用户名: 密码: 验证码:
环糊精在抗菌食品包装中的基础应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用挥发性和非挥发性两类食品抗菌剂,研究了环糊精(CD)在抗菌食品包装中的两种应用方式:一是先使环糊精与抗菌剂形成包合物,然后加入到食品包装材料中,通过抗菌剂从包合物中的缓慢释放以及在材料中的迁移,最后达到食品表面发挥抗菌作用;二是先将环糊精固载在纤维包装材料上,然后通过固载环糊精对食品抗菌剂的包埋与缓释来实现纤维材料的抗菌性能。
     异硫氰酸烯丙酯(AITC)对食品常见腐败菌和致病菌都有很强的杀灭作用,由于其具有强挥发性及刺激的气味,很难直接应用于包装材料上。本文利用环糊精或固载环糊精纤维对其进行包埋与释放,模拟了气态AITC释放形式的抗菌食品包装体系。首先,利用溶液共沉淀法制备环糊精-异硫氰酸烯丙酯包合物(CD-AITC,主客体摩尔比1:1),通过均匀设计试验分析优化了包埋工艺。以环糊精包埋率为指标,MATHEMATICS4.0分析得到拟合方程y=9.44+4 x_1+22.74x_2+0.35 x_3-0.45 x_4 ,对各因素最佳取值后包埋率可达88.5%;以环糊精回收率为指标,利用MATHEMATICS4.0分析得到拟合方程y=17.87-2.5 x_1+42.87 x_2-0.15 x_3+0.074 x_4,对各因素最佳取值后环糊精回收率可达88.0%。同时,根据环糊精包合物的包埋与释放机理,建立了CD-AITC的准确定量分析方法,即利用无水环境下的有机溶剂洗涤法测定包合物表面吸附油、利用有机溶剂-水体系下的热浸提法测定包合物中的包合油,并以紫外分光光度法进行定量。实践证明,该方法具有需要样品量少、操作相对简便和准确度高的优点,RSD不大于1.26%,包合物含油量测定平均回收率为95.6%。
     通过红外光谱及热重分析,确认了CD-AITC包合物的形成。热重分析表明AITC经CD包埋后,挥发性大为降低,耐热性显著提高;释放实验表明,CD-AITC具有一定的缓释特性,其释放速率与环境相对湿度(RH%)和环糊精包埋率密切相关,随着RH%的增加其释放速率也相应变大,低包埋率时释放速度趋缓;α-及β-CD-AITC具有相似的释放规律,但由于空间结构的匹配性,α-CD-AITC的释放速率要缓慢得多。通过Avrami方程对包合物的释放过程进行拟和,得到50RH%、75RH%和98RH%三种相对湿度条件下α-及β-CD-AITC的释放速率常数k和释放机理参数n(均在0.5附近),可以判断α-及β-CD-AITC中AITC的释放都是遵循限制扩散的动力学过程。
     其次,研究了聚丙烯酸法接枝环糊精到纤维素纤维上的新工艺。结果表明该法与常用柠檬酸接枝法相比能达到更理想的环糊精固载率;对反应温度的研究表明接枝反应分为两个阶段,聚丙烯酸的接枝主要发生在低温阶段,而环糊精的接枝固着主要发生在高温处理阶段,因此在不影响纤维品质的条件下高温处理有利于高环糊精固载纤维样品的获得。通过固载环糊精纤维对AITC的包埋试验发现,由于空间位阻作用纤维中环糊精固载率与AITC的包埋载量并不完全成正比,保持环糊精有效的包埋位点非常重要。试验结果显示,环糊精固载量应控制在7.5-9%之间较为合适,此范围的功能纤维样品对AITC的包埋量在600-750μL/100g之间,固载环糊精包埋率达95%以上。包埋AITC的功能纤维同样具有控制释放的特性,其释放规律与CD-AITC包合物相类似,并遵循限制扩散的动力学过程,而由聚丙烯酸网络层吸附的AITC基本不具控制释放的性能。由于空间位阻以及纤维对AITC的吸附等作用,固载环糊精纤维AITC的释放速度小于未固载环糊精包和物。
     作为常见的食品防腐剂,苯甲酸和尼泊金酯耐热性较差,直接加入包装材料中在热成型时会有较大损失,而且有时在包装材料中的迁移速度也不理想。通过环糊精包埋可显著提高其热稳定性,改变其迁移行为,使制备相应的抗菌包装材料成为可能。本论文利用溶液共沉淀法制备了苯甲酸和尼泊金乙酯与β-CD的固体包合物,采用均匀设计试验并用MATHEMATICS4.0软件对包合工艺进行分析优化。以环糊精包埋率为指标,苯甲酸包合过程的拟合方程为y=89.49-1.26x_1+21.34 x_2+81.15 x_3-4.42 x_4-17.57 x_2 x_3,各因素最佳取值后环糊精对苯甲酸的包埋率为83.5%,尼泊金乙酯包合过程的拟合方程为y=2.98-0.23x_1+23.81 x_2+81.14 x_3-2.83 x_4-1.78 x_5-16.86 x_2 x_3,各因素最佳取值后环糊精对尼泊金乙酯包埋率为83.1%%;以环糊精回收率为指标,苯甲酸包合过程的拟合方程为y=253.69-2.17x_1-6.14 x_2+15.24 x_3-8.5 x_4,各因素最佳取值后环糊精回收率为74.5%,尼泊金乙酯包合过程的拟合方程为y=2.24+0.37x_1+18.68 x_2+58.64 x_3-4.57 x_4+0.38 x_5-14.12 x_2 x_3,最佳取值后的环糊精回收率为81.5%。
     溶液中包合物相溶解度图显示苯甲酸和尼泊金乙酯可以与β-CD形成主客体摩尔比为1:1的包合物,其中尼泊金乙酯-CD包合常数K为551 L/moL,苯甲酸-CD包合常数K为270 L/moL,说明环糊精对尼泊金乙酯的包合能力要强于苯甲酸;环糊精包埋后苯甲酸和尼泊金乙酯的溶解度都得到提高。红外光谱和热重分析结果确认了两种β-环糊精固体包合物的形成。其中,热重分析曲线表明苯甲酸和尼泊金乙酯经β-环糊精包埋之后,热稳定性都得到很大提高。
     选用丙烯酸酯涂膜和聚乳酸膜作为包装材料基质,研究了尼泊金乙酯和苯甲酸的迁移行为。结果表明,两种抗菌剂在膜中的迁移速度很大程度上受食品模拟液性质的影响。在低醇类食品体系中,尼泊金乙酯和苯甲酸在聚乳酸膜中基本不发生迁移,只在高醇溶液中发生迁移;当抗菌剂以环糊精包合物形式加入膜中,由于包合物对膜的结构特性产生影响,致使其迁移能力得到很大提高,且迁移速度同时还受环糊精包合物控制释放机制的影响。在10%和50%乙醇溶液中包合物膜中抗菌剂迁移速度较快,而在60%甘油体系中则体现较明显的缓释效果,在正己烷中释放程度很低。该结果说明环糊精包合物聚乳酸膜在中低水分活度的食品中可以发挥长效抗菌作用。尼泊金乙酯和苯甲酸在丙烯酸膜中能发生迁移,迁移质量比在45-60%之间,而以环糊精包合物形式加入涂膜,其迁移质量比得到提高,且迁移速度同样受环糊精包合物控制释放的影响。研究表明,该类环糊精包合物丙烯酸涂膜不适合脂肪食品体系,而应用于中低水分活度的非脂食品中可以发挥长效抗菌作用。尼泊金乙酯和苯甲酸包合物在膜中的释放过程可利用Fickian公式来进行预测,通过对不同时间迁移质量比的测定,利用Mathcad软件计算得出相应的迁移系数D,可建立起相应的数学模型。
     将制得的β-CD-AITC包合物及其功能纤维应用于冷鲜肉的模拟包装,结果显示缓释的AITC对肉品中的腐败菌和致病菌都具有杀灭作用,由于释放出的为气态AITC,因此该类包装材料不需与食品直接接触,尤其适用于固态食品的防腐包装。将含有尼泊金乙酯环糊精包合物的聚乳酸膜应用于中式香肠的模拟包装,结果显示该包装膜具有很好的杀菌效果。以上试验说明,食品抗菌剂环糊精包合物及其功能材料应用于肉产品包装,可有效提高其安全性并延长货架期,具有很大的应用开发潜力。
In the present study, two application patterns of CDs in antimicrobial food packaging were investigated using the volatile and non-volatile antimicrobials. One is to prepare the antimicrobials inclusion complex with CD and then incorporate the inclusion complex directly into polymers material. In this way the antimicrobial agents could migrate and release gradually from the packaging film to the food surface. The other way is to covalent immobilization of CDs onto polymers to obtain the antimicrobial functional material by the complexation of the fixed CDs with antimicrobial agents.
