用户名: 密码: 验证码:
细胞分裂素调节拟南芥花发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞分裂素在植物生长发育的许多方面具有重要作用,如促进细胞分裂、延缓叶的衰老以及抑制顶端优势等。近年来,人们在模式植物拟南芥和水稻中相继克隆到细胞分裂素代谢的相关基因,初步建立了细胞分裂素信号传导途径的模型,但有关细胞分裂素调控拟南芥花序和花发育分子机理的资料仍然较少。
     在拟南芥中,细胞分裂素生物合成的第一步主要由7个ATP/ADP异戊烯基转移酶(AtIPT1和AtIPT3-AtIPT8)催化完成。本研究构建了花和花器官特征决定基因APETALA1(AP1)启动子驱动AtIPT4的表达载体并转化野生型拟南芥,试图通过位置特异性表达细胞分裂素合成酶基因提高植物体局部的细胞分裂素含量,探讨细胞分裂素调节拟南芥花发育的分子机理。
     表型分析的结果显示,AP1::IPT4转基因植株的顶端优势被强烈抑制、花序轴伸长被抑制、花和花器官数量增加、萼片上产生较多分枝的表皮毛。解剖学的证据显示,AP1::IPT4植株的花序分生组织体积明显增大,但其组织结构未受影响,细胞体积没有变化,暗示转基因表达细胞分裂素合成酶基因促进花序分生组织的细胞分裂。扫描电镜的观察结果表明,AP1::IPT4植株花原基的数量显著增加,花器官的分化延迟。GUS表达分析的结果显示,在AP1::IPT4植株的花序分生组织中,CLAVATA3(CLV3)表达的区域扩展,在花中的表达时间延长,而WUSCHEL(WUS)表达的信号减弱,表明维持干细胞活动的基因参与细胞分裂素对花序和花发育的调控。
     RT-PCR的结果显示,转基因植株中的AtIPT4的转录水平明显提高。为进一步阐明表型产生的生理学基础,我们利用高效液相-质谱法(LC-MS)对内源细胞分裂素的含量进行了测定。结果表明,在转基因植株花序中具生理活性的细胞分裂素异戊烯基腺嘌呤(isopentenyladenine,iP)及其直接的前体物-异戊烯基腺苷(isopentenyladenosine,iPR)的水平显著提高。上述结果提示,转基因植株的表型是由高水平细胞分裂素诱导产生的。
     为深入理解细胞分裂素调节花序和花发育的分子机理,我们以幼花序为材料,利用拟南芥全基因组芯片(Affymetrix Arabidopsis ATH1 GeneChips)进行了基因表达谱分析。结果显示,转基因植株中有460个基因的表达水平上升,408个基因的表达量下降。对部分基因进行的半定量RT-PCR验证结果与芯片的数据基本一致。其中,A类细胞分裂素响应调节因子ARABIDOPSIS RESPONSE REGULATOR(ARR)基因ARR5、ARR6、ARR7和ARR15、NAC基因家族成员CUP-SHAPED COTYLEDON(CUC)基因CUC2和CUC3以及LATERAL ORGAN BOUNDARIES(LOB)基因家族成员LOB domain protein(LBD)基因LBD3、LBD39和LBD41的表达水平均被显著上调。
     过量表达LBD3(Naito等,2007)和CUC3,导致植株矮化,这与AP1::IPT4植株的表型具有相似性;CUC3突变或过量表达反义LBD3则能够部分抑制AP1::IPT4植株表型(包括顶端优势和花节间长度等)的产生。上述结果表明LBD3和CUC3参与AP1::IPT4植株表型的形成。遗传学和RT-PCR分析的结果显示,细胞分裂素受体的突变体ahk2 ahk3几乎完全阻断AP1::IPT4植株表型,抑制细胞分裂素对CUC3和LBD3表达的上调作用。遗传学分析的结果表明ARR5突变加强AP1::IPT4植株的表型,ARR6突变能够部分抑制AP1::IPT4植株的表型,并降低LBD3的转录水平,而ARR15对AP1::IPT4植株的表型没有明显影响,提示ARR5、ARR6和ARR15在调节拟南芥花序和花发育方面具有不同的功能。本研究的结果表明细胞分裂素信号传导部分地通过介导CUC3和LBD3的表达,调控拟南芥花序和花的发育。
Cytokinins are essential regulators of numerous plant growth and development processes. In Arabidopsis, genes encoding the enzymes responsible for cytokinin metabolic activity such as biosynthesis and degradation have been characterized, and the cytokinin signaling transduction was implicated in control of shoot meristem initiation, stem cell population, apical dominance and fertility. However, little are known about the mechanisms of cytokinin regulation in inflorescence and flower development.
     The first step of the bulk of cytokinin biosynthesis is catalyzed by seven ATP/ADP isopentenyltransferases (AtIPT1 and AtIPT3-AtIPT8) in Arabidopsis. Here, we tried to increase the cytokinin level in Arabidopsis floral tissues by transgenic expression of AtIPT4 under the control of the promoter of APETALA1 (AP1) that is known to be expressed specifically in flower primordia and perianth in Arabidopsis. Totally, 45 independent AP1::IPT4 lines obtained showed the similar phenotypical alterations with respect to the inflorescence and flower development. In AP1::IPT4 plants, the apical dominance and stem elongation of primary inflorescence were significantly inhibited, which resulted in the formation of sympodial branching architecture. Both the flower and floral organ number, however, were increased obviously in transgenic plants. In addition, many branched trichomes formed on the abaxial surface of sepals. As expected, no obvious morphological changes were observed during the vegetative development. In the longitudinal sections of primary inflorescence apex, the cell number and size of inflorescence meristem were increased in transgenic plants, whereas the meristematic cell size was not altered, indicating elevated cell division rate occurred in the transgenic inflorescence meristem. Scanning electron microscopy analyses indicated that the transgenic primary inflorescence meristem was larger in diameter than wild-type one. There were more flower primordia formed at periphery of inflorescence meristem of AP1::IPT4 plants in comparison with that of wild type plants, however, the floral organ initiation was delayed. Furthermore, GUS staining assay revealed that CLAVATA3 (CLV3) and WUSCHEL (WUS), two genes responsible for stem cell homeostasis maintenance, were implicated in cytokinin-regulated inflorescence and flower development.
     To uncover the physiological basis for modulating flower development in AP1::IPT4 plants, we analyzed the endogenous cytokinin levels in the young inflorescences from the homozygotic plants of two independent lines with the liquid chromatography--mass spectrometry (LC-MS) method. Compared with wild-type samples, the levels of isopentenyladenine (iP) and its precursor, isopentenyladenosine (iPR), were all elevated significantly, which is consistent with the increase of transcript level of AtIPT4 detected in transgenic lines by RT-PCR analysis. These results support our hypothesis that the phenotypical alterations of AP1::IPT4 plants should be caused by enhanced endogenous cytokinin concentration in inflorescence tissues.
     To explore the cytokinin-responsive genes in floral tissues, we carried out the analysis for the genome-wide expression profiling in young inflorescences using the Affymetrix Arabidopsis ATH1 GeneChips (Gene Company Limited). The results revealed that 460 gene expression levels were up-regulated and 408 genes down-regulated in floral tissues of transgenic plants. Among them, we are interested in those involved in cytokinin signaling and flower morphogenesis including the type-A ARRs (ARR5, ARR6, ARR7, and ARR15), two CUP-SHAPED COTYLEDON genes (CUC2 and CUC3), three LOB domain protein genes (LBD3, LBD39 and LBD41).
