用户名: 密码: 验证码:
镉超积累植物的生态特征及污染耐性机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在已发现的超积累植物中,镉超积累植物种类较少,对其重金属耐性及超积累机理的研究还未有突破性进展,这些植物金属耐性机理的描述对于镉污染土壤的植物修复研究是非常有意义的。本研究以镉超积累植物龙葵(Solanum nigrum L.)、球果蔊菜(Rorippa globosa (Turcz.) Thell.)为研究对象,以茄子(Solanum melongena L.)和风花菜(Rorippa islandica (Oeder.) Borb.)为对照植物,描述了镉超积累植物污染耐性的生态特征,系统探讨了镉超积累植物的耐性机制。
     (1)龙葵较茄子有更高的镉耐性及镉积累性;球果蔊菜较风花菜有更高的镉耐性及镉积累性,球果蔊菜茎部受抑制现象是实现其特异吸收和积累重金属的适应性反应,这种地上部营养物质的重新分配现象可能是球果蔊菜作为超积累植物独特的生态特征
     (2)龙葵根系中SOD和CAT活性及叶片中POD和CAT活性的协同作用在缓解镉积累引起的膜脂过氧化损伤中发挥着积极作用,球果蔊菜叶片SOD和CAT的协同作用在缓解镉积累引起的膜脂过氧化损伤中也发挥重要作用,可以推断龙葵、球果蔊菜体内抗氧化酶防御系统在其镉耐性中扮演重要的角色。
     (3)镉的污染胁迫均能明显促进龙葵和球果蔊菜体内脯氨酸的积累,脯氨酸在其镉耐性及积累性中扮演着重要角色,其中叶片脯氨酸可能发挥着更大的作用。
     (4)龙葵叶片中柠檬酸和乙酸含量的动态变化与其镉积累有关,球果蔊菜叶片中苹果酸和酒石酸含量的动态变化与其镉积累有关,有机酸可能在龙葵及球果蔊菜镉耐性及积累性中起到一定的作用,但高含量的有机酸并不是植物镉耐性和超积累性的主要原因。
     (5)植物螯合肽可以作为植物镉超积累特征的生物指标,但植物螯合肽的合成并非镉超积累植物耐性的主要机制。
Among the group of the known metal-hyperaccumulators, Cd-hyperaccumulators are relatively scarce. Although remediation of contaminated soils using Cd-hyperaccumulators is regarded as an economic and green method, the lack of understanding basic biochemical, physiological, ecological, and molecular mechanisms involved in Cd-hyperaccumulation has an adverse effect on the optimization of the phytoextraction technique and obstructs its further commercial application. The main aims of this study were to explore ecological characteristics and analyze pollution-tolerance mechanisms of Cd-hyperaccumulators Solanum nigrum L. and Rorippa globosa(Turcz.) Thell., in comparison with a closely related species Solanum melongena L. and Rorippa islandica(Oeder.) Borb..
     Solanum nigrum was considerably higher tolerant and hyperaccumulative to Cd than S. melongena. Similarly, Rorippa globosa was higher tolerant and hyperaccumulative to Cd than R. islandica. The growth inhibition of R. globosa stems was the unique ecological character as the Cd-hyperaccumulator.
     The synergism between the activity of SOD and CAT in the roots and the activity of POD and CAT in the leaves of S. nigrum, the synergism between the activity of SOD and CAT in the leaves of R. globosa represent effective defense strategies. Antioxidative defenses in the Cd hyperaccumulator might play an important role in Cd tolerance.
     The stress of Cd pollution could significantly increase the level of free proline in S. nigrum and R. globosa. It could be suggested that free proline might play an important protective roles against Cd stress. Free proline in the leaves had the stronger ability than that in the roots.
     Acetic and citric acids in the leaves of S. nigrum might be related to its Cd hyperaccumulation. Tartaric and malic acids in the leaves of R. globosa might be related to its Cd hyperaccumulation. Organic acids may play an important role in Cd tolerance and hyperaccumulation. High level of organic acids is not likely primary reason of Cd hyperaccumulation and hypertolerance.
     PCs may be an important biomarker of Cd hyperaccumulation. PCs do not appear to be involved in Cd tolerance in the hyperaccumulators. PCs do not play an important role in Cd tolerance of S. nigrum and R. globosa.