     Allyl isothiocyanate(AITC) has strong activity in inhibiting pathogens and food spoilage bacteria. But it is difficult for AITC to be directly applied in packaging materials due to the strong volatile and the strong odor.In the present study, packaging systems that release volatile antimicrobials was simulated by entrapping AITC with CDs or fixed CDs in fabrics. The results showed that the inclusion complex of AITC with CD (CD-AITC, Molar ratio of 1:1) could be prepared with co-precipitation method and the techniques parameters was optimized by the homogeneous design. As to the index of inclusion efficiency of CDs, a simulated equation y=17.87-2.5 x_1+42.87 x_2-0.15 x_3+0.074 x_4 was obtained by MATHEMATICS4.0 Analysis and the maximum was 88.5%; As to the recovery of CDs, a simulated equation y=9.44+4 x_1+22.74x_2+0.35 x_3-0.45 x4 was obtained MATHEMATICS4.0Analysis and the maximum was 89.11%. During the experiment, an accurate quantitative analysis method of CD-AITC was developed according to the entrap and Release mechanism of CDs. The surface AITC was determined by solvent(hexane)washing and the total AITC was determined using a solvent-water extraction method on the heat condition, followed by UV spectrophotometric analysis of the concentrated extract. It has proved that the methods have advantages of little sample needed, a relatively simple operation and high accuracy. The RSD was no more than 1.26% and the average recovery of AITC was 95.6%.
     The formation of CD-AITC inclusion complex was confirmed by infrared spectroscopy and thermal analysis. Thermogravimetric analysis showed that the entrapped AITC had much less volatile and significantly enhanced heat-stability. Release experiments show that CD-AITC have control release characteristics and the release rate was closely related with the relative humidity (RH%) and the inclusion efficiency of CDs, which increased with the increase of RH% and slowed down correspondingly with the low inclusion efficiency of CDs. Theα- andβ-CD-AITC have similar release property, but the release rateα-CD-AITC was more slow thanβ-CD-AITC due to the spatial structure matching. The release behavior of AITC fromα- andβ-CD-AITC complexes at different RH was simulated using the Avrami equation, and the release rate constant k and the parameter n representing the release mechanism were obtained All of the n values estimated were near 0.54, which indicated that the release of included AITC in the complexes belonged to the limited diffusion kinetics. The grafting of CDs onto cellulose fiber by polyacrylic acid is a new technology and its feasibility was investigated in this paper. The results showed that the polyacrylic acid method could achieve a more satisfactory graft rate of CD than that by citric acid. The studies on reaction temperature show grafting reaction is divided into two stages, the graft of polyacrylic acid occurred in low temperature stage and CD graft mainly in the hot stage. Therefore, high temperature conditions without prejudice to the fiber quality are conducive to the fix of CD. The complexation test found that the graft amount of CDs is not entirely proportional to the AITC load of fiber due to the steric hindrance, and it was important to maintain the effective entrapping site of CD. The experimental results showed that fixed CD should be controlled between 7.5-9% while the load AITC in functional fiber obtained was 600-750uL/100g samples and the inclusion efficiency of CDs beyond up to 95%. The release behavior of the functional fibre was similar to that of CD inclusion complex, and belonged to the limited diffusion kinetics. The absorbed AITC by polyacrylic acid Network Layer didn’t possess controlled release properties. Due to the steric hindrance and the AITC absorption of fiber, the AITC release rate of functional fiber is slower than unfixed CD-AITC.
     Since ethylparaben and benzoic acid both cannot tolerate the temperatures during polymer processing, the direct addition of the two preservatives into the packaging material would result in a great heat loss. Furthermore, their migration rate in packing materials sometimes is not satisfactory. The complexation of the two food preservative by CDs could significantly improve their thermal stability and migration behavior, and meanwhile the preparation of the corresponding antimicrobial packaging materials become possible. In this study, the solid inclusion complex of ethylparaben and benzoic acid with CD were prepared with co-precipitation method. The techniques parameters were optimized by the homogeneous design. As the index of inclusion efficiency of CDs, a simulated equation y=89.49-1.26x_1+21.34 x_2+81.15 x_3-4.42 x_4-17.57 x_2 x_3 was obtained for the benzoic acid complex and the maximum was 83.5%, a simulated equation y=2.98-0.23x_1+23.81 x_2+81.14 x_3-2.83 x_4-1.78 x_5-16.86 x_2 x_3 was obtained for the ethylparaben complex and the maximum was 83.1%, by MATHEMATICS 4.0 Analysis; As to the recovery of CDs, the simulated equation y=253.69-2.17x1-6.14 x_2+15.24 x_3-8.5 x_4 was obtained for the benzoic acid complex and y=2.24+0.37x_1+18.68 x_2+58.64 x_3-4.57 x_4+0.38 x_5-14.12 x_2 x_3 for the ethylparaben complex, the maximum values were 74.5% and 81.5%, respectively, by MATHEMATICS 4.0 Analysis. The phase solubility curve showed that both ethylparaben and benzoic acid could form inclusion complex with CD in molar ratio of 1 :1, with the complex constant K of 551 L/mol for ethylparaben and 270 L/mol for benzoic acid, which indicated that inclusion capacity of ethylparaben with CD was stronger than that of benzoic acid. The solubility of the two kind of food preservatives in water were improved by the CD complexation. The formation of the two kind of inclusion complex was also confirmed by infrared spectroscopy and thermal analysis. Thermogravimetric analysis showed that the entrapped guest had significantly enhanced heat stability.
     Specific migration studies were performed for both ethylparaben and benzoic using acrylate coating and polylactic acid membrane matrix filled with food simulant. The results showed that the migration behavors were influenced by the type of food stimulant. In the low-alcohol food system, both of ethylparaben and benzoic didn’t migrate in polylactate acid membrane, but did in high-alcohol solution. When inclusion complexes of antimicrobials were added into the membrane, the migration had been much improved due to their impact on the membrane structure properties, and more the migration rate was also affected by the control release mechanism of cyclodextrin. In 10% or 50% ethanol solution antibacterial agents moved faster from membrane, while in 60% glycerol system the release become slow obviously and release level is very low in hexane. It could be concluded that the antimicrobial membrane with CD complexes had longer-lasting effect in low-water-activity foods.
     Both of ethylparaben and benzoic acid could migrate in acrylate coating with the migration quality ratio of 45-60%, which were improved once antimicrobials complex with CDs were added. The migration speed also subjected to the control release of CDs. The study indicated that such acrylic coating was not suitable for fatty food system, however could play a role in long-term antibiotics in low water activity of non-fat foods. Fickian equation could model the migration behavior of ethylparaben, benzoic acid and their CD complexes in packaging membrane. Through determination of antimicrobials migrated to food simulant at different time, Mathcad software could calculate transfer coefficient D, and the corresponding migration model was established.
