用户名: 密码: 验证码:
渤海海域水色遥感的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对渤海海域的水色遥感,包括对近岸水体光学性质、叶绿素浓度垂向分布和水色遥感算法进行了深入的研究。渤海是我国的一个内陆海,深入了解其光学性质对我国水色遥感的发展有极其重要的作用。然而,由于其水深较浅以及大型河流泥沙、营养盐和可溶有机物的输入等原因,渤海海域的光学性质变得非常复杂,国内外的很多遥感模式在渤海海域都不适用,模式输出与现场数据之间存在较大的误差。针对这个问题,本文根据辐射传输方程和实测数据建立了相应数值模型,全面分析了渤海海域特别是渤海近岸的光学性质,并发展了叶绿素浓度垂向最大值遥感反演算法。
     依据2005年的实测数据,本文分析了渤海近岸水体的光学性质,包括水体的吸收系数,散射系数以及衰减系数等,建立了相应的叶绿素吸收光谱模型,黄色物质吸收光谱模型以及颗粒物后向散射系数模型等。
     通过对比现行的业务化海表层叶绿素浓度反演模式及人工神经网络的结果,本文深入分析了这些模式在渤海的适用性,通过相互比较找出了在渤海各个海区内反演结果精确度相对较高的模式。然而总的来说,将这些模式完全照搬到渤海海海域是会产生较大反演误差的。因此,针对渤海必须要发展其自身独特的遥感算法。
     根据辐射传输理论,本文建立了一个适用于一类水体辐射传输的理想模型,用来研究叶绿素垂向分布结构对水色遥感信息所产生的影响。该模型的三个主要遥感参数包括海表面遥感反射率、海水穿透深度以及垂向积分的叶绿素浓度值。模型的输出结果显示,当海表层叶绿素浓度不变而叶绿素垂向分布结构变化的时候,上述三个参数在可见光波段范围内都受到很大的影响,特别是在蓝绿光波段受到的影响最大。
     经验蓝绿波段比值法是反演海表层叶绿素浓度的有效方法,例如SeaWiFS的OC4V4算法是一个最有代表性的蓝绿波段比值法。因此为研究叶绿素垂向结构对叶绿素浓度反演所产生的影响,本文以OC2V4算法为例进行了讨论。结果显示,当海表层叶绿素浓度不变的时候,OC2V4算法的输出数据是随着叶绿素垂向分布结构的变化而变化的,这对于一个反演海表层叶绿素浓度的算法来说显然是不能接受的。通过分析模式结果,本文利用了一个特殊的遥感波段,建立了一种新型的叶绿素反演算法,该算法可以不受叶绿素垂向分布结构的影响,较准确地反演出海表层叶绿素浓度。目前,还没有人专门针对叶绿素垂向分布结构不一致的海域发展反演海表层叶绿素浓度的算法,而现行的大部分经验算法都是依靠蓝绿波段比值法来反演海表层叶绿素浓度的,这就不可避免的会产生相应的误差。因此可以说本文提出的新算法对以后的研究可以起到指导作用。
     根据实测数据,文中首先分析了渤海海域的叶绿素垂向分布结构特征并且将其加以分类。针对每一类的垂直方向分布特征,在前人研究的基础上建立了相应的适用于渤海海域的数学模式,该模型的建立可以使人们更准确的研究渤海海域的水体性质以及生态特征。另外,采用蓝绿波段比值法,文中建立一个反演叶绿素浓度最大值的遥感模式,并且利用实测数据对其进行检验,取得了较好的结果。
     根据Lee等人的研究结果,作者进一步建立了一个近岸二类水体水色遥感算法的“半分析模型”,它是一个适合渤海海域的参数化模型。通过根据渤海海域的光学性质将模式加以修改,本文利用该模式成功的反演出水体中的一些光学参数如叶绿素吸收系数,黄色物质吸收系数,颗粒物的后向散射系数,以及叶绿素垂向浓度最大值对应的深度等。至此,渤海海域的叶绿素垂向最大值的遥感模式已经基本建立,经验模式用来反演最大值浓度,半分析模型用来反演最大值的对应深度。本文的研究为将来拓展海洋水色遥感从海表层进入水体内部的应用提供了一个新的途径。
Ocean color remote sensing has become important in the ocean sciences, especially for the coastal oceans. Bohai Sea is a semi-enclosed inland sea with a typical case-2 water environment located at the northernmost end of eastern Chinese mainland. Understandings of its bio-optical properties will be quite important for the improvements of ocean color applications in China. Due to the shallow bottom depths and large amounts of suspended matters transported from some big rivers, however, the optical properties of Bohai Sea become so complicated that the operational chlorophyll algorithms of the world often fail in this area.