引文
1.常学秀,段昌群,王焕校.根分泌作用于植物对金属毒害的抗性.应用生态学报, 2000, 11(2): 315-320
    2.常学秀,王焕校. Cd2+、Al3+对蚕豆(Vicia faba)DNA合成和修复的影响.生态学报, 1999, 19(6): 855-859
    3.陈国祥,施国新. Hg、Cd对蔬菜越冬芽光合膜光合膜光合作用活性及多肽组分的影响.环境科学学报, 1999, 19(5): 521-525
    4.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报, 2002, 47(3): 207-210
    5.储玲,刘登义,王友保等.铜污染对三野草幼苗生长及活性氧化代谢影响的研究.应用生态学报, 2004, 15(1): 119-122
    6.窦贻俭,李春华编著.环境科学原理.南京:南京大学出版社.1998
    7.段吕群,王焕校,曲仲湘.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究.环境科学, 1992, 13(5): 31-35
    8.方益华,唐世荣.小头蓼(P. Microcephalum)对矿区铜的吸收积累效应.环境科学学报, 2000, 21(2): 254-256
    9.高拯民主编.土壤-植物系统污染生态研究.北京:中国科学技术出版社. 1986
    10.葛才林,阳小勇,刘向农等.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报, 2002, 28(5): 363-368
    11.郭平.绿色植物对大气环境的净化作用.有色金属加工, 1999, 2: 29-32
    12.郭天荣,张国平.大麦耐铝毒机理及遗传改良研究进展.大麦科学, 2002, 2: 6-10
    13.韩志萍,张建梅,姜叶琴等.植物整治技术在重金属废水处理中的应用.环境科学与技术, 2002, 25(3): 46-49
    14.洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响.华北农学报, 1991, 6(3): 70-75
    15.江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报. 2001, 7(1): 92-99
    16.康士秀,沈显生,黄宇营等.青岛藻重金属元素富集特性的SR-XRF分析及对海洋环境监测的应用.光谱学与光谱分析, 2003, 23(1): 94-97
    17.孔祥生,张妙霞,郭秀璞. Cd毒害对玉米幼苗细胞膜透性及保护酶活性的影响.农业环境保护, 1999, 18(3): 133-134
    18.郎明林,张玉秀,柴团耀.基因工程改良植物重金属抗性与富集能力的研究进展.生物工程学报, 2004, 20(2): 157-164
    19.李国学等.螺旋藻对不同COD浓度养虾用水氮磷去除特点及机理分析.农业环境与发展, 1995, 12(2): 34-37
    20.李坤,李琳,侯和胜等. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用.应用与环境生物学, 2002, 8(4): 395-398
    21.李雷鹏.绿色植物在改善环境方面的效应初探.东北林业大学学报, 2002, 30(3): 63-64
    22.李元,王焕校,吴玉树等. Cd、Fe及其复合污染对草草叶片几项生理指标的影响.生态学报, 1992, 12(2): 147-153
    23.刘厚田.土壤镉污染对水稻叶片光谱反射特性的影响.生态学报, 1986, 6(2): 89-99
    24.刘鹏程,王辉,程佳强,黄久常. NO对小麦叶片干旱诱导膜脂过氧化的调节效应.西北植物学报, 2004, 24(1): 141-145
    25.刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis):一种新的镉超富集植物.科学通报,2003, 45(19): 2046-2049
    26.刘玉,陈桂珠,缪绅裕.深圳福田红树林系统藻类生态及系统净化功能研究.环境科学研究, 1994, 7(6): 29-34
    27.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报, 1996, 10: 379-382
    28.吕淑霞等.基础生物化学实验指导.沈阳农业大学. 2002
    29.马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探.植物生态学报, 1998, 22(4): 373-378
    30.缪绅裕,陈桂珠.人工污水对温室中秋茄苗光合速率的影响.环境科学学报, 1997, 10(3): 41-45
    31.彭鸣,王焕校,吴玉树.镉铅诱导的玉米幼苗细胞超微结构的变化.中国环境科学, 1991, l1(6): 426-431
    32.秦天才,吴玉树等.镉、铅及其相互作用对小白菜生理生化特性的影响.生态学报, 1994, 14(1): 46-50
    33.渠荣遴,李德森,杜荣骞.水体重金属污染的植物修复研究(I).农业环境保护, 2002, 21(4): 297-300
    34.沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境, 2000, 16(2): 39-44
    35.孙琴,王晓蓉,丁士明.超积累植物吸收重金属的根际效应研究进展.生态学杂志, 2005, 24(1): 30-36
    36.汤叶涛,仇荣亮,曾晓雯,方晓航.一种新的多金属超积累植物—圆锥南芥(Arabis paniculata L.).中山大学学报(自然科学版), 2005, 44(4): 135-136
    37.唐世荣.重金属在海洲香薷和鸭跖草叶片提取物中的分配.植物生理学通讯, 2000, 6(2): 128-129
    38.王焕校.污染生态学基础.昆明:云南大学出版社, 1990, 91-108
    39.王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治有效途径.生态学报, 2001, 21(2): 326-331
    40.魏树和,周启星,王新,张凯松,郭观林.一种新发现的镉超积累植物龙葵(Solanum nigrum L.).科学通报, 2004, 49(24): 2568-2573
    41.魏树和.超积累植物筛选及污染土壤植物修复过程研究.中国科学院研究生院博士论文, 2004
    42.夏汉平,蔡锡安.采矿地的生态恢复技术.应用生态学报, 2002, 13(11):1471-1477
    43.夏会龙.植物对有机农药的吸收与污染修复研究.浙江大学博士论文, 2002
    44.薛生国,陈英旭,林琦等.中国首次发现的锰超积累值物—商陆.生态学报, 2003, 23(5): 937
    45.杨仁斌,曾清如,周细红等. 2000.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护, 19(3): 152-155
    46.杨树华,曲仲湘,王焕校.铅在水稻中的迁移积累及其对水稻生长发育的影响.生态学报, 1986, 6(4): 312-323
    47.杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报, 2002, 8(1): 8-15
    48.杨肖娥,龙新宪,倪吾钟等.东南景天(Sedum alfredii H.):一种新的锌超积累植物.科学通报, 2002, 47(13): 1003-1006
    49.于晓章.环境污染治理领域中的植物修复技术.生态科学, 2004, 23(3): 256-260
    50.张义贤.三价铬和六价铬对大麦毒性效应的比较.中国环境科学, 1997, 17(6): 565-567
    51.张义贤.重金属对大麦毒性的研究.环境科学学报, 1997, 17(2): 129-134
    52.张玉秀,柴团耀.植物耐重金属机理研究进展.植物学报, 1999, 41(5): 453-457
    53.张志良,瞿伟菁.植物生理学实验指导.高等教育出版社, 2003
    54.郑师章,乐毅全,吴辉等.凤眼莲及其根际微生物共同代谢和协同降酚机理研究.应用生态学报, 1994, 5(4): 403-408
    55.郑文教,林鹏.深圳福田白骨壤红树林Cu, Pb, Zn, Cd的累积及分布.海洋与湖沼, 1996, 27(4): 386-393
    56.郑喜坤,鲁安怀,高翔等.土壤中重金属污染现状与防治方法.土壤与环境, 2002, 11(1): 79-84
    57.郑振华,周培疆,吴振斌.复合污染研究的新进展.应用生态学报, 2001, 12(3): 469-473
    58.周启星,宋玉芳.植物修复的技术内涵及展望.安全与环境学报, 2001, 1(3): 48-53
    59.周启星,宋玉芳等.污染土壤修复原理与方法.北京:科学出版社. 2004
    60.周启星,孙铁珩.土壤-植物系统污染生态学研究与展望.应用生态学报. 2004, 15(10): 1698-1702
    61.庄铁诚,张瑜斌,林鹏.红树林土壤微生物对甲胺磷的降解.应用与环境生物学报, 2000, 6(3): 276-280
    62. Abdelmajid B, Tony K, Philippe G. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Molecular Biology, 1997, 33: 1085-1092
    63. Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP. Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss: role of antioxidant enzymes and antioxidant substances. Bull. Environ. Contam. Toxicol., 2003, 70: 462-469
    64. Alkorta I and Garbisu C. Phytoremediation of organic contaminants in soils. Bioresource Technology, 2001, 79: 273-276
    65. AlNajar H, Schulz R, Romheldd V. Plant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction. Plant Soil, 2003, 249: 97-105
    66. Anderson TA, et a1. Fate of trichloroethylene in Soil-Plant Systems. In Americal Society Extended Abstract, Division of Environmental Chemistry. 199l, 197-200