     The CD-AITC complex and its functional fibers were used in the simulated cold meat packaging system, and showed good inhibition activity to spoilage bacteria and pathogenic bacteria. The polylactic acid film was used in Chinese sausage packaging system and showed a good bactericidal effect. These test descripted above indicated that the inclusion complex of food antimicrobials with CD and their functional materials could be applied in meat packaging for the improvement of safety and extendence of the shelf-life.
引文
1.房翠兰,赵国华.抗菌活性包装膜研究进展[J].中国包装, 2005, 5: 94-96
    2.郭新华,张子勇.食品包装的抗菌保鲜膜的应用研究[J].包装工程, 2004, 25(15): 8-9
    3.戴瑞彤,孙承峰,吴国强.食品保鲜包装及其应用[J].保鲜与加工,2001, 1(3): 4-7
    4.赵利,王素雅,谢俊杰.食品抗菌包装技术研究进展[J].食品工业科技, 2001, 22(5): 78-80
    5. Suppakul P, Miltz J, Sonneveld K, et al. Active packaging technologies with an emphasis on antimicrobial packaging and its applications[J]. Journal Food Science, 2003a, 68: 408-420
    6. Han J. Antimicrobial food packaging[J]. Food Technology, 2000, 54(3): 56-65
    7. Labuza T, Breene W. Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods[J]. Journal of Food Processing and Preservation, 1989, 13, 1-89
    8. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113-126
    9. Rice J. Gas emitting wafers a cost-effective MAP approach[J]. Food Processing, 1989, 50(10): 42
    10. Vartiainen J, Skytta E, Enqvist J. Properties of Antimicrobial Plastics Containing Traditional Food Preservatives[J]. Packaging Technology and Science, 2003, 16: 223-229
    11. Devlieghere F, Vermeiren L, Bockstal A. Study of antimicrobial activity of a food packaging material containing potassium sorbate[J]. Acta Alimentaria, 2000, 29(2): 137-146
    12. Devlieghere F, Vermeiren L, Jacobs M, et al. The effectiveness of hexamethylenetetramine-incorporated plastic for the active packaging of foods[J]. Packaging Technology and Science, 2000(13): 117-121
    13. Suppaku P, Miltz J, Sonneveld K, et al. Characterization of Antimicrobial Films Containing Basil Extracts[J]. Packaging Technology and Science , 2006, 19: 259-268
    14. Weng Y M, Hotchkiss J H. Inhibition of surface molds on cheese by polyethylene film containing the antimycotic imazalil[J]. Journal Food Protect.ion, 1992, 55: 367-369.
    15. Weng Y, Hotchkiss J. Anhydrides as antimycotic agents added to polyethylene films for food packaging[J]. Packaging Technology and Science, 1993, 6, 123-128
    16. Siragusa G, Cutter C, Willett J. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat[J]. Food Microbiology, 1999, 16, 229-235
    17. Mckinley R F. Use of silver zeolite as an antimicrobial agent in packaging film[D]: [Master dissertation]. Unite states: Michigan State University, 2003
    18. Cutter C. The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. Journal of Food Protection[J], 1999, 62(5): 474-479
    19. Wellinghoff S. Chlorine dioxide generating polymer packaging films[P]. US Patent, 3605609. 1995
    20. Hong S I, Lee J W, Son S M. Properties of Polysaccharide-coated Polypropylene Films as Affected by Biopolymer and Plasticizer Types[J]. Packaging Technology and Science, 2005, 18: 1-9
    21. Lee C H, An D S, Lee S C. A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin andα-tocopherol[J]. Journal of Food Engineering, 2004, 62: 323-329
    22. An D, Kim Y, Lee S, et al. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium[J]. Food Science and Biotechnology, 2000, 9(1): 14-2023
    23. Hansen R, Rippl C, Midkiff D, et al. Antimicrobial absorbent food pad[P]. US Patent, 4865855. 1989
    24. Kim Y, An d, Park H, et al. Properties of Nisin-incorporated polymer coating as antimicrobial packaging material[J]. Packaging Technology and Science, 2002, 15: 247-254
    25. Natrajan N, Sheldon B. Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin[J]. Journal of Food Protection, 2000, 63(9): 1189-1196
    26. Sebti I, Delves-Broughton J, Coma V. Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films[J]. Journal Agriculture and Food Chemistry, 2003, 51: 6468-6474
    27. Bower C, McGuire J, Daeschel M. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces[J]. Applied and Environmental Microbiology, 1995, 61(3): 992-997
    28. Daeschel M, McGuire J, Al-Makhlafi H. Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces[J]. Journal of Food Protection, 1992, 55(9): 731-735
    29. Guilbert S, Cuq B, Gontard N. Recent innovations in edible and/or biodegradable packaging materials[J]. Food Additives and Contaminants, 1997, 14(6-7): 741-751
    30. Lee D, Hwang Y, Cho S. Developing antimicrobial packaging film for curled lettuce and soybean sprouts[J]. Food Science and Biotechnology, 1998, 7(2): 117-121
    31. Padgett T, Han I, Dawson P. Effect of lauric acid addition on the antimicrobial efficacy and water permeability of corn zein films containing nisin[J]. Journal of Food Processing and Preservation, 2000, 24, 423-432
    32.汪学荣,阚建全,彭顺清等.用玉米醇溶蛋白涂膜保鲜牛肉的研究[J].农业工程学报, 2005, 21(2): 157-160
    33. Baron J, Sumner S. Antimicrobial containing edible films as an inhibitory system to control microbial growth on meat products[J]. Journal of Food Protection, 1993, 56, 916
    34. Coma V, Sebti I, Pichavant F, et al. Antimicrobial edible packaging based on cellulosic esters, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus[J]. Journal of Food Protection, 2001, 64(4): 470-475
    35. Vojdani F, Torres A. Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings. Effects of fatty acids[J]. Journal of Food Science, 1990. 55(3): 841-846
    36. Imakura H, Yamada H, Fukazawa R. Materials containing hinokitiol for preserving freshness of edible materials and method for preserving freshness of same[P]. European Patent, 0514578 A1, EP 91-108440. 199-10-524
    37. Garcia J, Galindo E. An immobilization technique yielding high enzymatic load of nylon nets[J]. Biotechnology Techniques, 1990, 4(6): 425-428
    38. Wang S, Chio S. Reversible immobilization of chitinase via coupling to reversible soluble polymer[J]. Enzyme and Microbial Technology, 1998, 22(7): 634-640
    39. Garibay G, Luna-Salazar A, Casas L. Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes[J]. Food Biotechnology, 1995, 9(3): 157-166
    40. Hayat U, Tinsley A, Calder M, et al. ESCA investigation of low-temperature ammonia plasma-treated polyethylene substrate for immobilization of protein[J]. Biomaterials, 1992.13(11): 801-806
    41. Scanell A, Hill C, Ross R, et al. Development of bioactive food packaging materials using immobilized bacteriocins lacticin and Nisaplin[J]. International Journal of Food Microbiology, 2000, 60(2-3): 241-249
