:78-79
    9.H.C.Swart,E.D.van Hattum,W.M.Arnoldbik,and F.H.P.M.Habraken.Comparison of SiOx structure in RF sputtered samples[J].phys,stat.sol.2004,1(9):2286-2291
    10.汪辉,黄欣,赵谦.纳米气相SiO_2在液体介质中的分散研究[J].玻璃纤维,2003(3):7-10
    11.蔡正千.热分析[M].北京:高等教育出版社,1993:54-66
    12.姚穆.纺织材料学[M].中国纺织出版社,2001(4)
    13.吴敏,王萌.纳米SiO2的分散对淀粉浆膜力学性能的影响[J].纺织学报,2007,28(2):60-63
    14.LAKHWANI S,RAHAMAN M N.Adsorption of polyvinylpyrrolidone(PVP) and its effect on the consolidation of suspensions of nanocrystalline CeO_2 particles[J].J Mater Sci,1999,34(16):3909-3912
    15.Tang Fengqiu,Huang Xiaoxian,Zhang Yufeng,et al.Effect of sispersants on surface chemical properties of nano-zirconia suspensions[J].Ceramics International,2000,26:93-97
    16.CUI Hongmei,LIU Hong,WANG Ji-yang,LI Xia,HAN Feng.Agglomeration and Disperasion of Nano-scale Powders.[J].Materials for Mechanical Engineering,2004,28(8):38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700