    67. Aprill W and Smis RC. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 1990, 28: 253-265
    68. Arazi T, Sunkar R, Kaplan B, et al. A tobacco plasmamembrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J., 1999, 20: 171-182
    69. Assun??o AGL, Martins PDC, Folter SD. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environment, 2001, 24: 217-226
    70. Baker A J M and Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery, 1989,1: 81-126
    71. Baker A J M, Whiting S N. In search of the Holy Grail- a further step in understanding metal hyperaccumulation? New Phytologist, 2002, 155: 1-7
    72. Baker AJM, Reeves RD, Hajas ASM. Heavy metal accumulation and tolerance in britishpopulation of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytologist, 1994, 127: 61-68
    73. Baker AJM. Metal tolerance. New Phytologist, 1987, 106: 93-111
    74. Baumann A. Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch. Vers.-Statn 1885, 31: 1-53
    75. Belouchi A, Cellier M, Gros P. The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologue express in the system of plant. Plant Molecular Biology, 1995, 9: 1181-1196
    76. Bennett LE, Burkhead JL, Hale KL, et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual., 2003, 32(2): 432-440
    77. Berglund AH, Quartacci MF, Liljenberg C. Changes in plasma-membrane lipoid composition: a strategy for acclimation to copper stress. Biochem. Soc. Trans., 2000, 28(6): 905-907
    78. Blinda A, Abou-Mandour A, Azarkovich M, Brune A, Dietz KJ. Heavy metal-induced changes in peroxidase activity in leaves, roots and cell suspension cultures of Hordeum vulgare L, In: Obinger, C., Burner, U., Ebermann, R., Penel, C., Greppin, H. (Eds.). Plant Peroxidases: Biochemistry and Physiology, University of Geneva, 1996, pp. 374-379
    79. Boominathan R and Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol. and Bioeng., 2003, 83: 158-167
    80. Boominathan R and Doran PM. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol., 2003, 101: 131-146
    81. Branquinho C, Brown DH, Catarino F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescene. Environ. Experim. Bot., 1997, 38: 165-179
    82. Brooks RR, Chambers MF, Nicks LJ, Robinson BH. Phytoming. Trends in Plant Science, 1998, 3(9): 359-362
    83. Brooks RR, Lee J, Reeves R D. Detection of nickliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration, 1977, 7: 49-77
    84. Brooks RR, Shaw S, Marfil AA. The chemical form and physiological function of nickel in some Iberian Alyssum species. Plant Physiol., 1981, 51: 167-170
    85. Brown SL, Chaney RL, Angle JS, et al. Pytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality, 1994, 23: 1151-1157
    86. Burken JG and Schnoor JL. Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol., 1997, 31: 1399-1406
    87. Buschmann AH, Troell M, Kautsky N, et a1. Integrated tank cultivation of salmonis and Gracilaria chilensis (Gracilariales,Rhodophyta). Oceanographic Literature Review, 1997, 44(3): 257-257
    88. Byers HG. Selenium occurrence in certain soils in the United States, with a discussion of the related topics. US Dept. Agric. Technol. Bull., 1935, 482: 1-47
    89. Chance B and Maehly AC. Assay of catalases and peroxidases. In: Colowick S P, Kaplan N O. (Eds.). Methods in Enzymology. New York: Academic Press, 1955, pp. 764-775
    90. Chaney RL, Malik M, Li YM. Phytoremediation of soil metals. Current Opinions in Biotechnology, 1997,8: 279-284
    91. Chaney RL. Plant uptake of inorganic waste constituents. In: Parr JF eds. Land treatment of hazardous wastes. Noyes Data Corporation. Park Ridge. New Jersey. USA, 1983, 48-53
    92. Chen YX, Lin Q, Luo YM, et al. The role of citric acid on the phytromediation of heavy metal contaminated soil. Chemosphere, 2003, 50(6): 807-811
    93. Cieslinski G, Van Rees KCJ, Szmigielska AM, et al. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil, 1998, 203: 109-117
    94. Cintia GK, Masaaki N, Michimi N. Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnology Letters. 2004, 26: 153-157
    95. Clemens S, Antosiewicz DM, Ward JM, et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA, 1998, 95: 12043-12048
    96. Clemens S, Kim EJ, Neumann D. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal, 1999, 18: 3325-3333
    97. Cobbett CS, May MJ, Howden R, et a1. The glutathione-deficient cadmium-sensitive mutant cad2-1 of Arabidopsis thaliana is deficient inγ-glutamylcysteine synthetase. Plant J.,1998, 16: 73-78
    98. Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol., 2000, 3: 211-216
    99. Conklin DS, McMaster JA, Culbertson MR. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Molecular Cell Biology, 1992, 12: 3678-3688
    100. Cornejo JJ, Munoz FG, Ma CY, et al. Studies on the decontamination of air by plant. Ecotoxicology, 1999, 8: 311-320
    101. Cotter-Howells JD and Caporn S. Remediation of contaminated land by formation of heavy metals phosphates. Appl. Geochem., 1996, 11: 335-342