    42. Appendini P, Hotchkiss J. Immobilization of lysozyme on food contact polymers as potential antimicrobial films[J]. Packaging Technology and Science, 1997(10): 271-279
    43. Weng Y, Chen M, Chen W. Benzoyl chloride modified ionomer films as antimicrobial food packaging materials[J]. International Journal of Food Science and Technology, 1997(32): 229-234
    44. Sano S, Kato K, Ikada Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization[J]. Biomaterials, 1993, 14(11): 817-822
    45. Lee J, Jung H, Kang I, et al. Cell behavior on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9): 705-711
    46. Halek G, Garg A. Fungal inhibition by a fungicide coupled to an ionomeric film[J]. Journal of Food Safety, 1989(9): 215-222
    47. Wang C, Hsiue G. Glucose oxidase immobilization onto plasma induced graft copolymerized polymeric membrane modified by poly-ethylene oxide.as a spacer[J]. Journal of Applied Polymer Science, 1993, 50: 1141-1149
    48. Vartiainen J, R?tt? M, Paulussen S. Antimicrobial Activity of Glucose Oxidase-immobilized Plasma-activated Polypropylene Films[J]. Packaging Technology and Science, 2005, 18: 243-251
    49. Abler L, KlapesN, Sheldon B, et al. Inactivation of food-borne pathogens with magainin peptides[J]. Journal of Food Protection, 1995, 58(4): 381-388
    50. Appendini P, Hotchkiss J. Antimicrobial activity of a 14-residue synthetic peptide against foodborne microorganisms[J]. Journal of Food Protection, 2000, 63(7): 889-893
    51. Appendini P, Hotchkiss J. Surface modification of poly(styrene) by the attachment of an antimicrobial peptide[J]. Journal of Applied Polymer Science, 2001(1): 609-616
    52. Haynie S, Crum G, Doele B. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin[J]. Antimicrobial Agents and Chemotherapy, 1995, 39(2): 301-307
    53. Halek G, Garg A. Fungal inhibition by a fungicide coupled to an ionomeric film[J]. Journal of Food Safety, 1989(9): 215-222
    54. Goldberg S, Doyle R, Rosenberg M. Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers[J]. Journal of Bacteriology, 1990, 172(10): 5650-5654
    55. Pardini S. Method for imparting antimicrobial activity from acrylics[P]. US Patent 4708870. 1987
    56. Olstein A. Polymeric biocidal agents[P]. US Patent, 5142 010. 1992
    57. Oki T. Freshness preservative, and sheet and tray furnished with the same for preserving freshness[P]. Japanese Patent 11332535. 1998
    58. Lacroix M, Ouattara B. Combined industrial processes with irradiation to assure innocuity and preservation of food products-a review[J]. Food Research International, 2000, 33(2): 719-724
    59. Ozdemir M, Yurteri C, Sadikoglu, et al. Physical polymer surface modification methods and applications in food packaging polymers[J]. Critical Reviews in Food Science and Nutrition, 1999, 39(5): 457-477
    60. Paik J, Dhanasekharan M, Kelley M. Antimicrobial activity of UV-irradiated nylon film for packaging applications[J]. Packaging Technology and Science, 1998, 11, 179-187
    61. Henning S, Metz R, Hammes W. New aspects for the application of nisin to food products based on its mode of action[J]. International Journal of Food Microbiology, 1986, 3(3): 135-141
    62. Jung D, Bodyfelt F, Daeschel M. Influence of fat emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk[J]. Journal of Dairy Science, 1992, 75(2): 387-393
    63. Vojdani F, Torres A. Potassium sorbate permeability of methylcellulose and hydroxypropylmethylcellulose multi-layer films[J]. Journal of Food Processing and Preservation, 1989, 13, 417-430
    64. Oikawa, T, Fukushima Y, Ishii K, et al. Antimicrobial laminate and bag, container, and shaped cup using same[P]. US Patent, 6150004, 11/21/2000
    65. Davidson P M, Parish M E. Methods for testing the efficacy of food antimicrobials[J]. Food Technology, 1989, 43(1): 148-155
    66. Vermeiren L, Devlieghere F, Debevere J. Effectiveness of some recent antimicrobial packaging concepts[J]. Food Additives & Contaminants, 2002 , 19(4): 163-171
    67. Chung D, Papadaki S E, Yam K L. Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials[J]. International Journal of Food Science & Technology, 38 (2): 165-169
    68. King A, Brown D FG. Quality assurance of antimicrobial susceptibility testing for disc diffusion[J]. Journal antimicrobial chemotherapy, 2001,48: 71-76
    69. Kruijf; N D, Beest M V, Rijk R, et al. Active and intelligent packaging: applications and regulatory aspects. Food Additives and Contaminants, 2002, 19: 144-62
    70. Szejtli J. Introduction and general overview of cyclodextrin chemistry[J]. Chemistry Review, 1998, 98: 1743-1753
    71.童林荟.环糊精化学-基础与应用[M],北京:科学出版社, 2001
    72. Liu L, Song K S, Li X S, et al. Charge-transfer interaction: a driving force for cyclodextrin inclusion complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40: 35-39
    73.刘夺奎,董振礼,刘丹.环糊精包和客体机理研究[J].染料与染色, 2004, 41(3): 155-157
    74. Szejtli J. Past, present, and future of cyclodextrin research[J]. Pure and Applied Chemistr, 2004, 76(10): 1825-1845
    75. Del Valle EMM. Cyclodextrins and their uses: a review[J]. Process Biochemistry, 2004, 39(9): 1033-1046
    76. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035-2044
    77. Giordano F, Novak C, Moyano J R. Thermal analysis of cyclodextrins and their inclusion compounds[J]. Thermochimica Acta, 2001, 380, 123-151
    78.宋乐新.环糊精化学进展[J].苏州大学学报(自然科学版) , 1996, 4: 90-95
    79. Khan A R, Forgo P, Stine K J, et al. Methods for selective modifications of cyclodextrins[J]. Chemistry Review, 1998, 98: 1977-1996
    80.武俊杰,宋铁珊,陈志慧等.环糊精包合技术研究进展[J].新疆师范大学学报(自然科学版), 2005, 2: 32-33
    81.杨红武,毛衍平,邱应海等.缬草油β-环糊精包结物的工艺及稳定性研究[J].中国医院药学杂志, 1998, 18(2): 545-546
    82. Bhandari B R, D’arcy B R, Bich L L T. Lemon oil toβ-cyclodextrin ratio effect on the inclusion efficiency ofβ-cyclodextrin and the retention of oil volatiles in the complex. Journal of Agricultural and Food Chemistry, 1998, 46, 1494-1499
    83.王志宣,邓英杰,张晓鹏.共溶剂冻干法制备环糊精包合物中叔丁醇残留量影响因素考察[J].药学学报, 2007(3): 314-317
    84. Wang Z X, Deng Y J, Su S Y, et al. Preparation of hydrophobic drugs cyclodextrin complex by lyophilization monophase solution [J]. Drug Development Industry Pharmaceutics, 2006, 32: 73-83
    85.富志军,周自新.胶体磨应用于肉桂油β-环糊精包合物制备工艺条件的实验筛选[J].中成药, 1995,17(7): 4-5
    86.王齐放,范晓文,徐璐.密封控温技术制备丹皮酚β-环糊精包合物[J].中国中药杂志, 2007(3): 218-221
    87. Gibbs B F. Encapsulation in the food industry: a review[J]. International Journal of Food Sciences and Nutrition, 1999, 5(3): 213-224
    88.郭爱莲,胡水卫.环状糊精脱除食品异味的研究[J].食品科技, 1996, 17(2): 19-23
    89. SHIEH W J, HEDGES A R. Properties and applications of cyclodextrins[J]. Journal of macromolecular science. Pure and applied chemistry 1996, 33(5): 673-684