     Based upon the measured data in the coastal areas of Bohai Sea, preliminary results are obtained about the optical properties including the absorption, scattering, and attenuation properties of the water body. Also, this study builds some remote sensing models to predict the inherent optical properties from above surface remote sensing reflectance.
     Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations are evaluated in the Bohai Sea by using an extensive field observation data set. The comparison results show that these empirical algorithms developed for case-1 and case-2 waters can not be applied directly to the Bohai Sea, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product is 1.85 and the root mean square (RMS) error is 2.26. It appears that the Bohai Sea requires new approaches and new parameterizations for both empirical and semi-analytical pigment algorithms.
     According to the radiative transfer theory, an idealized ocean color model is used to study the effect of nonuniform chlorophyll profile on the ocean color parameters such as penetration depth, the above-surface spectral remote-sensing reflectance, and the optically weighted chlorophyll concentration. The simulations for a vertically nonuniform chlorophyll concentration are compared with reference simulations for a homogeneous ocean whose chlorophyll concentration is identical to the surface chlorophyll concentration of inhomogeneous cases. Due to the influence of the nonuniformity, the maximum relative error at 445 nm for penetration depth is up to 60%, spectral remote-sensing reflectance is about 40% and optically weighted chlorophyll concentration is about 40% within the range of our simulations.
     Model results show that there is always a spectral band where the value of above-surface remote-sensing reflectance is not influenced by the nonuniformity. Depending on this band, a new model for retrieving sea surface chlorophyll concentration is designed by adding a compensation term into the variable in SeaWiFS OC2V4 algorithm. By using an iterative method with this new model, sea surface chlorophyll concentration can be well retrieved even in the area where the vertical chlorophyll distribution is unknown. This is a new method which is not ever proposed before, and by using this model, people don’t need to consider the vertical distributions of chlorophyll.
     Special characteristics of deep chlorophyll maximum in Bohai Sea of China are examined in this study with four cruises data measured in June and August of 2003 and 2005 respectively. Based on what we measured in 2003, a new blue-to-green ratio method ocean color model to retrieve concentration of deep chlorophyll maximum from the remote sensing reflectance above sea surface is proposed. This model is able to be used in case-2 water areas with depth of deep chlorophyll maximum shallower than 7 meters. This model confirms that satellite sensors can detect deep chlorophyll maximum in most areas of Bohai Sea and the existence of deep chlorophyll maximum also can bring big retrieval errors to ocean color models. The maximum depth from which the radiometer receives significant signal varies as a function of wavelength and of the clarity of the water. Blue or green light can penetrate deeper than red light in sea waters, so satellite sensors in blue and green bands are able to receive the signal of deep chlorophyll maximum. In the shallow seas of case-2 water with shallow depth and high concentration of deep chlorophyll maximum, contribution of deep chlorophyll maximum to remote sensing signals is much larger than that from the sea surface chlorophyll. Therefore, we suggest that we should not focus our attention only in sea surface for study of the ocean color retrieval models, but also should broaden the field of vision.
     According to Lee’s study, a hyperspectral remote-sensing reflectance inversion model is parameterized by using measured data in coastal areas of Bohai Sea. The model only uses remote-sensing reflectance to derive a set of values of absorption, backscattering, water bottom albedo, and bottom depth. The model shows good performances to retrieve phytoplankton absorption and colored detrital matter (detritus plus gelbstoff) absorption. More important, statistical analysis result shows that model derived depths agree well with measured depths of deep chlorophyll maximum, where no significant bias is found, which is primarily due to the existence of water stratification. Therefore, together with the empirical blue-to-green ratio method to retrieve concentration of deep chlorophyll maximum, this study succeed in retrieving the properties of deep chlorophyll maximum (the concentration and the depth) by using remote sensing methods. This work broadens the view of applications of ocean color remote sensing not only just from the surface but also into the oceanic interior, which provides a new method to use ocean color data.