     Either LBD3 (Naito et al., 2007) or CUC3 overexpression led to stem elongation reduction which is similar to that of AP1::IPT4 plants. In contrast, cuc3 mutation or overexpression of anti-sense LBD3 repressed some aspects of AP1::IPT4 phenotypes including shoot apical dominance and internode length between flowers.These results revealed that both CUC3 and LBD3 contributed to the developmental changes of AP1::IPT4 plants. Genetic and molecular analyses demonstrated that combination of cytokinin receptor mutantion ahk2 and ahk3 blocked almost the phenotypes of AP1::IPT4 plants, and impaired the up-regulation of CUC3 and LBD3 in response to cytokinins. Furthermore, we examined the functions of ARR5, ARR6 and ARR15 in AP1::IPT4 inflorescences. The results suggested that mutation in ARR6 may partially inhibited the developmental alterations of AP1::IPT4 plants, and attenuated LBD3 expression level. Thus, the results indicated that proper development of inflorescence and flower might be partially controlled by cytokinin signaling-mediated CUC3 and LBD3 functions in the inflorescence and flower meristem.
引文
徐云远,种康.植物干细胞决定基因WUS的研究进展.植物生理与分子生物学学报,2005,31:461-468
    徐是雄.植物材料的薄切片超薄切片技术.北京:北京大学出版社,1981
    Aguilar-Martinez J.A., Poza-Carrion C., and Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 2007, 19: 458-472
    Ahmad M., Jarillo J.A., Smirnova O., and Cashmore A.R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1998, 1: 939-948
    Akiyoshi D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 1984, 81: 5994-5998
    Akiyoshi D.E., Regier D.A., and Gordon M.P. Nucleotide sequence of the tzs gene from Pseudomonas solanacearum strain K60. Nucleic. Acids. Res. 1989, 17: 88-86
    Alabadi D., Oyama T., Yanovsky M.J., Harmon F.G., Mas P., and Kay S.A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001, 293: 880-883
    Alabadi D., Yanovsky M.J., Mas P., Harmer S.L., and Kay S.A. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 2002, 12: 757-761
    Allen M., QinW., Moreau F., and Moffatt B. Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism. Physiol. Plant. 2002, 115: 56–68
    Alvarez J., Guli C.L., Xiang-Hua Y., and Smyth D.R. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 1992, 2: 103-116
    Ashikari M., Sakakibara H., Lin S.Y., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., and Matsuoka M. Cytokinin oxidase regulates rice grain production. Science 2005, 309: 741-745
    Astot C., Dolezal K., Nordstrom A., Wang Q., Kunkel T., Moritz T., Chua N.H., and Sandberg G. An alternative cytokinin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 2000, 97:14778-14783
    Aubert D., Chen L., Moon Y.H., Martin, D.,Castle L.A., Yang C. H., and Sung Z.R. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 2001, 13: 1865–1875
    Aukerman M.J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R.M., andSharrock R.A. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 1997, 9: 1317-1326
    Bagnall D.J., King R.W., Whitelam G.C., Boylan M.T., Wagner D., and Quail P.H. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1995, 108: 1495-1503
    Bainbridge K., Sorefan K., Ward S., and Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J. 2005, 44: 569-580
    Baker C.C., Sieber P., Wellmer F., and Meyerowitz1 E.M. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 2005, 15: 303–315
    Bangerth F. Dominance among fruits/sinks and the search for a correlative signal. Physiol. Plant. 1989, 76: 608-614
    Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta 1994, 194: 439-442
    Barnes M.F., Tien C.L., and Gray J.S. Biosynthesis of cytokinins by potato cell cultures. Phytochemistry 1980, 19: 409-412
    Barry G.F., Rogers S.G., Fraley R.T., and Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA 1984, 81: 4776-4780
    Barton M.K., and Poethig R.S. Formation of the shoot apical meristem in Arabidopsis thaliana: An analysis of development in the wild type and in the shoot meristemless mutant. Development 1993, 119: 823-831
    Baum S.F., Eshed Y., and Bowman J.L. The Arabidopsis nectary is an ABC-independent floral structure. Development 2001, 128: 4657-4667
    Bennett T., Sieberer T.,Willett B., Booker J., Luschnig C., and Leyser O. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Opin. Plant Biol. 2006, 16: 553-563
    Bennett T., and Leyser O. Something on the side: axillary meristems and plant development. Plant Mol. Biol. 2006, 60: 843-854
    Bernier G. The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39: 175-219.
    Bernier G., and Périlleux C. A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 2005, 3: 3-16
    Bernier G., Corbesier L., and Périlleux C. The flowering process: on the track of controllingfactors in Sinapis alba. Russ. J. Plant Physiol. 2002, 49: 445-450
    Bernier G., Havelange A., Houssa C., Petitjean A., and Lejeune P. Physiological signals that induce flowering. Plant Cell 1993, 5: 1147-1155
    Beveridge C.A. Axillary bud outgrowth: sending a message. Curr. Opin. Plant Biol. 2006, 9: 35-40
    Beveridge C.A., Murfet I.C., Kerhoas L., Sotta B., Miginiac E., and Rameau C. The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J. 1997, 11: 339-345
    Beveridge C.A., Ross J.J., and Murfet I.C. Branching mutant rms-2 in Pisum sativum (Crafting Studies and Endogenous Indole-3-Acetic Acid Levels). Plant Physiol. 1994, 104: 953-959
    Beveridge C.A. Symons G.M., and Turnbull C.G.N. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol. 2000, 123: 689-697
    Beveridge C.A., Weller J.L., Singer S.R., and Hofer J.M.I. Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol. 2003, 131: 927-934
    Blackwell J.R., and Horgan R. Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP: AMP isopentenyltransferase. Phytochemistry 1993, 34: 1477-1481
    Blackwell J.R., and Horgan, R. Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry 1994, 35: 339-342
    Blazquez M.A., Soowal L.N., Lee I., and Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development 1997, 124: 3835-3844
    Bohner, S., and Gatz, C. Characterisation of nevol target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes. Mol. Gen. Genet. 2001, 264: 860-870.
    Boss P.K., Bastow R.M., Mylne J. S., and Dean, C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 2004, 16: S18-S31
    Bowman J.L., Sakai H., Jack T., Weigel D., Mayer U., and Meyerowitz E.M. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 1992, 114, 599-615
    Bowman J.L., Alvarez J., Weigel D., Meyerowitz E.M., and Smyth D.R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 1993, 119: 721-743
    Bowman J.L., Smyth D.R., and Meyerowitz E.M. Genes directing flower development inArabidopsis. Plant Cell 1989, 1: 37-52
    Bradley D., Ratcliffe O., Vincent C., Carpenter R., and Coen E. Inflorescence commitment and architecture in Arabidopsis. Science 1997, 275: 80-83
    Brand U., Fletcher J., Hobe M., Meyerowitz E., and Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 2000, 289: 617-619
    Brand U., Grunewald M., Hobe M., and Simon R. Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 2002, 129: 565-575
    Brandstatter I., and Kieber J.J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 1998, 10: 1009-1020.