    102. Cunningham SD and Berti WR. Phyto-remediation and phyto-stabiliation: technical, economical and regulatory considerations of the soil-lead issue. In: Terry N, Banuelos G. eds. Phytoremediation of Contaminated Soil and water. New York: CRC Press, 2000
    103. Cunningham SD, Ow DW. Promises and prospects of phytoremediation. Plant Physiology, 1996, 110(3): 715-719
    104. Cunningham SD, Shann JR, Crowley DR, et al. Phytoremediation of contaminated water and soil. Phytoremediation of Soil and Water Contaminants. USA: American Chemical Society, 1997, 2-17
    105. Cunningham SD. Remediation of contaminated soils and sludges by green plants. In: Hinchee RE. (eds) Bioremediation of inorganics. Columbus, Ohio: Battelle press, 1995
    106. Cuomo V, Merrill J, Palomba I, et a1. Mariculture with seaweed and mussels for marine environmental restoration and resources production. International Journal of Environmental Studies, 1997, 52(4): 297-310
    107. Daniel P, Richard O, Sonia C, et a1. Phytoremediation of polycyclic aromatic hydrocarbon contaminated marine sediment with tropical plants. International Journal of Phytoremediation, 2002, 4(4): 297-3l3
    108. David H. Down the riverside. Landscape Design, 2002, 11
    109. De Knecht JA, Van Dillen M, Koevoets PLM, et al. Phytochelatins in cadmium-sensitive andcadmium-tolerant Silene vulgaris. Plant Physiol., 1994, 104: 255-261
    110. De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997, 276: 1566-1568
    111. De Vos CHR, Schat H, DeWaaL MAM, et a1. Increased resistance to copper induced damage of the root cell plasm Plasmalemma in copper tolerant Silene cucubalus. Physiologia plantarum, 199l, (82): 523-528
    112. Delhaize E and Ryan PR. Aluminum toxicity and resistance in plants. Plant Physiol., 1995, 107: 315-321
    113. Delorme TA, Gagliardi JV, Angle IS, et a1. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Thifolium pretense L. on soil microbial populations. Can. J. Microbio1., 2001, 47(8): 773-776
    114. Dhankher OP, Li Y, Rosen BP, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol., 2002, 20(11): 1140-1145
    115. Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM et al. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J. Biol. Chem., 2001, 276(12): 9297-9302
    116. Donnelly PK, Hedge RS, Fletcher JS. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere, 1994, 28(5): 981
    117. Dushenkov S, Mikheev A, et al. Phytoremediation of radiocesium contaminated soil in the vicinity of Chernobyl, Ukraine. Environ. Sci. Technol., 1999, 33(3): 469-475
    118. Ebbs S, Lau I, Ahner B. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Planta, 2002, 214: 635-640
    119. Eide D and Broderius M. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, 1996, 93: 5624-5628
    120. Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82: 853-858
    121. Ernst WHO. Schwermetal vegetation der Erde. G. Fischer, Verlag, Stuttgart, 1974
    122. Evans KM, Gatehouse JA, Lindsay WP, et al. Expression of metallothionein-like gene PsMT-alpha in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMT-ALPHA function. Plant Mol. Biol., 1992, 20: 1019-1028
    123. Fan TWM, Lane AN, Pedler J, Crowley DE, Higashi RM. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatogra- minerphy-mass spectroscopy. Anal. Biochem. 1997, 251: 57-68
    124. Flathman PE, Lanza GR. Phytoremediation current views on an emerging green technology. Journal of Soil Contamination, 1998, 7(6): 415-432
    125. Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ., 1994, 17: 507-523
    126. Gaither AL and Eide DJ. Eukaryotic zinc transporters and their regulation. BioMetals, 2001, 14: 251-270
    127. Gallardo F, Borie F, Alvear M, Baer EV. Evaluation of aluminum tolerance of three Barley cultivars by two short-term screening methods and field experiments. Soil Sci. and PlantNutr., 1999, 45(3): 713-719
    128. Gisbert C, Ros R, De Haro A et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 2003, 303(2): 440-445
    129. Grichko VP, Filby B, Glick BR. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd,Co,Cu,Ni,Pb and Zn. J. Biotechnol., 2000, 81: 45-53
    130. Grill E, Gekeler W, Winnacker EL, Zenk MH. Homo-phytochelatins are heavy-metal-binding peptides of homo-GSH containing Fabales. FEBS Letters, 1986, 205: 47-50
    131. Grill E, L?ffler S, Winnacker EL, Zenk MH. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specificγ-glutamycysteine dipeptidy1 transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences USA, 1989, 86: 6838-6842
    132. Grill E, Winnacker EL, Zenk MH. Phytochelatins: a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences USA, 1987, 84: 439-443
    133. Grill E, Winnacker EL, Zenk MH. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 1985, 230: 674-676
    134. Gupta M, Tripathi RD, Rai UN, Chandra P. Role of glutathione and phytochelatin in Hydrilla verticillata Royle and Vallisneria spiralis L. under mercury stress. Chemosphere, 1998, 37: 785-800