引文
[1]恽才兴,蒋兴伟.海岸带可持续发展与综合管理.北京:海洋出版社, 2002. 111~115
    [2]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社, 1996. 410~415
    [3]陈沈良,谷国传.杭州湾悬浮泥沙浓度变化与模拟.泥沙研究, 2000, 5: 45-50
    [4]张国安,虞志英,何青,包四林,金镠.长江口深水航道一期工程前后泥沙运动特性初步分析.泥沙研究, 2003, 6: 31-38
    [5]陈晓翔,丁晓英.用FY-1D数据估算珠江口海域悬浮泥沙含量.中山大学学报(自然科学版), 2004, 43: 194-196
    [6]李云驹,常庆瑞,杨晓梅.长江口悬浮泥沙的MODIS影像遥感监测研究.西北农林科技大学学报, 2005, 33: 117-121
    [7] Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W.W. Broenkow. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Applied Optics, 1983, 22: 20-36
    [8] Bricaud, A., and A. Morel. Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model. Oceanological Acta, 1987, 33-50
    [9] Longhurst, A. Interpreting CZCS images of the Amazon Plume: reply to comments by F.E. Muller-Karger, P.L. Richardson and D. McGillicuddy. Deep Sea Research I, 1995, 42: 2139-2141
    [10]郭德方,遥感图象的计算机处理和模式识别.北京:电子工业出版社,1987
    [11] Clark, D.K. Phytoplankton pigment algorithm for the Nimbus-7 CZCS. In: eds. J. F. R. Gower. Oceanography from Space. New York: Plenum Press, 1981
    [12] Gordon, H.R., and D.K. Clark. Clear water radiance for atmospheric correction of coastal zone color scanner imagary. Applied Optics, 1981, 20: 4175-4180
    [13] Gordon, H.R., and A. Morel. Lecture Notes on Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. New York: Springer Verlag, 1983, Vol.4, pp114
    [14] Smith, R.C., and W.H. Wilson. Ship and Satellite Bio-Optical Research in the California Bight. In: Gower, J. F. R. eds. Oceanography from Space, New York: Plenum Press, 1981, 281-294
    [15] Smith, R.C. and K.S. Baker. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 1978, 19: 1-12
    [16] Hooker, S.B. , W.E. Esaias, G.C. Feldman, W.W. Gregg, and C.R. McClain. An overview of SeaWiFS and ocean color. In: NASA Tech. Memo. 104566, Vol.1, NASA Goddard Space Flight Center, Greenbelt, MD, 1992, pp24
    [17] Morel, A., and B. Gentili. Diffuse reflectance of oceanic waters: its dependence on sunangle as influenced by molecular scattering contribution. Applied Optics, 1991, 30: 4427-4438
    [18] Morel, A. and B. Gentili. Diffuse reflectance of oceanic waters. 2. Bidirectional aspects. Applied Optics, 1993, 32: 6864-6872
    [19] Morel, A., and B. Gentili. Diffuse reflectance of oceanic waters. 3. Implication of bidirectionality for the remote-sensing problem. Applied Optics, 1996, 35: 4850-4862
    [20] Ding, K., and H. R. Gordon. Analysis of the influence of O2 A-band absorption on atmospheric correction of ocean-color imagery. Applied Optics, 1995, 34: 2068-2080
    [21]潘德炉,李淑箐,毛天明.卫星海洋水色遥感的辐射模式研究.海洋与湖沼, 1997, 28: 652-658
    [22]潘德炉,林寿仁.荧光法遥感海面叶绿素浓度的波段的研究.海洋湖沼学报, 1989, 20: 564-570
    [23]潘德炉,毛天明,李淑箐,毛志华.卫星遥感监测我国沿海水色环境的研究.第四世纪, 2000, 20: 240-247
    [24]李铜基,陈清莲,朱建华.我国近岸二类海水光谱特性的测量与研究.海洋通报, 2002, 21:9-15
    [25]李铜基,唐军武.光谱仪测量离水辐射率的处理方法.海洋技术, 2000, 19(3): 11-16
    [26]唐军武,田国良.水色光谱分析与多成分反演算法.遥感学报, 1997,1(4): 252-256
    [27]唐军武,陈清莲,谭世祥,董庆,苗伟,冯林新.海洋光谱测量与数据分析处理方法.海洋通报, 1998, 17:71-79
    [28]唐军武,丁静,田纪伟,宋庆君,王晓梅,吴奎桥.黄东海二类水体三要素浓度反演的神经网络.高技术通讯, 2005, 15(3): 83-88
    [29]贺明霞,刘智深. Retrieval of chlorophyll from spectral reflectance in high bb waters. PORSEC98, 1998, 1:48-54
    [30]贺明霞.从遥感反射比获取叶绿素浓度的中国海海色反演模式. ADEOS/ADEOSⅡ联合学术研讨会, 1999,日本京都
    [31]陈楚群,施平,毛庆文.南海海域叶绿素浓度分布特征的卫星遥感分析.热带海洋学报, 2001, 20(2): 66-71
    [32]丛丕褔,牛铮,曲丽梅等.利用海洋卫星HY-1数据反演叶绿素a的浓度.高技术通讯, 2005, 15(11): 106-110.