    Brown J.A.M., and Klein W.H. Photomorphogenesis in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1971, 47, 393-399
    Burkle L., Cedzich A., Dopke C., Stransky H., Okumoto S., Gillissen B., Kuhn C., and Frommer W.B. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 2003, 34: 13-26
    Byrne M.E., Simorowski J., and Martienssen R.A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 2002, 129: 1957-1965
    Carles C.C., and Fletcher J.C. Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 2003, 8: 394-401
    Carles C.C. Choffnes-Inada D., Reville K., Lertpiriyapong K., and Fletcher J.C. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.Development 2005, 132, 897-911
    Carles, C.C., Lertpiriyapong, K., Reville, K., and Fletcher, J.C. The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity, and acts through WUSCHEL to regulate floral meristem determinacy. Genetics 2004, 167: 1893-1903
    Castellano M.M., and Sablowski R. Intercellular signalling in the transition from stem cells to organogenesis in meristems. Curr. Opin. Plant Biol. 2005, 8: 26-31
    Catterou M., Dubois F., Smets R., Vaniet S., Kichey T., Van Onckelen H., Sangwan-Norreel B.S., and Sangwan R.S. hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J. 2002, 30: 273-287
    Chaudhury A.M., Letham S., Craig S., and Dennis E.S. amp1-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 1993, 4: 907-916
    Chen X.M., Liu J., Cheng Y.I., and Jia D.X. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 2002, 129: 1085-1094
    Chen C.M., and Kristopeit S.M. Metabolism of cytokinin: dephosphorylation of cytokinin ribonucleotide by 59-nucleotidases from wheat germ cytosol. Plant Physiol. 1981a, 67: 494-498
    Chen C.M., and Kristopeit S.M. Metabolism of cytokinin: Deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ. Plant Physiol. 1981b, 68: 1020-1023
    Chen C.M., and Melitz D.K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett. 1979, 107: 15-20
    Chen H., Banerjee A.K., and Hannapel D.J. The tandemcomplex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J. 2004, 38: 276-284
    Chin-Atkins A.N., Craig S., Hocart C.H., Dennis E.S., and Chaudhury A.M. Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses. Planta 1996, 198: 549-556
    Clark S.E., Running M P., and Meyerowitz E.M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 1993, 119: 397-418
    Clark S.E., Running M.P., and Meyerowitz E.M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 1995, 121: 2057-2067
    Clark S.E., Williams R.W., and Meyerowitz E.M. The CLAVATA1 Gene Encodes a Putative Receptor Kinase That Controls Shoot and Floral Meristem Size in Arabidopsis. Cell 1997, 89: 575-585
    Cline M.G. The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol. Plant. 1994, 90: 230-237
    Cline M.G. Exogenous Auxin Effects on Lateral Bud Outgrowth in Decapitated Shoots. Ann. Bot. 1996, 78: 255-266
    Cline M.G. Concepts and terminology of apical. Am. J. Bot. 1997, 84: 1064–1069
    Clough S.J., and Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743
    Cockcroft C.E., den Boer B.G.W., Healy J.M.S., and Murray A.H. Cyclin D control of growth rate in plants. Nature 2000, 405: 575–579
    Coen E.S., and Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature 1991, 353: 31–37
    Coen E.S., Romero J.M., Doyle S., Elliot R., Murphy G., and Carpenter R. Floricula: A homeotic gene required for flower development in Antirrhinum majus. Cell 1990, 63: 1311-1322
    Corbesier L., Gadisseur I., Silvestre G., Jacqmard A., and Bernier G. Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. Plant J. 1996, 9: 947-952
    Corbesier L., Kustermans G., Périlleux C., Melzer S., Moritz T., Havelange A., and Bernier G. Gibberellins and the floral transition in Sinapis alba. Physiol. Plant. 2004, 122: 152-158
    Corbesier L., Prinsen E., Jacqmard A., Lejeune P., Van Onckelen H., Pèrilleux C., and Bernier G. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 2003, 54: 2511-2517
    Crespi M., Messens E., Caplan A.B., Van Montagu M., and Desomer J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992, 11: 795-804
    D’Agostino I.B., Deruere J., and Kieber J.J. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000, 124: 1706-1717
    de Folter S., Immink R.G.H., Kieffer M., Parenicova L., Henz S.R., Weigel D., Busscher M., Kooiker M., Colombo L., Kater M.M., Davies B., and Angenent G.C. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 2005, 17: 1424-1433
    Devitt M.L., and Stafstrom J.P. Cell cycle regulation during growth dormancy cycles in pea axillary buds. Plant Mol. Biol. 1995, 29: 255-265
    Devlin P.F., Patel S.R., and Whitelam G.C. Phytochrome E. influences internode elongation and flowering time in Arabidopsis. Plant Cell 1998, 10: 1479–1488
    Dewitte W., and Van Onckelen H. Probing the distribution of plant hormones by immunocytochemistry . Plant Growth. Regul. 2001, 33: 67-74
    Dewitte W., Chiappetta A., Azmi A., Witters E., Strnad M., Rembur J., Noin M., Chriqui D., and Van Onckelen H. Dynamics of cytokinins in apical shoot meristems of a day-neutral Tobacco during floral transition and flower formation. Plant Physiol. 1999, 119: 111-122
    Douglas S.J., Chuck G., Degner R.E., Pelecanda L., and Riggs C.D. KNAT1 and ERECTA regulate inflorescencearchitecture in Arabidopsis. Plant Cell 2002, 14: 547-558
    Doyle M.R., Davis S.J., Bastow R.M., McWatters H.G., Kozma-Bognar L., Nagy F., Millar A.J., and Amasino R.M. The ELF4 gene controls circadian rhythms and flowering time inArabidopsis thaliana. Nature 2002, 419: 74-77
    Dun E.A., Ferguson B.J., and Beveridge C.A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms. Plant Physiol. 2006, 142: 812-819
    Durfee T., Roe J.L., Sessions R.A., Inouye C., Serikawa K., Feldmann K.A., Weigel D., and Zambryski P.C. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc. Natl Acad. Sci. USA 2003, 100: 8571-8576
    El-Assal S.E.D., Alonso-Blanco C., Peeters A.J.M., Raz V., and Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genet. 2001, 29: 435-440.
    El-Assal S.E.D., Alonso-Blanco C., Peeters A.J.M., Wagemaker C., Weller J.L., and Koornneef M. The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 2003, 133: 1504-1516
    Elliott R.C., Betzner A.S., Huttner E., Oakes M.P., Tucker W.Q.J., Gerentes D., Perez P., and Smyth D.R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 1996, 8: 155-168
    Emery R.J.N., Longnecker N.E., and Atkins C.A. Branch development in Lupinus angustifolius L. #II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J. Exp. Bot. 1998, 49: 555-562
    Eskins K. Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiol. Plant. 1992, 86: 439-444
    Estruch J.J, Granell A., Hansen G., Prinsen E., Redig P., Van Onckelen H., Schwarz-Sommer Z., Sommer H., and Spena A. Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J. 1993, 4: 379-384
    Fahn A. Plant anatomy, ed 4. Pergamon Press, New York, NY. 1990
    Faiss M., Zalubilova J., Strnad M., and Schmülling T. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 1997, 12: 401-415
    Ferrandiz C., Gu Q., Martienssen R., and Yanofsky M.F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 2000, 127: 725-734
    Ferreira F.J., and Kieber J.J. Cytokinin signaling. Curr. Opin. Plant Biol. 2005, 8: 518-525
    Fletcher J. C. The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis. Development 2001, 128, 1323-1333
    Fletcher J.C. Shoot and floral meristem maintenance in Arabidopsis. Annu. Rev. Plant Biol. 2002, 53: 45-66
    Fletcher J.C., Brand U., Running M.P., Simon R., and Meyerowitz E.M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 1999, 283: 1911-1914
    Foo E., Buillier E., Goussot M., Foucher F., Rameau C., and Beveridge C.A. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 2005, 17: 464-474
    Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Morris B., Coupland G., and Putterill J. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18: 4679-4688
    Fusseder A., and Ziegler P. Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension-cultures of Chenopodium rubrum. Planta 1988, 173: 104-109
    Galweiler L., Guan C., Muller A., Wisman E., Mendgen K., Yephremov A., and Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 1998, 282: 2226-2230
    Gillissen B., Burkle L., Andre B., Kuhn C., Rentsch D., Brandl B., and Frommer W.B. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 2000, 12: 291-300
    Goethals K., Vereecke D., Jaziri M., Van Montagu M., and Holsters M. Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 2001, 39: 27-52.