    135. Ha SB, Simith AP, Howden R. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 1999, 11: 1153-1163
    136. Haglund K and Pedersen M. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden: Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. Journal of Applied Phycology, 1993, 5: 271-234
    137. Hartman WJJr. An evaluation of land treatment of municipal wastewater and physical siting of facility installations. Washington, DC, US Department of Army, 1975
    138. Havir EA, Brisson LF, Zelitch I. Distribution of catalase isoforms in Nicotiana tabacum. Phytochem., 1996, 41: 699-702
    139. Heaton ACP, Rugh CL, et al. Phytoremediation of mercury and methylmercury polluted soils using genetically engineered plants. J. Soil Contam., 1998, 7(4): 497-509
    140. Hedge RS and Fletcher JS. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere, 1997, 32(13): 2471-2479
    141. Hegedüs A, Erdei S, Horváth G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci., 2001, 160: 1085-1093
    142. Hendrickson HR and Conn EE. Cyanide metabolism in higher plants. Purification and properties of theβ-cyanoalanine synthase of blue lupine. Journal of Biological Chemistry, 1969, 244(3): 2632-2640
    143. Hissin PJ and Hilf RA. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 1976, 74: 214-226
    144. Homer FA, Reeves RD, Brook RR, et a1. Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochem., 1991, 30: 2141-2145
    145. Horne AJ. Phytoremediation by constructed wetlands. In: Terry N and Banuelos G eds. Phytoremediation of Contaminated Soil and Water. Boca Raton: Lewis Pub., Floride, USA, 2000, 13-40
    146. Howden R, Goldsbrough PB, Andersen CR, et a1. Cadmium-sensitive, cadl mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol., 1995, 107: 1059-1066
    147. Huang JW, Blaylock MJ, Kapulnik Y, et al. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol., 1998, 32: 2004-2008
    148. Iiasegawa I, Emiko T, Michio S. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant and Soil, 1997, 196: 277-281
    149. James BR. Remediation by reduction strategies for chromate-contaminated soils. Environ. Geochem. Health, 2001, 23: 175-179
    150. Jones AB, Preston NP, Dennison WC. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquaculture Research, 2002, 33(1): 1-19
    151. Ke L, Wang WQ, Wong TWY, et a1. Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere, 2003, 51(1): 25-34
    152. Keltjens WG and Van Beusichem ML. Phytochelatins as biomarkers for heavy metal toxicity in maize and wheat: combined effects of copper and cadmium. Plant and soil, 1998, 21: 635-648
    153. Kersten WJ, Brook RR, Reeves RD, el a1. Nature 0f nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochem., 1980, 19: 1963-1965
    154. Kijune S. The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water Research, 2003, 37(10): 2408-2418
    155. Klapheck S, Schlunz S, Bergmann L. Synthesis of phytochelatins and homo- phytochelatins in Pisum sativum L. Plant Physiology, 1995, 107: 515-521
    156. Knecht de JA and Dillen Van M. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiology, 1994, 104: 255-261
    157. Kneer R and Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 1992, 31: 2663-2667
    158. Kneer. R and Zenk MH. The formation of Cd-phytochelatin complexes in plant cell cultures. Phytochem., 1997, 44: 69-74
    159. Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46: 237-260
    160. Kr?mer U, Cotter-Howells JD, Charnock JM, et a1. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 1996, 379: 635-638
    161. Kr?mer U, Pickering IJ, Prince RC, et a1. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol., 2000, 122: 1343-1353
    162. Kucerova P, Maeckova M, Chroma L. Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone CNC-90 and analysis of transformation products. Plant and Soil, 2000, 225: 109-115
    163. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PM. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/ zinc hyperaccumulatorThlaspi Caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol., 2004, 134: 748-757
    164. Küpper H, Zhao FJ, McGrath SP. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 1999, 119: 305-311
    165. Lane B, Kajioka R, Kennedy T. The wheat germ Ec protein is a zinc-containing metallothionein. Biochemistry Cell Biology, 1987, 65: 1001-1005
    166. Larsen PB, Degenhardt J, Tai CY, et al. Aluminum-resistent Arabidopsis mutant that exhibit altered pattern of aluminum accumulation and organic acid release from roots. Plant Physiol., 1998, 117: 9-18
    167. Lasat MM, Baker AJM, Kochian LV. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiology, 1996, 112: 1715-1722
    168. Lasat MM, Pence NS, Garvin DF, et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot., 2000, 51: 71-79
    169. Lee MY and Shin HW. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J. Applied Phycology., 2003, 15: 13-19
    170. Lombi E, Zhao FJ, Mcgrath SP, et a1. Physiological evidence for a high affinity cadmium transporter in a Thlaspi caerulescens ecotype. New Phytol., 2001, 149: 53-60