    [33]恽才兴等.河口悬浮泥沙遥感定量研究及其应用实例.遥感信息, 1989, 6: 12-24
    [34]李四海,唐军武,恽才兴.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究.海洋学报, 2002, 24(2): 51-58
    [35]李炎,李京.基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法.科学通报, 1999, 17: 1892-1897
    [36]赵太初.闽江口悬浮泥沙波谱特征现场测量与遥感定量分析.遥感应用, 1988, 1(1): 13-21
    [37]乐华福,赵太初. SeaWIFS资料水色辐射模式验证的研究.海洋环境科学, 1999, 18(4): 57-61
    [38]赵冬至,张丰收,赵玲,丛丕褔.近岸海域叶绿素和赤潮的AVHRR波段比值探测方法研究.海洋环境科学, 2003, 22(4): 25-31
    [39] IOCCG Report Number 2, Status and Plans for Satellite Ocean-colour Missions: Considerations for Complementary Missions, 1999, 1-47
    [40]陈清莲,唐军武,王项南,任洪启.东海实验区水体光谱特性现场测量与数据分析.海洋技术, 1999, 18(3): 25-37
    [41] Gordon, H.R. Influence of vertical stratification on the distribution of irradiance at the sea surface from a point source in the ocean. Applied Optics, 1988, 27: 2643-2645
    [42] Morel, A. Optical properties of pure water and pure sea water. In: Jerlov, N. G. and E. S. Nielsen. eds. Optical Aspects of Oceanography. New York: Academic, 1974, 1–24
    [43] Morel, A. and A. Bricaud. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Research, 1981, 28: 1375-1393
    [44] Bricaud, A., A. Morel, and Prieur. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 1981, 26: 43-53
    [45] Carder, K.L., G.R. Steward, G.R. Harvey, and P.B. Ortner. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 1989, 34: 68-81
    [46] Roesler, C.S., M.J. Perry, and K.L. Carder. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnology and Oceanography, 1989, 34: 1510-1523
    [47]中国海岸带水文.北京:海洋出版社, 1995, 23-124
    [48]周良明,渤海水色光谱及海域上空大气光学特性的调查与研究.中国海洋大学博士论文, 2004
    [49]中国海湾志编撰委员会,中国海湾志.北京:海洋出版社, 1998, 56-81
    [50]宋庆君, 2005年渤海海域调查数据提交报告. 2005 (内部交流)
    [51] Smith, R. C., and K.S. Baker. Analysis of ocean optical data. Ocean Optics VII, SPIE, 1984, 478: 119-126
    [52] Smith, R. C., and K.S. Baker. Analysis of ocean optical data. Ocean Optics VIII, SPIE, 1986, 637: 95-107
    [53] ProSoft User Manual 7.7, Satlantic Inc., 2004
    [54] Darecki, M., and D. Stramski. An evaluation of MODIS and SeaWIFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 2004, 89: 326-350
    [55] Neckel, H., and D. Labs. The solar radiation between 3300 and 12500 ?. Solar Physics, 1984, 90: 205-258
    [56] Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water). Journal of Geophysical Research, 1988, 93: 10,749-10,768
    [57] Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker and D. K. Clark. A Semianalytic Radiance Model of Ocean Color. Journal of Geophysical Research, 1988, 93(D9): 10909-10924
    [58] Volz, F.E. Economical multispectral sun photometer for measurements of aerosol extinction from 0.44 to 1.6 and precipitable water. Applied Optics, 1974, 13: 1732-1733
    [59] Craig, R.A. The Upper Atmosphere: Meteorology and Physics. London: Academic Press, 1965, pp509
    [60] Sturm, B. Selected topics of coastal zone color scanner evaluation. In: Cracknel A.P. eds. Remote sensing application in marine science and technology. 1985, 137-168
    [61] Kohmyr, D., R.D. Grass, and R.K. Leonard. Total ozone, ozone vertical distributions, and stratospheric temperatures at south pole, Antarctica, in 1986 and 1987. Journal of Geophysical Research, 1989, 94: 9847-9861
    [62] Kohmyr, D. Operations Handbook - ozone Observations with a Dobson Spectrometer. Global Ozone Research and Monitoring Project, WMO document, June 1980
    [63] Slusser, J. and J. Gibson. Langley method of calibrating UV filter radiometers. Journal of Geophysical Research, 2000, 105(D4): 4841-4849