    Golovko A., Sitbon F., Tillberg E., and Nicander B. Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Mol. Biol. 2002, 49: 161-169
    Grbic B., and Bleecker A.B. Axillary meristem development in Arabidopsis thaliana. Plant J. 2000, 21: 215-223
    Greb T., Clarenz O., Schèfer E., Müller D., Herrero R., Schmitz G., and Theres K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 2003, 17: 1175-1187
    Green R.M., and Tobin E.M. Loss of the circadian clockassociated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA 1999, 96: 4176-4179
    Greenboim-Wainberg Y., Maymon I., Borochov R., Alvarez J., Olszewski N., Ori N., Eshed Y., and Weiss D. Cross Talk between Gibberellin and Cytokinin: The Arabidopsis GAResponse Inhibitor SPINDLY Plays a Positive Role in Cytokinin Signaling. Plant Cell 2005, 17: 92-102
    Griffith M.E., da Silva Conceicao A., and Smyth D.R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 1999, 126: 5635-5644.
    Gu Q., Ferrandiz C., Yanofsky M.F., and Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 1998, 125: 1509-1517.
    Guo H.W., Yang W.Y., Mockler T.C., and Lin C.T. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998, 279: 1360-1363
    Guo H.W., Duong H., Ma N., and Lin C.T. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 1999, 19: 279–287
    Haberer G., and Kieber J.J. Cytokinins. new insights into a classic phytohormone. Plant Physiol. 2002, 128: 354-362
    Haecker A., Gross-Hardt R., Geiges B., Sarkar A., Breuninger H., Herrmann M., and Laux T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004, 131: 657-668
    Hall S.M., and Hillman J.R. Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. Timing of bud growth following decapitation. Planta 1975, 123: 137-143
    Halle F. Ecology of reiteration in tropical trees. In The Evolution of Plant Architecture. Edited by Kurmann MH, Hemsley AR. Kew: Royal Botanic Gardens 1999, 93-107.
    Hardie D.G., Carling D.and Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 1998, 67: 821-855
    Harmer S.L., Hogenesch L.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A., and Kay S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290: 2110-2113
    Harrar Y., Bellec Y., Bellini C., and Faure J.D. Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol. 2003, 132: 1217-1227
    Havelange A., Lejeune P., and Bernier G. Sucrose/cytokinin interaction in Sinapis alba at floral induction: a shoot-to-root-toshoot physiological loop. Physiol. Plant. 2000, 109: 343-350
    Hayama R., and Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 2003, 6: 13-19
    Hempel F.D., and Feldman L.J. Bi-directional inflorescence development in Arabidopsis thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta 1994, 192: 276-286
    Hempel F.D., Weigel D., Mandel M.A., Ditta G., Zambryski P.C., Feldman L.J., and Yanofsky M.F. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 1997, 124: 3845-53
    Hewelt A., Prinsen E., Schell J., Van Onckelen H., and SchmiJlling T. Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J. 1994, 6: 879-891.
    Hibara K., Karim M., R., Takada S., Taoka K., Furutani M., Aida M., and Tasaka M. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 2006, 18: 2946-2957
    Hicks K.A., Millar A.J., Carre I.A., Somers D.E., Straume M., Meeks-Wagner D.R., and Kay S.A. Conditional circadian dysfunction of the Arabidopsis early-flowering-3 mutant. Science 1996, 274: 790-792
    Higuchi M., Pischke M.S., M?h?nen A.P., Miyawaki K., Hashimoto Y., Seki M., Kobayashi M., Shinozaki K., Kato T., Tabata S., et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 2004, 101: 8821-8826
    Hill J.P., and Lord E.M. Floral development in Arabidopsis thaliana: A comparison of the wild-type and the homeotic pistillata mutant. Can. J. Bot. 1989, 67: 2922-2936
    Hirose N., Makita N., Yamaya T., and Sakakibara H. Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol. 2005, 138: 196-206
    Horgan R. Cytokinins. In: Wilkins MB (ed) Advanced plant physiology. Longmans, London, 1984, pp89-101
    Horvath D.P., Anderson J.V., Chao W.S., and Foley M.R. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci. 2003, 8: 534-540
    Houba-Hèrin N., Pethe C., d’Alayer J., and Laloue M. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 1999, 17: 615-626
    Huang H., and Ma H. FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number. Plant Cell 1997, 9: 115-134
    Huang S., Cerny R.E., Qi Y., Bhat D., Aydt C.M., Hanson D.D., Malloy K.P., and Ness L.A . Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol. 2003, 131: 1270-1282
    Huijser P., Klein J., Lonnig W.E., Meijer H., Saedler H., and Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 1992, 11: 1239-1249
    Hutchison C.E., and Kieber J.J. Cytokinin signaling in Arabidopsis. Plant Cell 2002, S47-S59 Hwang I., and Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 2001, 413: 383-389
    Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M., Kiba T., Ueguchi C., Sugiyama T., and Mizuno T. Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol. 1999, 40: 733-742
    Imamura A., Hanaki N., Umeda H., Nakamura A., Suzuki T., Ueguchi C., and Mizuno T. Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 1998, 95: 2691-2696
    Imamura A., Kiba T., Tajima Y., Yamashino T., and Mizuno T. In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44: 122-131
    Imamura A., Yoshino Y., and Mizuno T. Cellular localization of the signaling components of Arabidopsis His-to-Asp phosphorelay. Biosci. Biotechnol. Biochem. 2001, 65: 2113-2117
    Ingram G. C., Goodrich J., Wilkinson M. D., Simon R., Haughn G. W., and Coen E. S. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 1995, 7: 1501-1510
    Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., and Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001, 409: 1060-1063
    Irish V.F., and Sussex I.M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 1990, 2: 741-753
    Ishida T., Aida M., Takada S., and Tasaka M. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41: 60-67
    Jack T. Molecular and genetic mechanisms of floral control. Plant Cell 2004, 16: S1-S17
    Jarillo J.A., Capel J., Tang R.H., Yang H.Q., Alonso J.M., Ecker J.R., and Cashmore A.R. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 2001, 410: 487-490
    Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., and Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 2005, 15: 1560-1565
    Jeong S., Trotochaud A.E., and Clark S.E. The Arabidopsis CLAVATA2 Gene Encodes a Receptor-like Protein Required for the Stability of the CLAVATA1 Receptor-like Kinase. Plant Cell 1999, 11: 1925-1933
    Jofuku K.D., den Boer, B.G.W., Van Montagu M., and Okamuro, J.K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 1994, 6: 1211-1225
    Johanson U., West J., Lister C., Michaels S., Amasino R., and Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 2000, 290: 344-347
    Johnson E., Bradley M., Harberd N.P., and Whitelam G.C. Photoresponses of light-grown phyA mutants of Arabidopsis: Phytochrome A is required for the perception of daylength extensions. Plant Physiol. 1994, 105: 141-149
    Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction, Science 1996, 274: 982—985
    Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant cell physiol. 2001, 42: 677-685.