    90. Szente L, Szejtli J. Cyclodextrins as food ingredients[J]. Trends in Food Science & Technology, 2004,15(3/4) : 137-142
    91. Cravotto G, Binello A, Baranelli E, et al. Cyclodextrins as Food Additives and in Food Processing[J]. Current Nutrition & Food Science, 2006, 2(4): 343-350
    92. Kompantseva E V, Gavrilin M V, Ushakova L S.β-Cyclodextrin derivatives and their applications in pharmacology [J]. Pharmaceutical Chemistry Journal, 1996, 30 (4): 258-262
    93. Uekama K, Bodor N, Buchwald P. Recent Aspects of Pharmaceutical Application of Cyclodextrins[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 3-7
    94. Thorsteinn L, Marcus E B. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization[J]. Journal of Pharmaceutical Sciences, 1996, 85(10): 1017-1025
    95. Redenti E, Szente L, Szejtli J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications[J]. Journal of Pharmaceutical Sciences, 2000, 89(1): 1-8
    96. Roger A R, Valentino J S. Pharmaceutical applications of cyclodextrins. 2. in vivo drug delivery[J]. Journal of Pharmaceutical Sciences, 1996, 85 (11): 1142-1169
    97. Valentine J S, Roger A R. Cyclodextrins: Their Future in Drug Formulation and Delivery[J]. Pharmaceutical Research, 1997, 14(5): 556-567
    98. Szejtli J. Cyclodextrins in the Textile Industry[J], Starch, 55(5): 191-196
    99.李淑华,顾晓梅,周林芳.环糊精及其衍生物在织物功能整理方面的应用[J].纺织导报, 2007(2): 68-72
    100. Fenyvesié, Otta K, Kolbe I. Cyclodextrin Complexes of UV Filters[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 48(3-4 ): 117-123
    101.郝爱友,童林荟.环糊精在环境保护中的功能应用[J].化学试剂, 1997, 19 (5): 302-303
    102. Szejtli J. Inclusion of guest molecules, selectivity and molecular recognition by cyclodextrins, in J. Szejtli and T. Osa (eds.), Comprehensive Supramolecular Chemistry, Elsevier, Oxford, 1996, 4: 189-203
    103.唐波,刘阳,王洪鉴等.环糊精用于分子识别分析的新进展[J].分析科学学报, 2000, 16(4): 345-352
    104.史雪岩,王敏,傅若农.环糊精衍生物气相色谱手性固定相研究进展[J].分析测试学报, 2001(6): 75-79
    105. Schneiderman E, Stalcup A M. Cyclodextrins: a versatile tool in separation science[J]. Journal of Chromatography B, 2000, 745, 83-102
    106.威拉德·E·伍德,奈尔·J·比弗森.含有一种热塑塑料和相容的环糊精衍生物的防护材料[P].中国专利, 95193754.5, 1996
    107.威尔·伍德,尼尔·比弗森.具有改进防渗性能的包装材料[P].中国专利, 02819040.8, 2002
    108.环糊精食品加工新技术,http://www.cyclodextrin.org/CDPDF/cavamax_new.pdf
    109. Willard E W, Neil J B, Phillip L. Reducing concentration of organic materials with substituted cyclodextrin compound in polyester[P]. US Patent, 7018712
    110. Salow H, Herhut B. Filter material with flavoring and flavor-protecting properties and a process for its production[P]. US Patent: 6565710, 2003
    111. Amparo L R, Almenar E, Pilar H M. Overview of Active Polymer-Based Packaging Technologies for Food Applications[J]. Food Reviews International, 2004, 20(4): 357-387
    112. Lu J, Hill M A, Hood M, et al. Formation of antibiotic, biodegradable polymers by processing with Irgasan DP300R (triclosan) and its inclusion compound withβ-cyclodextrin[J]. 2001, Journal of Applied Polymer Science, 82, 300-309.
    113. Plackett D V, Holm V K, Johansen P, et al. Characterization of L-polylactide and L-polylactide -polycaprolactone co-polymer films for use in cheese-packaging applications[J]. Packaging Technology and Science, 2007, 19(1): 1-24
    114. Verstichel S, Wilde B D , Fenyvesi E. Investigation of the Aerobic Biodegradability of Several Types of Cyclodextrins in a Laboratory-Controlled Composting Test[J]. Journal of Polymers and the Environment, 2004, 12(2): 47-55
    115. Hashimoto H. Present status of industrial application of cyclodextrins in Japan[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 57-62
    1.凌关庭,陶民强编.食品添加剂手册(第二版)[M].北京:化学工业出版社, 1997, 306
    2. Chin H W, Zeng Q, Lindsay R C. Occurrence and flavour properties of sinigrin hydrolysis products in fresh cabbage[J]. Journal of Food Science , 1996 , 61 (1): 101-104
    3. Fenwick G R, Heaney R K, Mullin W J. Glucosinolates and their breakdown products in food and food plants. CRC Critical Review Food Science Nutrition, 1983, 18: 123-201
    4. Johnson I, Williamson G, Vandoorn H. Effects of food-borne glucosinolates on human health (EFGLU).A Project Sponsored by the European Commission (DG XII) under the FAIR Programme.
    5. Mari M,Guizzardi M. The Postharvest Phase: Emerging technologies for the control of fungal diseases[J]. Phytoparasitica, 1998, 26(1): 59-66
    6. Delaquis P J, Sholberg P L. Antimicrobial activity of gaseous allyl isothiocyanate[J]. Journal of Food Protection, 1997, 60: 943-947
    7. Delaquis P J, Mazza G. Antimicrobial properties of isothiocyanates in food preservation[J]. Food Technology, 1995, 49: 73-84
    8. Rhee M, Lee S, Richard H D. Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar typhimurium[J]. Apply Environmental Microbiology, 2003, 69(5): 2959–2963
    9. Lin C M, Kim J, Du W X, et al. Bactericidal activity of isothiocyanate against pathogens on fresh produce[J]. Journal of Food Protection, 2000, 63: 25–30
    10. Nielsen P V, Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil[J]. International Journal of Food Microbiology, 2000, 60: 219-229
    11. Suhr K I, Nielsen P V. Inhibition of fungal growth on wheat and rye bread by modified atmosphere packaging and active packaging using volatile mustard essential oil[J]. Food Microbiology and Safety, 2005, 70: M37-M44
    12. Brody A. Action in active and intelligent packaging[J]. Food Technology, 2002, 56(2): 71-72
    13. Duchene D. New Trends in Cyclodextrins and Derivatives, Editions de Sante, Paris, France, 1991
    14. Verstichel S, Wilde B D, Fenyvesi E. Investigation of the aerobic biodegradability of several types of cyclodextrins in a laboratory-controlled composting test[J]. Journal of Polymers and the Environment, 2004, 1(2): 47-56
    15. Luttenberger D, Martin K. www.packstrat.com, Packaging strategies, 2003, 21(2): 1-8
    16. Isshiki K, Tokuoka K, Mori R, et al. Preliminary examination of allyl isothiocyanate vapor for food preservation. Bioscience[J], Biotechnology and Biochemstry, 1992, 56:1476-1477
    17. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035-2044
    18.童林荟.环糊精化学-基础与应用[M],北京:科学出版社,2001
    19.刘书堂,郑国和,阎亚强.β-环糊精挥发油粉末化技术在中药制剂中的研究和应用[J].中草药,1997, 28(12):749-751
    20. Reineccius T A, Reineccius G A, Peppard T L. Flavor release from cyclodextrin complexes: comparison of alpha, beta, and gamma types[J]. Food Chemistry and Toxicology, 2003, 68: 1234-1239
    21. Hashimoto H. Present status of industrial application of cyclodextrins in Japan[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 57-62