    [64] Molina, L. T., and M.J. Molina. Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range. Journal of Geophysical Research, 1986, 91: 14501-14508
    [65] Gao, W. and J. Slusser. Direct-Sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers. Applied Optics, 2001, 40(19): 3149-3155
    [66] Bruegge, C.J., J. E. Conel, R.O. Green, J.S. Margolis, R.G. Holm, and G. Toon. Water vapor column abundance retrievals during FIFE. Journal of Geophysical Research, 1992, 97(D17): 18759-18768
    [67] Halthore, R.N., B.L. Markham, and D.W. Deering. Atmospheric correction and calibration during KUREX-91. IGARSS’92 Int. Geosci. Remote Sens Symp, 1992, 2: 1278-1280
    [68] Carder, K.L., F. R. Chen, Z. P. Lee, and S. K. Hawes. Semi-analytic moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 1999, 104: 5403-5421
    [69] Aiken, J., G.F. Moore, C.C. Trees, S.B. Hooker, and D.K. Clark. The SeaWiFS CZCS-typepigment algorithm. In: S. B. Hooker, and E. R. Firestone. eds. NASA technical memorandum, 104566. SeaWiFS technical report series, 1995, 29: 1– 32
    [70] O’Reilly, J.E., S. Maritorena , B.G. Mitchell, et al. Ocean color chlorophyll a algorithms for SeaWIFS. Journal of Geophysical Research, 1998, 103(C11): 24937-24953
    [71] Lee, Z.P. and C. Hu. Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. Remote Sensing of Environment, 2006, 101: 270-276
    [72] Bannister, T.T. Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnology and Oceanography, 1974, 19: 1-12
    [73] Kiefer, D. and B.G. Mitchell. A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnology and Oceanography, 1983, 28: 770–776
    [74] Berthon, J.F. and Morel, A. Validation of a spectral light photosynthesis model and use of the model in conjunction with remotely sensed pigment observation. Limnology and Oceanography, 1992, 37: 781–796
    [75] Morel, A. Y.H. Ahn, F. Partensky, D. Vaulot, H. Claustre. Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation. Journal Marine Research, 1993, 51: 617–649
    [76] Bricaud, A., M. Babin, A. Morel, H. Claustre. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research, 1995, 100: 13,321-13,332
    [77] Cleveland, J.S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration. Journal of Geophysical Research, 1995, 100: 13,333-13,344
    [78] Kirk, J.T.O. Light and photosynthesis in aquatic ecosystems. New York: Cambridge Univ. Press, 1994, pp509
    [79] Mitchell, B.G., D.A. Kiefer. Variability in pigments specific particulate fluorescence and absorption spectra in northeastern Pacific Ocean. Deep-sea Research, 1988, 35: 665–689
    [80] Millán-Nú?ez, E., J.R. Lara-Lara, J.S. Cleveland. Variations in specific absorption coefficients and total phytoplankton in the Gulf of California. CalCOFI Report 39, 1998, 159–168
    [81] Millán-Nú?ez, E., E.M. Sierackib, R. Millán-Nú?ez, et al. Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep-sea Research II, 2004, 51: 817–826
    [82] Bricaud, A., D. Stramski. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and Sargasso Sea. Limnology and Oceanography, 1990, 35: 562-582
    [83] Wozniak, B., J. Dera, Q.I. Koblentz-Mishke. Bio-optical relationships for estimating primary production in the ocean. Oceanologia, 1992, 33: 5-38
    [84] Hoepffner, N., and S. Sathyendranath. Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distributions in the western North Atlantic. Limnology and Oceanography, 1992, 37: 1,660-1,679
    [85] Nelson, N.B., B.B. Prezelin, and R.R. Bidigare. Phytoplankton light absorption and the package effect in California coastal waters. Marine Ecology Progress Series, 1993, 94: 217-227