    171. Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat.Ⅱ. Oxalic acid detoxification aluminum internally. Plant Physiol., 1998, 117: 753-759
    172. Ma JF, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of Al in Hydrangea. Plant Physiol., 1997, 113: 1033-1039
    173. Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci., 2001, 6: 273-278
    174. Ma JF, Zheng SJ, Hiradate S, et al. Detoxifying aluminum with buckwheat. Nature, 1997, 390: 569-570
    175. Ma LQ, Kenneth MK, Tu C, et al. A fern that hyperaccumulates arsenic. Nature, 2001, 409(6820): 579
    176. Ma M, Lau PS, Jia YT. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Science, 2003, 164: 51-60
    177. Macel T and Mackova M. Exploitation of plants for the remove of organics in environmental remediation. 2000, 18: 23-34
    178. Maruyama A, Saito K, Ishizawa K..β-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Molecular Biology, 2001, 46(1): 749-760
    179. Matthis M and Behrendt H. Dynmices of leaching, uptake and translocation: The simulation network atmosphere-plant-soil(SNAPS). In: Trapp S eds. Plant Contamination-Modeling and Simulation of Organic Chemicals Processes. Boca Raton: Lewis Pub., Floride, USA, 1995, 215-243
    180. McGrath SP, Shen ZG, Zhao FJ. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil, 1997, 188: 153-159
    181. Meagher RB. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. PlantBiol., 2000, 3: 153-162
    182. Mench MJ and Fargues S. Metal uptake by iron-efficient and inefficient oats. Plant and Soil, 1994, 165: 217-223
    183. Meredith ML and Hites RA. Polychlorinated biphenyl accumulation in tree bark and wood growth rings. Environ. Sci. Technol., 1987, 21: 709-712
    184. Murphy A, Zhou J, Goldsbrough PB. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 1997, 113: 1293-1301
    185. Neuhierl B and B?ck A. On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur. J. Biochem., 1996, 239: 235-238
    186. Nies DH and Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutraphus. J. Bacteriol., 1989, 171: 896-900
    187. Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 1987, 101: 15-20
    188. Noctor G, Arisi ACM, Jouanin L. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiology, 1998, 118: 471-482
    189. Okumura N, Nishizawa NK, Umehare Y. Adioxygenase (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol. Biol., 1994, 25: 705-719
    190. Ortiz DF, Ruscitti T, Mccue KF, Ow DW. Transport of metal binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem., 1995, 270: 4721-4728
    191. Ouyang Y. Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. Journal of Hydrology, 2002, 266: 66-82
    192. Palmgren MG. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 817-845
    193. Pan A, Yang M, Tie F, et al. Expression of mouse metallothionein-1 gene confers cadmium resistance in transgenic tobacco plants. Plant Mol. Biol., 1994, 24: 341-352
    194. Papernik LA, Bethea AS, Singleton TE, et al. Physiological basis of reduced Al resistance in ditelosomic lines of Chinese Spring wheat. Planta, 2001, 212: 829-834
    195. P?tsikk? E and Kairavuom M. Excess copper predisposes photosystemⅡto photoinhibition in vivo by out competing iron and causing decrease in leaf chlorophyll. Plant Physiol., 2002, 129: 1359-1367
    196. Pellet DM, Grunes DL, Kochian LV. Organic acids exudation as an aluminum tolerance mechanism in maize. Planta, 1995, 196: 788-795
    197. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences USA, 2000, 97: 4956-4960
    198. Perkovich BS, Anderson TA, Kruger EL, et a1. Enhanced mineralization of 14C Atrazine in Kochia Scoparia rhizosphere soil from a pesticide-contaminated soil.Pesticide Science, l996, 46: 391-396
    199. Perronnet K, Schwartz C, Gérard E, Morel J L. Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil, 2000, 227: 257-263
    200. Persans MW, Nieman K, Salt DE. Functional activity and role cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingens. Proceedings of the National Academy ofSciences USA, 2001, 98: 9995-10000
    201. Persans MW, Yan X, Patnoe JMML, et a1. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense(Halaesy). Plant Physiol., 1999, 121: 1117-1126
    202. Peterson PJ. The distribution of zinc-65 in Agtostis sibth and A. stolonifera L. tissues. J. Exp. Bot., 1969, 20: 863-875
    203. Pilon-Smits EAH, Huang S, et al. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol., 1999, 119: 123-132
    204. Prass MNV. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot., 1995, 35(4): 525-545
    205. Radwan SS, Al-Awadhi H, Sorkhoh N, et a1. Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwait desert. Microbiological Research, 1998, 153(3): 247-251
    206. Radwan SS, Hasan RH, Salamah S, et a1. Bioremediation of oily seawater by bacteria immobilized in biofilms coating macroalgae. International Biodeterioration and Biodcgradation, 2002, 50(1): 55-59