    22. Kimmel D I, Cooksey D K, Park H J. Flexible packaging materials incorporating beta-cyclodextrin inclusion complexes for controlled release of food flavors[C]. Session 100B, Food Packaging, 2002 Annual meeting and Food Expo-Anaheim, California
    23. Lim L T, Tung M A. Vapor pressure of allyl isothiocyanate and its transport in PVDC/PVC copolymer packaging film[J]. Journal of Food Science, 1997, 62: 1061-1066
    24. Szejtli J. Cyclodextrin Technology. Kluwer Academic, Dordrecht,1988
    25.张玲,单卫华.肉桂挥发油β-环糊精包合工艺的研究[J].中成药, 1999, 21(11):561-563
    26.徐雄良,张志荣,何祖兴.熊胆消炎胶囊中挥发油-环糊精包合工艺的研究[J].中国中药杂志,2004, 29(7): 644-646
    27. Bhandari B R, D’arcy B R, Bich L L T. Lemon oil toβ-cyclodextrin ratio effect on the inclusion efficiency ofβ-cyclodextrin and the retention of oil volatiles in the complex[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 1494-1499
    28. Yoshii H, Furuta T, Yasunishi A, et al. Minimum number of water molecules required for inclusion of d-limonene in the cyclodextrin cavity[J]. Journal of Biochemistry, 1994, 115: 1035-1037
    29. Rehmann L, Yoshii H, Furuta T. Characteristics of modifiedβ-cyclodextrin bound to cellulose powder[J]. Starch, 2003, 55: 313-318
    30.吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002:197-199
    31. Shiga H, Yoshii H, Nishiyama T, et al. Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum Arabic[J]. Drying technology, 2001, 19: 1385-1395
    32. Yoshiia H, Soottitantawata A, Liua X, et al. Flavor release from spray-dried maltodextrin /gum Arabic or soy matrices as a function of storage relative humidity[J]. Innovative Food Science & Emerging Technologies, 2001, 2: 55-61
    33. Ahmed M O, E1-Gibaly I, Ahmed S M, Effect of cyclodextrin on the physicochemical properties and antimycotic activity of clotrimazole[J]. International Journal of Pharmaceutics, 1998, 171: 111-121
    34. Mielcarek J A. Studies on Inclusion complexes of felodipine with cyclodextrin. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1998, 30: 243–252
    35.李向军,连军,双少敏.相溶解度法研究芦荟大黄素和环糊精及其衍生物的包结作用[J].分析科学学报,1999,15(5): 368-371
    36. Higuchi T, Connors K A. Analysis chemistry instrument, 1965, 4: 117
    37.富志军,周自新.胶体磨应用于肉桂油β-环糊精包合物制备工艺条件的实验筛选[J].中成药, 1995,17(7): 4-5
    38. Ohta Y, Matsui Y, Osawa T, et al. Retarding effects of cyclodextrins on the decomposition of organic isothiocyanates in an aqueous solution[J]. Bioscence, Biotechnology and Biochemistry, 2004, 68: 671-675
    39. Ohta Y, Takatani K, Kawakishi S. Kinetic and thermodynamic analysis of the cyclodextrin-allyl isothiocyanate inclusion complex in an aqueous solution[J]. Bioscience, Biotechnology and Biochemistry, 1999, 64: 190-193
    40. Liu L, Song K S, Li X S, et al. Charge-transfer interaction: a driving force for cyclodextrin inclusion complexation[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40: 35-39
    41.刘夺奎,董振礼,刘丹.环糊精包和客体机理研究[J].染料与染色,2004, 41(3): 155-157
    42. Ross P D, Rekharsky M V. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophysical Journal. 1996, 71: 2144-2154
    43.苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社:94-103
    44. Trotta F, Zanetti M, Camino G. Thermal degradation of cyclodextrins[J]. Polymer degradation and stability, 2000, 69:373-379
    45. Li X T, Li J H, Zhang G E, et al. Kinetic study on the thermal dissociation ofβ-cyclodextrin-anisaldehyde inclusion complex[J]. Thermochimica Acta, 1995, 262: 165-173
    46. Ikeda Y, Motoune S, Marumoto A. Effect of 2-hydroxypropyl-β-cyclodextrin on release rate of metoprolol from ternary metoprolol/2-hydroxypropyl-β-cyclodextrinethylcellulose tablets[J]. Journal ofInclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 141-144
    47. Bibby D C, Davies N M, Tucker I G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems[J]. International Journal of Pharmaceutics, 2000, 197: 1-11
    48. Kant A, Linforth R S T, Hort J, et al. Effect ofβ-cyclodextrin on aroma release and flavor perception[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 2028-2035
    1.詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学技术出版社,2005
    2.童林荟.环糊精化学-基础与应用[M],北京:科学出版社, 2001
    3. Del Valle EMM. Cyclodextrins and their uses: a review[J]. Process Biochemistry, 2004, 39(9): 1033-1046
    4. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035-2044
    5. Szejtli J. Cyclodextrins in the Textile Industry[J], Starch, 55(5): 191-196
    6.刘夺奎.环糊精接枝棉织物及其除臭功能的研究[D].博士学位论文,东华大学, 2006
    7.毛陆原,曹翔,刘六战等.聚苯乙烯负载交联β-环糊精的合成与表征.功能[J].高分子学报, 1997, 10 (2): 205-202
    8. Hak L M, Jong Y K, Ko S W. Synthesis of a vinyl monomer containingβ-cyclodextrin and grafting onto cotton fiber[J]. Journal of Applied Polymer Science, 2001, 80(3): 438-446
    9. Nostro P L, Fratoni L, Baglioni P. Modification of a cellulosic fabric with cyclodextrin for textile finishing applications[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 423-427
    10. Szejtli J, Zsadon B, Fenyveai E, et al. US patent, 4357468, 1982
    11.何炳林,赵晓斌.新型β-环糊精固载化高分子合成研究[J].高等学校化学学报, 1992, 13 (11): 1472-1475
    12. Hak L M, Jong Y K, Ko S W. Grafting onto cotton fiber with acrylamidomethylatedp-cyclodextrin and its application[J]. Journal of Applied Polymer Science, 2000, 78(11): 1986-1991
    13. Thuaut P L, Mantel B, Crini G, etal. Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of filters. I. Synthesis parameters[J]. Journal of Applied Polymer Science, 2000, 77: 2118-2125
    14. Reuscher H, Hirsenkorn R. Beta W7 MCT-New ways in surface modification[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1996, 25: 191-193
    15. Rehmann L, Yoshii H, Furuta T. Characteristics of modifiedβ-cyclodextrin bound to cellulose powder[J]. Starch, 2003, 55: 313-318
    16. Hebeish A, Hilw Z H. Chemical finishing of cotton using reactive cyclodextrin[J]. Color Technology, 2001, 117: 104-110
    17. Yang C Q, Wang X, Kang I S. Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid[J]. Textile Research Journal, 1997, 67(5): 334-342
    18. Bhattacharyya N, Doshi B A, Sahasrabudhe A S. Cost effective catalyst for polycarboxylic acid finishing[J]. Textile Chemist and Colorist, 1999, 31(6): 33-37
    19. Pierandrea L N, Laura F, Piero B. Modification of a cellulosic fabric withβ-cyclodextrin for textile finishing applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 423-427
    20. Martel B, Weltrowaki M, Ruffin D. polycarboxylic acid as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics:study of the process parameters[J]. Journal of Applied Polymer Science, 2002, 83: 1449-1456
    21. Weltrowaki M , Martel B, Morcellet M. Patent PCT 00378, 2000
    22.何华,陈颂仪,王宇新等.药物制剂辅料β-环糊精的纯化及含量测定[J].药学进展, 2001, 25 (4): 243-245
    23.李明时,张帆.β-环糊精的分光光度测定[J].分析化学, 1998, 26 (7): 912