    Kakimoto T. Biosynthesis of cytokinins. J. Plant Res. 2003, 116: 233-239
    Kamboj J.S., Blake P.S., and Baker D.A. Cytokinins in the vascular saps of Ricinus communis. Plant Growth Regul. 1998, 25: 123-126
    Kardailsky I., Shukla V.K., Ahn J.H., Dagenais N., Christensen S.K., Nguyen J.T., Chory J., Harrison M.J., and Weigel D. Activation tagging of the floral inducer FT. Science 1999, 286: 1962-1965
    Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., Yamaguchi S., and Sakakibara H. Distinct Isoprenoid Origins of cis- and trans-Zeatin Biosyntheses in Arabidopsis. J. Biol. Chem. 2004, 279: 14049-14054
    Kayes J. M., and Clark S.E. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 1998, 125: 3843-3851
    Keller T., Abbott J., Moritz T., and Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 2006, 18: 598-611
    Kempin S.A., Savidge B., and Yanofsky M.F. Molecular basis of the cauliflower phenotypein Arabidopsis. Science 1995, 267: 522-525
    Kiba T, Yamada H., and Mizuno T. Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol. 2002, 43: 1059-1066
    Kiba T., Aoki K., Sakakibara H., and Mizuno T. Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol. 2004, 45: 1063-1077
    Kiba T., Taniguchi M., Imamura A., Ueguchi C., Mizuno T., and Sugiyama T. Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant Cell Physiol. 1999, 40: 767-771
    Kiba T., Yamada H., Sato S., Kato T., Tabata S., Yamashino T., and Mizuno T. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44: 868–874
    Kieber J.J. Cytokinins. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. 2002, American Society of Plant Biologists, Rockville, MD, doi: 10.1199/tab.0063, www.aspb.org/publications/arabidopsis.
    Kim H.J., Ryu H., Hong S.H., Woo H.R., Lim P.O., Lee I.C., Sheen J., Nam H.G., and Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103: 814-819
    King R.A., Van Staden J. Differential responses of buds along the shoot of Pisum sativum to isopentyladenine and zeatin application. Plant Physiol. Biochem. 1988, 26: 253–259
    King R.W., and Evans L.T. Gibberellins and flowering of grasses and cereals: prizing open the lid of the‘florigen’black box. Annu. Rev. Plant Biol. 2003, 54: 307–328
    Klee H., and Estelle M. Molecular genetic approaches to plant hormone biology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42: 529-551
    Klucher K.M., Chow H., Reiser L., and Fischer R.L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 1996, 8: 137-153
    Kobayashi Y., Kaya H., Goto K., Iwabuchi M., and Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286: 1960–1962.
    Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7: 235–246
    Komaki M.K., Okada K., Nishino E., and Shimura Y. lsolation and characterization of nove1 mutants of Arabidopsis thaliana defective in flower development. Development 1988,104: 195-203
    Koornneef M., Hanhart C.J., and van der Veen J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 1991, 229: 57-66
    Koornneef M., and Peeters A.J.M. Floral transition mutants in Arabidopsis. Plant Cell Environ. 1997, 20: 779–784
    Kristoffersen P., Brzobohaty B., Hohfeld I., Bako L., Melkonian M., and Palme K. Developmental regulation of the maize Zm-p60.1 gene encoding a beta-glucosidase located to plastids. Planta 2000, 210: 407–415
    Kunst L., Klenz J.E., Martinez-Zapater J., and Haughn G.W. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1989, 1: 1195-1208
    Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., and Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 2007, 445: 652-655
    Laufs P., Peaucelle A., Morin H., and Traas J. MicroRNA regulation of the CUC genes is required for boundary references size control in Arabidopsis meristems. Development 2004, 131: 4311-4322
    Laux T., Mayer K.F., Berger J., and Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996, 122: 87-96
    Ledger S., Strayer C., Ashton F., Kay S.A., and Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J. 2001, 26: 15-22
    Lee I., Wolfe D.S., Nilsson O., and Weigel D. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 1997, 7: 95–104
    Lee D.J., Park J.Y., Ku S.J., Ha Y.M., Kim S., Kim M.D., Oh M.H., and Kim J. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 2007, 277: 115–137
    Leibfried A., To J.P.C., Busch W., Stehling S., Kehle A, Demar M., Kieber J.J., and Lohmann J.U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438: 1172-1175
    Lenhard L., and Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 2003, 130: 3163-3173
    Lenhard M., Bohnert A., Jurgens G., and Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell2001, 105: 805–814
    Lenhard M., Jurgens G., and Laux T. The WUSCHEL and SHOOTMERISTEM LESS genes fulfill complementary roles in Arabidopsis shoot meristem regulation. Development 2002, 129: 3 195—3206
    Letham D.S., Tao G.Q., and Parker C.W. An overview of cytokinin metabolism. In: Wareing PF (ed). Plant growth substances. Academic Press, London, 1982, pp143–152
    Letham D.S. Cytokinins from Zea mays. Phytochemistry 1973, 12: 2445–2455
    Letham D.S. Cytokinins as phytohormones: sites of biosynthesis, translocation, and function of translocated cytokinin. Boca Raton, CRC Press, 1994, pp57-80
    Levin J.Z., and Meyerowitz E.M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 1995, 7: 529–548
    Levy Y.Y., and Dean C. The transition to flowering. Plant Cell 10: 1973-1989
    Leyser O. 2005, The fall and rise of apical dominance. Curr. Opin. Genet. Dev. 1998, 15: 468–471
    Li C.J., and Bangerth F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant. 1999, 106: 415–420
    Li C.J., Herrera G.J., and Bangerth F. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants. Physiol. Plant. 1995, 94: 465–469
    Li Q.Z., Li X.G., Bai S.N., Lu W.L., and Zhang X.S. Isolation and expression of HAP2, a homolog of AP2 in Hyacinthus orientalis L. Dev. Reprod. Biol. 2001, 10: 69–75
    Li Q.Z., Li X.G., Bai S.N., Lu W.L., and Zhang, X.S. Isolation of HAG1and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 2002, 215: 533–540
    Lichter A., Barash I., Valinsky L., and Manulis S. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J. Bacteriol. 1995, 177:4457–4465
    Lin C.T, Yang H.Y, Guo H.W, Mockler T, Chen J., and Cashmore A.R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA 1998, 95: 2686–2690
    Lindsay D.L., Sawhney V.K., and Bonham-Smith P.C. Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Science 2006, 170: 1111–1117
    Liu C.M., and Meinke D. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J. 1998, 16: 21-31
    Lohmann J., Hong R., Hobe M., Busch M., Parcy F., Simon R., and Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 2001, 105: 793–803
    Lohrmann J., Buchholz G., Keitel C., Sweere U., Kircher S., B?urle I., Kudla J., Sch?fer E., and Harter K. Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 1999, 1: 495–505
    Long J., and Barton M.K. Initiation of Axillary and Floral Meristems in Arabidopsis. Dev. Biol. 2000, 218: 341–353
    Long J.A., Moan E.I., Medford J.I., and Barton M.K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379: 66–69
    Lu W.L., Enomoto K., Fukunaga Y., and Kuo C. Regeneration of tepals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. Planta 1988, 175: 478–484
    Madoka Y., and Mori H. Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance. Plant Cell Physiol. 2000, 41: 556–564
    M?h?nen A.P., Bishopp A., Higuchi M., Nieminen K.M., Kinoshita K., Tormakangas K., Ikeda Y., Oka A., Kakimoto T., and Helariutta Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 2006a, 311: 94–98
    M?h?nen A.P., Bonke M., Kauppinen L., Riikonen M., Benfey P.N., and Helariutta Y. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 2000, 14: 2938-2943
    M?h?nen A.P., Higuchi M., Tormakangas K., Miyawaki K., Pischke M.S., Sussman M.R., Helariutta Y., and Kakimoto T. Cytokinins Regulate a Bidirectional Phosphorelay Network in Arabidopsis. Curr. Biol., 2006b, 16: 1116-1122
    Makino S., Kiba T., Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M., Ueguchi C., Sugiyama T., and Mizuno T. Genes encoding pseudo-response regulators: Insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41: 791–803
    Mallory A.C., Dugas D.V., Bartel D.P., and Bartel B. MicroRNA regulation of NAC-domain targets is required for to P.S. proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 2004, 14: 1035–1046
    Mandel M.A., and Yanofsky M.F. A gene triggering flower development in Arabidopsis. Nature 1995, 377: 522-524
    Mandel M.A., Gustafson-Brown C., Savidge B., and Yanofsky M.F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 1992, 360: 273–277
    Martin R.C., Mok M.C., Habben J.E., and Mok D.W. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 2001, 98: 5922-5926
    Martinez-Garcia J.F., Huq E., and Quail P.H. Direct targeting of light signals to a promoter element-bound transcription factor. Science 2000, 288: 859–863
    Martinez-Zapater J.M., and Somerville C.R. Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol. 1990, 92: 770-776
    Martineau B., Houck C.M., Sheehy R.E., and Hiatt W.R. Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J. 1994, 5: 11-19
    Mason M.G., Li J., Mathews D.E., Kieber J.J., and Schaller G.E. Type-B response regulators display overlapping but distinct expression patterns in Arabidopsis. Plant Physiol. 2004, 135: 927-937.