    207. Raskin L, Smith RD, Salt DE. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 1997, 8: 221-226
    208. Rauser W E. Phytochelatins and related peptides. Plant Physiology, 1995, 109: 1141-1149
    209. Rauser WE and Acker CA. Localization of cadmium in granules within differentiating and mature root cells. Can. J. Bot., 1987, 65: 643-646
    210. Rauser WE. Roots of maize seedlings retain most of their cadmium through two complexes. J. Plant Physiol., 2000, 156: 545-551
    211. Raveton M, Ravanel P, Serre A M. Kinetics of uptake and metabolism of atrazine in model plant. Pestic. Sci., 1997, 49: 157-163
    212. Rennenberg H, Will B, Phytochelatin production and cadmium accumulation in transgenic poplar (Populus tremula X P. ALBA). Paul. Haupt. Bern., 2000, 393-398
    213. Robinson BH, Chiarucci A, Brooks, RR. Hyperaccumulator-Alyssum bertolonii. Journal of Geochemical Exploration, 1997, 57: 75-86
    214. Robinson NJ, Evans IM, Cheeks C. Plant metallothioneins. Biochemistry Journal, 1993, 295: 1-10
    215. Romheld V and Awad F. Significance of root exudates in acquisition of heavy metal from a contaminated calcareous soil by graminaceous species. J. Plant Nutr., 2000, 23: 1857-1866
    216. Romkens P, Bouwman L, Japenga J, Draaisma C. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ. Pollut., 2002, 116: 109-121
    217. Rugh CL, Wilde HD, Stack NM. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA. 1996, 93: 3182-3187
    218. Salt DE and Kr?mer U. Mechanisms of metal hyperaccumulation in plants. In: Raskin H, Ensley BD. eds. Phytoremediation of toxic metal: using plants to clear up the environment. John Wiley & Sons, New York, 2000, 231-246
    219. Salt DE, Blaylock MB, Kumar NPBA, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 1995, 13: 468-474
    220. Salt DE, Prince RC, Backer AJM, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol., 1999, 33: 713-717
    221. Salt DE, Smith RD, et al. Phytoremediation. Annu. Rev. Plant Physiol Plant Mol Biol., 1998, 49: 643-668
    222. Salt DE. Phytoextraction: present applications and future promise. In: Wise DL, et al. (eds.), Bioremediation of Contaminated Soils. New York, Marcel Dekker, 2000
    223. Samuelsen AL, Martin RC, Mok DWS, et al. Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol., 1998, 118: 51-58
    224. Sanderman E and Loos MA. Enumeration of 2,4-D-degrading microorganisms in soils and crop plant rhizospheres using indicator media:high populations associated with sugarcane(Scaccharam officinarum). Chemosphere, 1984, 13: 1073-1084
    225. Sanger S, Kneer R, Wanner G, et a1. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochem., 1998, 47: 339-347
    226. Sarret G, Saumitou-Laprade P, Bert V, et al. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol., 2002, 130: 1815-1826
    227. Sarret G, Vangronsveld J, Manceau A, et al. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ Sci Technol., 2001, 35: 2854-2859
    228. Sayer J A, Cotter-Howells JD, Watson C, Hillier S, Gadd GM. Lead mineral transformation by fungi. Curr. Biol., 1999, 9: 691-694
    229. Schat H and Kalff MMA. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol., 1992, 99: 1475-1480
    230. Schnoor JL, Licht LA, McCutcheon LS, Wolfe NL, Carreira LH. Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology. 1995, 29(7): 318-323
    231. Sharma SS, Schat H, Vooijs R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochem., 1998, 49: 1531-1535
    232. Shaw AJ, et al. Heavy metal tolerance in plants, Evolutionary Aspects. CRC Boca. Raton., 1990, 241-247
    233. Shaw BP. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol. Plant, 1995, 37: 587-596
    234. Shen ZG, Zhao FJ, McGrath SP. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ., 1997, 20: 898-906
    235. Shützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, et al. Cadmium induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol., 2001, 127: 887-898
    236. Siciliano SD and Germida JJ. Mechanisms of phytoremediation: biochemica1 and ecological interactions between plants and bacteria. Ennvironmental Review, 1998, 6(1): 65-79
    237. Simonich ST and Hites RA. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature, 1994, 370: 49-51
    238. Smith RAH, Bradshaw AD. The use of metal tolerant plant population for the reclamation of metalliferous wasters. J. Appl. Ecol., 1979, 16: 595-612
    239. Song WY, Ju SE, Martinoia E, et al. Engineering tolerance and accumulation of lead andcadmium in transgenic plants. Nat. Biotechnol., 2003, 21(8): 914-919
    240. Steffens JC, Hunt DF, Williams BG. Accumulation of non-protein metal-binding polypeptides (γ-Glu-Cys)n-Gly in selected cadmium-resistant tomato cells. Journal of Biological Chemistry, 1986, 261: 13879-13882
    241. Stroinski A and Zielezinska M. Cadmium effect on hydrogen peroxide, glutathione and phytochelatin levels in potato tuber. Acta. Physiol. Plant, 1997, 19: 127-134