    24.李文德,周俊侠,张力田.改进的酚酞分光光度法测定β-环糊精[J].华南理工大学学报, 1995, 23 (7): 35-39
    25.苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社: 94-103
    26. Shiga H, Yoshii H, Nishiyama T, et al. Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum Arabic[J]. Drying technology, 2001, 19: 1385-1395
    1.凌关庭,陶民强编.食品添加剂手册(第二版)[M].北京:化学工业出版社, 1997, 306
    2. Chen M C, Yeh G HC, Chiang B H. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative[J]. J. Food Process and Preservation, 1996, 20: 379-390
    3. Weng Y M, Chen M J, Chen W. Antimicrobial Food Packaging Materials from Poly(ethylene-co- methacrylic acid)[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32( 4): 191-195
    4. Niku-Paavola M L, Laitila A, New types of antimicrobial compounds produced by Lactobacillus plantarum[J]. Journal of Applied Microbiology, 1999, 86 (1): 29-35
    5. Matche R S, Kulkarni G, Raj B. Modification of ethylene acrylic acid film for antimicrobial activity[J]. Journal of Applied Polymer Science, 2006, 100(4): 3063-3068
    6. Chung D, Papadakis S E, Yam K L. Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials[J]. International Journal of Food Science & Technolo, 2003, 38 (2): 165-169
    7. Chung D W, Paradakis S, Yam K. Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging application[J].Journal of food processing and preservation,2001, 25: 71-87
    8. Kaarnakari M. Antimicrobial Polyalphaolefin Composition[P]. European Patent EP1324660
    9.郭新华,张子勇.食品包装的抗菌保鲜膜的应用研究[J].包装工程, 2004, 25(15): 8-9
    10.戴瑞彤,孙承峰,吴国强.食品保鲜包装及其应用[J].保鲜与加工,2001, 1(3): 4-7
    11.赵利,王素雅,谢俊杰.食品抗菌包装技术研究进展[J].食品工业科技, 2001, 22(5): 78-80
    12. Vartiainen J, Skytta E, Enqvist J. Properties of Antimicrobial Plastics Containing Traditional Food Preservatives[J]. Packaging Technology and Science, 2003, 16: 223-229
    13. Han J H, Floros J D. Modeling antimicrobial activity loss of potassium sorbate against Baker’s yeast after heat process to develop antimicrobial food packaging materials[J]. Food Science Biotechnology, 1999, 8(1): 11-14
    14. Han J H. Antimicrobial Food Packaging[J]. Food Technology, 2000, 54(3): 56-65
    15. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113-126
    16. Dobiá? J, Chudackova K, Voldrich M, et al. Properties of polyethylene films with incorporated benzoic anhydeide and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging[J]. Food additives and contaminants, 2000, 17(12): 1047-1053
    17. Luo L B, Chen H L, Wang F, et al. Thermolysis ofβ-cyclodextrin/alkylcobaloxime inclusion complexes in the solid state[J]. Thermochimica Acta, 1997, 298: 129-134
    18. Meier M M, Luiz T B, Szpoganicz B, etal. Thermal analysis behavior ofβ- andγ- cyclodextrin inclusion complexes with capric and caprilic acid[J]. Thermochimica Acta, 2001, 375: 153-160
    19. Giordano F, Novak C, Moyano J R. Thermal analysis of cyclodextrins and their inclusion compounds[J]. Thermochimica Acta, 2001, 380: 125-151
    20. Lu J, Hill M A, Hood M, et al. Formation of antibiotic, biodegradable polymers by processing with Irgasan DP300R (triclosan) and its inclusion compound withβ-cyclodextrin[J]. Journal of application polymer science, 2001, 82: 300-309
    21.童林荟.环糊精化学-基础与应用[M],北京:科学出版社,2001
    22. Siro′I, Fenyvesi E, Szente L. Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: Influence of complexation in beta-cyclodextrin[J]. Food Additives and Contaminants, 2006, in press
    23. Shen Y L, Yang S H, Wu L M, et al. Study on structure and characterization of inclusion complex of gossypol/beta cyclodextrin[J]. Spectrochimica Acta Part A, 2005, 61: 1025-1028
    24. Ahmed M O, E1-Gibaly I, Ahmed S M, Effect of cyclodextrin on the physicochemical properties and antimycotic activity of clotrimazole[J]. International Journal of Pharmaceutics, 1998, 171: 111-121
    25.李向军,连军,双少敏.相溶解度法研究芦荟大黄素和环糊精及其衍生物的包结作用[J].分析科学学报,1999,15(5): 368-371
    26. Higuchi T, Connors K A. Analysis chemistry instrument, 1965, 4: 117
    27.刘夺奎,董振礼,刘丹.环糊精包和客体机理研究[J].染料与染色,2004, 41(3): 155-157
    28.吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002:197-199
    29.苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社:94-103
    30. Trotta F, Zanetti M, Camino G. Thermal degradation of cyclodextrins[J]. Polymer degradation and stability, 2000, 69: 373-379
    31. Li X T, Li J H, Zhang G E et al. Kinetic study on the thermal dissociation ofβ-cyclodextrin-anisaldehyde inclusion complex[J]. Thermochimica Acta, 1995, 262: 165-173
    32. Yilmaz V T, Karadag A, Icbudak H. Thermal decomposition ofβ-cyclodextrin inclusion complexes of ferrocene and their derivatives[J]. Thermochica Acta, 1995, 261: 107-118
    1. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113-126
    2.赵利,王素雅,谢俊杰.食品抗菌包装技术研究进展[J].食品工业科技, 2001, 22(5): 78-80
    3. Labuza T, Breene W. Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods[J]. Journal of Food Processing and Preservation, 1989, 13: 1-89
    4. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113-126
    5. Vartiainen J, Skytta E, Enqvist J. Properties of Antimicrobial Plastics Containing Traditional Food Preservatives[J]. Packaging Technology and Science, 2003, 16: 223-229
    6.皮林格O G,巴纳A L.食品用塑料包装材料[M].北京:化学工业出版社,2004
    7. Dobiá? J, Chudackova K, Voldrich M, et al. Properties of polyethylene films with incorporated benzoic anhydeide and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging[J]. Food additives and contaminants, 2000, 17(12): 1047-1053
    8. Han J. Antimicrobial food packaging[J]. Food Technology, 2000, 54(3): 56-65
    9.孙彬青,王志伟.分析食品包装材料迁移模型中的扩散系数[J].包装工程, 2006, 27 (3): 34-36
    10. Chung D W, Paradakis S, Yam K. Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging application[J].Journal of food processing and preservation,2001, 25: 71-87
    11. D Chung M L, Chikindas K L, Yam. Inhibition of Sac charomyces cerevisiae by slow release of propyl paraben from a polymer coating, Journal Food Protection, 2001, 64: 1420–1424
    12.王志伟,孙彬青,刘志刚等.包装材料化合物迁移研究[ J ].包装工程, 2005, 25 (5) : 1-101
    13. Han, J.H, Floros J D. Modeling antimicrobial activity loss of potassium sorbate against Baker’s yeast after heat process to develop antimicrobial food packaging materials[J]. Food Science Biotechnology, 1999, 8(1): 11-14
    14.刘志刚,王志伟,胡长鹰.塑料包装材料化学物迁移试验中食品模拟物的选用[J].食品科学, 2006, 6: 271-274
    15. Erika H I, Inus R I J, Atthjs D, et al. Predictive Modeling of Migration From Packaging Mterials into Food Poducts for Regulatory Proposes[ J ]. Trends in Food Science and Technology. 2002, 19 (5) : 102 -1091
    16. Brandsch J, Mercea P, Ruter M, et al. Migration modeling as a tool for quality assurance of food packaging[ J ]. Food Additives and Contaminants, 2002, 19 (5) : 92-411