    Mayer K.F.X., Schoof H., Haecker A., Lenhard M., Jürgens G., and Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 1998, 95: 805-815
    McClung C.R. Plant circadian rhythms. Plant Cell 2006, 18: 792–803
    McSteen P., and Leyser O. Shoot branching. Annu. Rev. Plant Biol. 2005, 56: 353-374
    Medford J.I., Horgan R., El-Sawi Z., and Klee H.J. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1989, 1: 403–413
    Michaels S.D., and Amasino R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 1999, 11: 949–956
    Millar A.J., Carre I.A., Strayer C.A., Chua N.H., and Kay S.A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 1995, 267: 1161–1163
    Miller C.O., Skoog F., Okomura F.S., von Saltza M.H., and Strong F.M. Isolation, structure and synthesis of kinetin, a substrance promoting cell division. J. Am. Chem.Soc. 1956, 78: 1345-1350
    Miller C.O., Skoog F., Von Saltza M.H., and Strong F. Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 1955, 77: 1392-1293
    Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., Tabata S.,Sandberg G., and Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 2006, 103: 16598–16603
    Miyawaki K., Matsumoto-Kitano M., and Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004, 37: 128-138
    Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H.R., Carre I.A., and Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2002, 2: 629–641
    Mizukami Y., and Ma H. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 1997, 9: 393-408.
    Mockler T.C., Guo H., Yang H., Duong H., and Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 1999, 126: 2073–2082
    Mok D.W.S., and Mok M.C. Cytokininmetabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52: 89–118
    Morris D.A. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.). Planta 1977, 136: 91–96
    Morris R.O., Bilyeu K.D., Laskey J.G., and Cheikh N.N. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Commun. 1999, 255: 328–33
    Morris R.O., Blevins D.G., Dietrich J.T., Durley R.C., Gelvin S.B., Gray J., Hommes N.G., Kaminek M., Mathesius U., Meilan R., Reinbott T.M., and Sayavedra-Soto L. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust. J. Plant Physiol. 1993, 20: 621–637
    Morris S.E., Cox M.C.H., Ross J.J., Krisantini S., and Beveridge C.A. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol. 2005, 138: 1665–1672
    Mouradov, A., Cremer, F., and Coupland, G. Control of flowering time: interacting pathways as basis for diversity. Plant Cell 2002, 14: S111-S130.
    Müller B., and Sheen J. Advances in cytokinin signaling. Science 2007, 318: 68-69
    Müller D., Schmitz G., and Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 2006, 18: 586–597
    Müller R., Borghi L., Kwiatkowska D., Laufs P., and Simon R. Dynamic and compensatoryresponses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell, 2006, 18: 1188-1198
    Naito T, Yamashino T, Kiba T, Koizumi N, Kojima M, Sakakibara H., and Mizuno T. A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2007, 71: 1269-78
    Napoli C.A., Beveridge C.A., and Snowden K.C. Reevaluating concepts of apical dominance and the control of axillary bud outgrowth. Curr. Top. Dev. Biol. 1999, 44: 127–169
    Napoli C.A., and Ruehle J. New mutations affecting meristem growth and potential in Petunia hybrida Vilm. J. Hered. 1996, 87: 371-377
    Nelson D.C., Lasswell J., Rogg L.E., Cohen M.A., and Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 2000, 101: 331–340
    Ni M., Tepperman J.M., and Quail P.H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 1998, 95: 657-667
    Ni M., Tepperman J.M., and Quail P.H. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature 1999, 400: 781-784
    Nikovics K., Blein T., Peaucelle A., Ishida T., Morin H., AidaM., and Laufs, P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18: 2929–2945
    Nilsson O., Lee I., Blazquez M.A., and Weigel D. Flowering time genes modulate the response to LEAFY activity. Genetics 1998, 150: 403–410
    Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S., and Ueguchi C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 2004, 16: 1365-1377
    Nogue F., Hocart C., Letham D.S., Dennis E., and Chaudhury A. Cytokinin biosynthesis is higher in the Arabidopsis amp1 mutant. Plant Growth Regul. 2000, 32: 267-273
    Nordstrom A., Tarkowski P., Tarkowska D., Norbaek R., Astot C., Dolezal K., and Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokininregulated development. Proc. Natl. Acad. Sci. USA 2004, 101: 8039–8044
    Okamuro J.K., den Boer B.G., Lotys-Prass C., Szeto W., and Jofuku K.D. Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. USA 1996, 93: 13831–13836
    Okamuro J.K., Szeto W., Lotys-Prass C., and Jofuku K.D. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell 1997, 9: 37–47
    Onouchi H., Igeno M. I., Perilleaux C., Graves K., and Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 2000, 12: 885–900
    Osakabe Y., Miyata S., Urao T., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem. Bioph. Res. Co. 2002, 293: 806-815
    Parks B.M., and Quail P.H. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional Phytochrome A. Plant Cell 1993, 5: 39-48
    Park D.H., Somers D.E., Kim Y.S., Choy Y.H., Lim H.K., Soh M.S., Kim H.J., Kay S.A., and Nam H.G. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 1999, 285: 1579-1582
    Picken A.J.F., Stewart K., and Klapwijk D. Germination and vegetative development. In The Tomato Crop. London: Chapman and Hall, 1986, pp111-166
    Potuschak T., and Doerner P. Cell cycle controls: genomewide analysis in Arabidopsis. Curr. Opin. Plant Biol. 2001, 4: 501–506
    Powell G.K., and Morris R.O. Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic. Acids Res. 1986, 14: 2555–2565
    Putterill J., Robson F., Lee K., Simon R., and Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80: 847–857
    Quail P.H., Boylan M.T., Parks B.M., Short T.W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science 1995, 268: 675–680
    Rashotte A.M., Carson S.D.B., To J.P.C., and Kieber J.J. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003, 132: 1998-2011
    Rashotte A.M., Mason M.G., Hutchison C.E., Ferreira F.J., Schaller G.E., and Kieber J.J. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. USA 2006, 103: 11081-11085
    Ratcliffe O.J., Amaya I., Vincent C.A., Rothstein S., Carpenter R., Coen E.S., and Bradley D.J. A common mechanism controls the life cycle and architecture of plants. Development1998, 125: 1609–1615
    Ratcliffe O.J., Kumimoto R.W., Wong B.J., and Riechmann J.L. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 2003, 15: 1159–1169
    Reeves P. H., and Coupland G. Response of plant development to environment: Control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 2000, 3: 37–42
    Robson F., Costa M. M. R., Hepworth S., Vizir I., Pineiro M., Reeves P. H., Putterill J., and Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 2001, 28: 619–631
    Roe J.L., Nemhauser J.L., and Zambryski P.C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 1997, 9: 335-353