    242. Supek F, Supekova L, Nelson H, Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proceedings of the National Academy of Sciences USA, 1996, 93: 5105-5110
    243. Tam NFY and Yao MWY. Concentrations of PCBs in coastal mangrove sediments of Hong Kong. Marine Pollution Bulletin, 2002, 44(7): 642-651
    244. Terry N, Carlson C, Raab TK, et al. Rates of selenium volatilization among crop species. J. Environ Qual., 1992, 211: 341-344
    245. Thomas JC, Davies EC, Malick FK, et al. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog., 2003, 19(2): 273-280
    246. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes Proc. Natl. Acad. Sci. USA, 2000, 97: 4991-4996
    247. Thompson PL, Ramer LA, Schnoor JL. Uptake and transformation of TNT by hybrid poplar trees. Environ. Sci. Technol., 1998, 32: 975-980
    248. Thumann J, Grill E, Winnacker EL, et al, Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett., 1991, 284: 66-69
    249. TolràRP, Poschenrieder C, Barceló. Zinc hyperaccumulation in Thlaspi caerulescens.Ⅱ. Influence on organic acids. J. Plant Nutr., 1996, 19: 1541-1550
    250. Toppi S, Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot., 1999, 41: 105-130
    251. Trapp S, Miglioranza KSB, Mosbek H. Sorption of lipophilic organic compounds to wood and implication for their environmental fate. Environ. Sci. Technol., 2001, 35: 1561-1566
    252. Treshow M. Air pollution and plant life. New York US: John Wiley & Sons, 1984
    253. Tsao DT. Overview of Phytotechnologies. Advances in Biochemical Engineering / Biotechnology, 2003, 78:4-46
    254. Tu S, Ma LQ, MacDonald GE, Bondada B. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ. Exp. Bot., 2004, 51: 121-131
    255. USEPA Cleaning up the nation’s waste sites: Markets and Technology Trends. Washington, DC: Office of Solid Waste and Emergency Response. 1997.
    256. USEPA. Introduction to Phytoremediation. Washington D C: USEPA. 2000
    257. Van Assche F and Clijsters H. Effects of metal on enzyme activity in plants. Plant Cell Environ., 1990, (13): 195-206
    258. Van Steveninck RFM, Barbare A, Fernando DR, Van Steveninck ME. The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant Soil, 1994, 167: 157-164
    259. Vitoria AP, Lea PJ, Azevedo RA. Antioxidant enzyme responses to cadmium in radish tissues. Phytochem., 2001, 57: 701-710
    260. Watanabe T, Osaki M, Yoshihara T, et a1. Distribution and chemical speciation of aluminumin the A1 accumulator plant, Melastoma malabathricum L. Plant Soil, 1998, 201: 165-173
    261. Wei SH and Zhou QX. Identification of weed species with hyperac-cumulative characteristics of heavy metals. Prog. Natl. Sci. 2004, 14: 495~503
    262. Wei SH, Zhou QX: Phytoremediation of Cadmium-Contaminated Soils by Rorippa globosa Using Two-Phase Planting. Environ. Sci. & Pollut. Res., OnlineFirst
    263. Weigel HJ and Jager HJ. Subcellular distribution and chemical form of cadmium in bean plant. Plant Physiol., 1980, 65: 480-482
    264. Wenzel WW, Bunkowski M, Puschenreiter M, el a1. Rhizosphere characteristic of indigenously growing nickel hyperaccumulator and excludor plants on serpentine soil. Environ. Pollut., 2003, l23: 131-138
    265. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 2003, 50: 775-780
    266. Yang H, Wong JWC, Yang ZM, et al. Ability of Agrogyron elongatum to accumulate the single metal cadmium, copper, nickel and lead and root exudation of organic acids. J. Environ. Sci., 2001, 13(3): 368-375
    267. Yen T-Y, Villa JA, DeWitt JG. Analysis of phytochelatincadmium complexes from plant tissue culture using nanoelectrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectr., 1999, 34: 930-941
    268. Yoshitomi KJ and Shann JR. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Applied Environmental Microbial, 1983, 45: 826-892
    269. Zaal Van der EJ, Neuteboom LW, Pinas JE. Overexpression of a zinc transporter gene from Arabidopsis can lead to enhanced zinc resistance and zinc accumulation. Plant Physiology, 1999, 119: 1-9
    270. Zenk MH. Heavy metal detoxification in higher plants. Gene, 1996, 179: 21-30
    271. Zhao FJ, Lombi E, Breedon T, et al. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ., 2000, 23: 507-514
    272. Zhao FJ, Rebecca E, Hamon M, et a1. Characteristics of cadmium uptake in two Contrasting ecotypes of the Hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 2002, 53: 535-543
    273. Zhao H and Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences, 1996a, 93: 2454-2458
    274. Zhao H and Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996b, 271: 23203-23210
    275. Zheng SJ, Ma JF, Matsumoto H. Continuous secretion of organic acid is related to aluminum resistance in relatively long-term exposure to aluminum stress. Plant Physiol., 1998, 103: 209-214
    276. Zhu YL, Pilon-Smits EAH, Tarun AS. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressingγ-glutamylcysteine synthetase. Plant Physiology, 1999, 121: 1169-1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700