    17. Pennarun P Y, Dole P, Feigenbaum A. Overestimated Diffusion Coefficients for the Prediction of Worst Case Migration from PET: App lication to Recycled PET and to functional BarriersAssessment[ J ]. Packaging Technology and Science, 2004, (17) : P307-3201
    18. Buonocore G G, Del Nobile M A, Panizza A etal. A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications[J]. Journal of Controlled Release, 2003, 90: 97-107
    19. Han, J.H, Floros J D. Simulating diffusion model and determining diffusivity of postassium sorbate through plastics to develop antimicrobial packaging films[J]. Journal of food processing and preservation, 1998, 22: 107-122
    20.沈学友.新型绿色包装材料-聚乳酸[J].包装世界,2005, (1): 59
    21.任杰.聚乳酸的国内外研发、生产现状及应用前景[J].新材料产业, 2005, (6)
    22.李陵岚,叶楚平,张正华.包装用胶黏剂及粘接技术[M].北京:化学工业出版社,2005
    23. M . Grassi, R. Lapasin, S. Pricl, Modeling of drug release from a swellable matrix, Chem. Eng. Commun. 1998, 169: 79–109
    1.冷闻.“双汇”发展我国冷鲜肉市场[J].中国包装工业, 2006, (4): 38
    2.周艳琼.我国肉类产品的发展现状及未来[J].当代畜禽养殖业, 2004, (3): 6-9
    3.庄俊杰.冷却肉加工与贮藏技术[J].肉类工业, 2004, (7): 11-13
    4.卢士玲,李开雄.冷却肉的保鲜方法[J].中国食物与营养, 2004, (11): 27-30
    5.马丽珍.冷却猪肉的生物和物理综合保鲜技术及保鲜机理研究[D].北京:中国农业大学博士学位论文, 2003, 6
    6. Mead P S, Slutsker L, Dietz V, et al. Food-related illness and death in the United States[J].EmergingInfectious Disease, 1999, (5): 607-625
    7. Lambert A D, Smith J P, Dodds K L. Shelf life extension and microbiological safety of fresh meat-A review[J]. Food Microbiology, 1991, (8): 267-297
    8.徐宝才,任发政,周辉.防腐保鲜剂对牛肉火腿切片腐败菌抑制效果的研究[J].食品科学, 2005, 26(7): 93-98
    9.张坤生,刘晨,任云霞.复配型防腐剂延长巴氏杀菌鸡肉香肠货架期的研究[J].食品科学2005,26(8): 430-434
    10.周辉,张三平,李锋等.复合包装材料对台湾香肠货架期的影响[J].食品工业科技, 2006(1): 146-151
    11. Reunanen J, SarisP E J. Bioassay for nisin in sausage: a shelf life study of nisin in cooked sausage[J]. Meat Science, 2004, 66: 515-518
    12. Cutter C N. The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. Journal of Food Protection, 1999, 62: 474-479
    13. Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry[J]. Meat Science, 2002, 62: 373-380
    14. Siragusa G R, Cutter C N, Willett J L. Incorporationof bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 1999, 16: 229-235
    15. Ouattara B, Simard R E, Piette G, et al. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan[J]. International Journal of Food Microbiology, 2000b, 62: 139-148
    16. Baron J K, Summer S S. Antimicrobial containing edible films as an inhibitory system to control microbial growth on meat products[J]. Journal of Food Protection, 1993, 56: 916
    17.付丽,孔保华.抗菌包装在肉类保鲜中的应用[J].食品工业科技, 2004, (8): 128-130
    18.邢淑婕,刘开华,严佩峰等.活性包装在未来肉制品包装上的作用[J].肉类工业, 2001(7): 47-48
    19. Delaquis P J, Mazza G. Antimicrobial properties of isothiocyanates in food preservation[J]. Food Technology, 1995, 49: 73- 84
    20. Lin CM, Wei CI. Antibacterial mechanism of allyl isothiocyanate [J]. Journal of Food Protect, 2000 ,63(6): 727-34
    21. Lin C M, Kim J, Du W X, et al. Bactericidal activity of isothiocyanate against pathogens on fresh produce[J]. Journal of Food Protection, 2000, 63: 25- 30.
    22. Nadarajah D, Han J H, Holley R A. Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate[J]. International Journal of Food Microbiology, 2005, 99: 269- 279
    23. Nadarajah D, Han J H, Holley R A. Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging [J]. International Journal of Food Microbiology, 2005, 99: 257- 267
    24. Muthukumarasamy P, Han J. H, Holley R A. Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. Journal of Food Protection, 2003, 66: 2038-2044
    25. Chacon P A, Buffo R A, Holley R A. Inhibitory effects of microencapsulated allyl isothiocyanate (AIT) against Escherichia coli O157:H7 in refrigerated, nitrogen packed, finely chopped beef[J]. International Journal of Food Microbiology, 2006, 107: 231-237
    26.凌关庭.食品添加剂手册(M),北京:中国轻工业出版社,2000
    27. Li X, Jin Z, Wang J. Complexation of allyl isothiocyanate byα- andβ-cyclodextrin and its controlled release characteristics[J]. Food chemistry, 2007, 103: 461- 466
    28.童林荟环糊精化学-基础与应用[M],北京:科学出版社,2001,340-341
    29. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035-2044
    30. Kimmel D I, Cooksey D K, Park H J. Flexible packaging materials incorporating beta-cycldextrin inclusion complexes for controlled release of food flavors[C]. Session 100B, Food Packaging. 2002 Annual meeting and Food Expo-Anaheim, California
    31. Hashimoto H. Present status of industrial application of cyclodextrins in Japan[J]. Journal of inclusion phenomena and macrocyclic chemistry, 2002, 44: 57-62
    32. Lim L T, Tung M A. Vapor pressure of allyl isothiocyanate and its transport in PVDC/PVC copolymer packaging film[J]. Journal of Food Science, 1997,62: 1061-1066
    33. Han J. Antimicrobial food packaging[J]. Food Technology, 2000, 54(3): 56-65
    34. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113-126
    35. Millette M, Le Tien C, Smoragiewicz W. Inhibition of Staphylococcus aureus on beef by nisin-containing alginate films and beads[J]. Food Control, 2006. In press
    36.李影林.培养基手册[M].长春:吉林科学技术出版社, 1991
    37.食品卫生微生物学检验,大肠菌群测定, GB/T 4789.3-2003
    38.食品卫生微生物学检验,金黄色葡萄球菌检验, GB/T 4789.10-19941
    39.刘磊,左常智,隋涛.卵黄甘露醇高盐琼脂鉴别培养基的研究[J].中华检验医学杂志, 2005, 28(1): 101
    40. Wang F S. Effect of antimicrobial proteins from porcine leukocytes on Staphyloccus aureus and Escherichia coli in comminuted meats[J].Meat science, 2003, 65: 615-621
    41. Jirawan O, Suzuki T, Gasaluck P. Antimicrobial properties and action of galangal on Staphyloccus aureus[J]. LWT, 2006, 39: 1214-1220
    42.王文艳,彭增起,周光宏.中式香肠的制作[J].肉类工业, 2006, (6): 5-6
    43. Cejpek K, Valusek J, Velisek J. Reactions of allyl isothiocyanate with alanine, glycine, and several peptides in model systems[J]. J of Agriculture and Food Chemistry, 2000, 48: 3560- 3565
    44. Ohta Y, Matsui Y, Osawa T, et al. Retarding e?ects of cyclodextrins on the decomposition of organic isothiocyanates in an aqueous solution[J]. Bioscience, Biotechnology and Biochemistry, 2004, 68: 671- 675
    45. Borch E, Kant-Muermans M L, Blixt Y. Bacterial spoilage of meat and cured meat products[J]. International Journal of Food Microbiliology, 1996, 33: 103-120
    46. Quattara B, Simard R E, PietteG, etal. Inhibitiono surface spoilage bacteriain processed meats by application of antimicrobial film sprepared with chitosan[J]. International Journal of Food Microbiology, 2000, 62: 139-148
    47. Siragusa G R, Cutter C N, Willet J L. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat[J]. Food Microbiology, 1999, 16: 229-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700