    Roe J.L., Rivin C.J., Sessions R.A., Feldmann K.A., and Zambryski P.C. The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 1993, 75: 938-950
    Roeckel P., Oancia T., and Drevet J. Effects of seed-specific expression of a cytokinin biosynthetic gene on canola and tobacco phenotypes Transgenic Res. 1997, 6: 133-41
    Roitsch T., and Ehne R. Regulation of source/sink relations by cytokinins. Plant Growth Regul. 2000, 32: 359–367
    Rojo E., Sharma V.K., Kovaleva V., Raikhel N.V., Fletcher J.C. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 2002, 14: 969-977
    Ruiz-Garcia L., Madueno F., Wilkinson M., Haughn G., Salinas J., and Martinez-Zapater J.M. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 1997, 9: 1921–1943
    Running M.P., and Meyerowitz E.M. Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 1996, 122, 1261-1269
    Running M.P., Fletcher J.C., and Meyerowitz E.M. The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 1998, 125: 2545-2553
    Rupp H.M., Frank M., Werner T., Strnad M., and Schmülling T. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 1999, 18: 557–563
    Sa G., Mi M., He-chun Y., and Guo-Feng Li. Anther-specific expression of ipt gene in transgenic tobacco and its effect on plant development. Transgenic Res. 2002, 11: 269-78
    Sachs R., and Hackett W. Source-sink relationships and flowering. In Strategies of Plant Reproduction. Beltsville Symposium Agric. Res. (Meudt, W.J., ed.). Totowa: Allanheld, Osmun, 1983, pp263-272
    Sachs T., and Thimann K.V. The role of auxins and cytokinins in the release of buds from dominance. Am. J. Bot. 1967, 54: 136–144
    Sachs, T. Pattern formation in plant tissues. Cambridge University Press, New York, NY. 1991
    Saibo N.J. M., Vriezen W. H., De Grauwe L., Azmi A., Prinsen E., and Van Der Straeten D. A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. Planta 2007, 225: 831–842
    Sakai H., Aoyama T., and Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 2000, 24: 703–711
    Sakai H., Aoyama T., Bono H., and Oka A. Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol. 1998, 39: 1232–1239
    Sakai H., Honma T., Aoyama T., Sato S., Kato T., Tabata S., and Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 2001, 294: 1519–1521
    Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 67: 431-449
    Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., and Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001, 15: 581–590
    SalomèP.A., To J.P.C., Kieber J.J., and McClung C.R. Arabidopsis response regulators ARR3 and ARR4 play cytokinin independent roles in the control of circadian period. Plant Cell 2005, 18: 55–69
    Samach A., Onouchi H., Gold S.E., Ditta G.S., Schwarz-Sommer Z., Yanofsky M.F., and Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288:1613-1616
    Samach A., Klenz J. E., Kohalmi S. E., Risseeuw E., Haughn G. W., and Crosby W. L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 1999, 20: 433-445
    Santoni V., Delarue M., Caboche M., and Bellini C. A comparison of two-dimentional electrophoresis data with phenotypical traits in Arabidopsis leads to the identification of a mutant (cri1) that accumulates cytokinins. Planta 1997, 202: 62-69
    Sawhney V.K., and Greyson R.I. On the initiation of the inflorescence and floral organs in tomato (Lycopersicon esculentum). Can. J. Bot. 1984, 50: 1493-1495.
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carre I.A., and Coupland G. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 1998, 93: 1219–1229
    Schaller G.E., Doi K., Hwang I., Kieber J.J., Khurana J.P., Kurata N., Mizuno T., Pareek A., Shiu S.H., Wu P., and Yip W.K. Nomenclature for two-component signaling elements of rice. Plant Physiol. 2007, 143: 555–557
    Schaller G.E., Mathews D.E., Gribskov M., and Walker J.C. Two-component signaling elements and histidylaspartyl phosphorelays. 2002, In The Arabidopsis Book, C. Somerville and E. Meyerowitz, eds Rockville, MD: American Society of Plant Biologists, doi/10.1199/tab.0086, http://www.aspb.org/publications/arabidopsis. Schmitz G., and Theres K. Genetic control of branching in Arabidopsis and tomato. Curr. Opin. Plant Biol. 1999, 2: 51–55
    Schmülling T., Werner T., Riefler M., Krupkova E., Bartrina Y., and Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003, 116: 241–252
    Schnorr K.M., Gaillard C, Biget E., Nygaard P and Laloue M. A second form of adenine phosphoribosyltransferase in Arabidopsis thaliana with relative specificity towards cytokinins. Plant J. 1996, 9: 891–98
    Schoof H., Lenhard M., Haecker A., Mayer K.F., Jurgens G., and Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 2000, 100: 635–644
    Schultz E.A., and Haughn G.W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 1991, 3: 771 -781
    Schultz E.A., and Haughn G.W. Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 1993, 119: 745-765
    Schultz T.F., Kiyosue T., Yanovsky M., Wada M., and Kay S.A. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 2001, 13: 2659-2670
    Scofield S., and Murray J.A.H. KNOX gene function in plant stem cell niches. Plant Mol. Biol. 2006, 60: 929–946
    Scofield S., Dewitte W., and. Murray J.A.H. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 2007, 50: 767–781
    Shannon S., and Meeks-wagner D.R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 1991, 3: 877-892
    Shannon S., and Meeks-Wagner D.R. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 1993, 5: 639-655
    Sheldon C.C., Rouse D.T., Finnegan E.J., Peacock W.J., and Dennis E.S. The molecular basis of vernalization: The central role of FLOWERING LOCUS C. Proc. Natl. Acad. Sci. USA 2000, 97: 3753–3758
    Shimizu-Sato S., and Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol. 2001, 127: 1405–1413
    Shuai B., Reynaga-Pena C., and Springer P. The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol. 2002, 129: 747–761
    Sieburth L.E., and Meyerowitz E.M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 1997, 9: 355–365
    Simpson G.G., and Dean C. Arabidopsis, the Rosetta Stone of flowering time. Science 2002, 296: 285-289
    Skoog F., and Armstrong D.J. Cytokinins. Annu. Rev. Plant Physiol. 1970, 21: 359–384
    Smyth D.R., Bowman J.L., and Meyerowitz E.M. Early flower development in Arabidopsis. Plant Cell 1990, 2: 755–767
    Snow R. On the nature of correlative inhibition. New Phytol. 1937, 36: 283–300
    Snowden K.C., Simkin A.J., Janssen B.J., Templeton K.R., Loucas H.M., Simons J.L., arunairetnam S., Gleave A.P., Clark D.G., and Klee H.J. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 2005, 17: 746–759
    Somers D.E., Schultz T.F., Milnamow M., and Kay S.A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 2000, 101: 319–329
    Sorefan K., Booker J., Haurogne K., Goussot M., Bainbridge K., Foo E., Chatfield S., Ward S., Beveridge C., Rameau C., and Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 2003, 17: 1469-1474
    Souer E., van der Krol A., Kloos D., Spelt C., Bliek M., Mol J., and Koes R. Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 1998, 125: 733-742
    Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., and Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004, 45: 1299-1305.
    Stafstrom J.P. Influence of bud position and plant ontogeny on the morphology of branch shoots in pea (Pisum sativum L. cv. Alaska). Ann. Bot. (Lond) 1995, 76: 343–348
    Stafstrom J.P., and Sussex I.M. Expression of a ribosomal protein gene in axillary buds of pea seedlings. Plant Physiol. 1992, 100: 1494–1502
    Steeves T.A., and Sussex I.M. patterns in plant development. New York: Cambridge Univ. Press, 1989
    Stirnberg P., Chatfield S.P., and Leyser H.M.O. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol. 1999, 121: 839–847
    Stirnberg P., van De Sande K., and Leyser H.M.O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129: 1131–1141
    Strayer C., Oyama T., Schultz T.F., Raman R., Somers D.E., Mas P., Panda S., Kreps J.A., and Kay S.A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 2000, 289: 768–771
    Suarez-Lopez P., Wheatley K., Robson F., Onouchi H., Valverde F., and Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410: 1116-1120
    Sun J., Niu Q.W., Tarkowski P., Zheng B., Tarkowska D., Sandberg G., Chua N.H., and Zuo J. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol. 2003, 131: 167–176
    Sung S., and Amasino R.M. Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol. 2004, 7: 4–10
    Sussex I.M. Developmental programming of the shoot meristem. Cell 1989, 56: 225-229
    Sussex I.M., and Kerk N.M. The evolution of plant architecture. Curr. Opin. Plant Biol. 2001, 4: 33–37
    Suzuki T., Imamura A., Ueguchi C., and Mizuno T. Histidine containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol. 1998, 39: 1258–1268
    Suzuki T., Miwa K., Ishikawa K., Yamada H., Aiba H., and Mizuno T. The Arabidopsissensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol. 2001, 42: 107–113
    Suzuki T., Sakurai K., Imamura A., Nakamura A., Ueguchi C., and Mizuno T. Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana, Biosci. Biotechnol. Biochem. 2000, 64: 2486-2489
    Sweere U., Eichenberg K., Lohrmann J., Mira-Rodado V., B?urle I., Kudla J., Nagy F., Sch?fer E., and Harter K. Interaction of the response regulator ARR4 with the photoreceptor phytochrome B in modulating red light signaling. Science 2001, 294: 1108–1111
    Tajima Y., Imamura A., Kiba T., Amano Y., Yamashino T., and Mizuno T. Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol. 2004, 45: 28–39
    Takei K., Sakakibara H., and Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 2001, 276: 26405–26410
    Takei K., Yamaya T., and Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 2004, 279: 41866–41872
    Talbert P.B., Adler H.T., Paris D.W., and Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 1995, 121: 2723-2735
    Tamas I. Hormonal regulation of apical dominance. In P. Davies [ed.], Plant hormones and their role in plant growth and development. 1987, pp393–410
    Tanaka M., Takei K., Kojima M., Sakakibara H., and Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006, 45: 1028–1036
    Tanaka Y., Suzuki T., Yamashino T., and Mizuno T. Comparative studies of the AHP histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2004, 68: 462-465
    Taniguchi M., Sasaki N., Tsuge T., Aoyama T., and Oka A. ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol. 2007, 48: 263–277
    Tantikanjana T., Yong J., W.H., Letham D.S., Griffith M ., Hussain M., Ljung K., Sandberg G., and Sundaresan V. Control of axillary bud initiation and shoot architecture in Arabidopsisthrough the SUPERSHOOT gene. Genes Dev. 2001, 15: 1577–1588
    Taya Y., Tanaka Y., and Nishimura S. 5’-AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature 1978, 271: 545–547
    Thei?en G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 2001, 4: 75-85
    Thei?en G., and Saedler H. Floral quartets. Nature 2001, 409: 469-471
    Thomas B., and Vince-Prue B. Photoperiodism in Plants, 2nd ed. San Diego, CA: Academic Press, 1997
    To J.P.C., Haberer G., Ferreira F.J., Deruere J., Mason M.G., Schaller G.E., Alonso J.M., Ecker J.R., and Kieber J.J. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 2004, 16: 658-671
    To J.P.C., Deruère J.D., Maxwell B.B., Morris V.F., Hutchison C.E., Ferreira F.J., Schaller G.E., and Kiebera J.J. Cytokinin Regulates Type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 2007, 19: 3901-3914
    To J.P.C., Haberer G., Ferreira F.J., Deruere, J., Mason M.G., Schaller G.E., Alonso J.M., Ecker J.R., and Kieber J.J. Type-A ARRs are partially redundant negative regulators of cytokinin signaling in Arabidopsis. Plant Cell 2004, 16: 658–671
    Turnbull C.G.N. Raymond M.A.A., Dodd I.C., and Morris S.E. Rapid increases in cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.) during release of apical dominance. Planta 1997, 202: 271–276
    Ueguchi C., Koizumi H., Suzuki T., and Mizuno T. Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 2001, 42: 231–235
    Urao T., Miyata, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett. 2000, 478: 227–232
    Veach Y.K., Martin R.C., Mok D.W., Malbeck J., Vankova R., and Mok M.C. O-Glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 2003, 131: 1374–1380
    Venglat S.P., and Sawhney V.K. Benzylaminopurine induces of phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants. Planta 1996, 198: 480-487
    Venglat S.P., Dumonceaux T., Rozwadowski K., Parnell L.,Babic V., Keller W., Martienssen R.A., Selvaraj R., and Datla R. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc.Natl. Acad. Sci. USA 2002, 99:4730–4735
    Vollbrecht E., Reiser L., and Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 2000, 127: 3161–3172
    Vreman H.J., Skoog F., Frihart C.R., and Leonard N.J. Cytokinins in Pisum transfer ribonucleic acid. Plant Physiol. 1972, 49: 848–851
    Wang Z.Y., and Tobin E.M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 1998, 93: 1207-1217
    Weigel D., and Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature 1995, 377: 495-500
    Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F., and Meyerowitz, E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell 1992, 69: 843-859
    Weigel D., and Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature 1995, 377: 495–500
    Werner T., Motyka V., Strnad, M., and Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98: 10487–10492
    Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H.C., and Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15: 2532-2550
    Wilkinson M.D., and Haughn G.W. UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell 1995, 7: 1485–1499
    Williams L., and Fletcher J. C. Stem cell regulation in the Arabidopsis shoot apical meristem. Curr. Opin. Plant Biol. 2005, 8:582–586
    Xing S., Rosso M. G., and Zachgo S. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development 2005, 132: 1555–1565
    Xu H.Y., Li X.G., Li Q.Z., Bai S.N., Lu W.L., and Zhang X.S. Charecterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Mol. Biol. 2004, 55: 209-220
    Xu Y.L., Gage D.A., and Zeevaart J.A.D. Gibberellins and stem growth in Arabidopsis thaliana– effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol. 1997, 114: 1471–1476
    Yamada H., Suzuki T., Terada K., Takei K., Ishikawa K., Miwa K., Yamashino T., andMizuno T. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 2001, 42: 1017–1023
    Yanai O., Shani E., Dolezal K., Tarkowski P., Sablowski R., Sandberg G., Samach A., and Ori N. Arabidopsis KNOX proteins activate cytokinin biosynthesis. Curr. Biol. 2005, 15: 1566–1571
    Yang S.H., Yu H., Xu Y., and Goh C.J. Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1. FEBS Lett. 2003, 555: 291-296
    Yanofsky M.F., Ma H., Bowman J.L., Drews G.N., Feldmann K.A., and Meyerowitz E.M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 1990, 346: 35-39
    Yokoyama A., Yamashino T., Amano Y., Tajima Y., Imamura A., Sakakibara H., and Mizuno T. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol. 2007, 48: 84–96
    Zagotta M.T., Hicks K.A., Jacobs C.I., Young J.C., Hangarter R.P., and Meeks-Wagner D.R. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 1996, 10: 691-702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700