    [86]王桂芬,曹文熙,许大志,刘胜,张建林.南海北部水体浮游植物比吸收系数的变化.热带海洋学报, 2005, 24(5): 1-10
    [87] Bricaud, A., C. Roesler, and J.R.V. Zaneveld. In situ methods for measuring the inherent optical properties of ocean waters. Limnology and Oceanography, 1995, 40: 393-410
    [88] Hoepffner, N., and S. Sathyendranath. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology Progress Series, 1991, 73: 11–23
    [89] Duysens, L.N.M. The flattening of the absorption spectrum of suspensions as compared to that of solutions. Biochimica et Biophysica Acta, 1956, 19: 1–12
    [90] Magnuson, A., L.W. Harding, M.E. Mallonee, and J.E. Adolf. Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight. Estuarine coastal and shelf science, 2004, 61: 403-424
    [91] Morel, A., and L. Prieur. Analysis of variations in ocean color. Limnology and Oceanography, 1977, 22: 709-722
    [92] Lee, Z.P., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. Hyperspectral remote sensing for shallow waters: I. A semi-analytical model. Applied Optics, 1998, 37: 6329– 6338
    [93] Lee, Z.P., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Applied Optics, 1999, 38: 3831–3843
    [94] Lee, Z.P. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. dissertation (University of South Florida, Department of Marine Science, St. Petersburg), 1994
    [95] Lee, Z. P., and K.L. Carder. Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sensing of Environment, 2004, 89: 361-368
    [96] Kalle, K. The problem of the gelbstoff in the Sea. Oceanography and Marine Biology an Annual Review4, 1996, 4: 91-104
    [97]张绪琴,张士魁,吴永森,夏达英.海水黄色物质研究进展.黄渤海海洋, 2000, 18(1): 89-92
    [98]沈红,赵冬至,付云娜,杨建洪.黄色物质光学特性及遥感研究进展.遥感学报, 2006, 10(6): 949-954
    [99]朱建华,李铜基.黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究.海洋技术, 2004, 23(2) : 8-13
    [100]陈楚群,潘志林,施平.海水光谱模拟及其在黄色物质遥感反演中的应用.热带海洋学报, 2003, 22(5): 34-39
    [101]吴永森,张士魁,张绪琴等.海水黄色物质光吸收特性实验研究.海洋与湖沼, 2002, 33(4) : 402-406
    [102]夏达英,李宝华,吴永森等.海水黄色物质荧光特性的初步研究.海洋与湖沼, 1999, 30(6) : 720-725
    [103] Siegel, D.A., S. Maritorena, N.B. Nelson, D.A. Hansell, and M. Lorenzi-Kayser. Global distribution and dynamics of colored dissolved and detrital organic materials. Journal of Geophysical Research, 2002, 107(C12), 3228, doi:10.1029/2001JC000965
    [104] Boss, E., W.S. Pegau, J.R.V. Zaneveld, and A.H. Barnard. Spatial and temporal variability of absorption by dissolved material at a continental shelf. Journal of Geophysical Research, 2001, 106(C5): 9499-9507
    [105] Schwarz, J.N., P. Kowalcazuk, S. Kaczmarek, et al. Two models for absorption by coloured dissolved organic matter. Oceanologia, 2002, 44 (2): 209-241
    [106] Roderick, E.W., W.W.C. Gieskes, and S. Van Laar. Regional and seasonal differences in light absorption by yellow substance in the southern bight of the North Sea. Journal of Sea Research, 1999, 42: 169-178
    [107] Ferrari, G.M, and S. Tassan. Evaluation of the influence of yellow substance absorption on the remote sensing of water quality in the Gulf of Naples: a case study. International Journal of Remote Sensing, 1992, 13(12): 2177-2189
    [108] Rochelle-Newall, E.J., and T.R. Fisher. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry, 2002, 77: 23-41
    [109] Kopelevich, O.V., S.V. Lutsarev, V.V. Rodionov. Light spectral absorption by yellow substance of ocean water (in Russian). Okeanologiya, 1989, 29: 409-414
    [110] Keith, D.J., J.A. Yoder, and S.A. Freeman. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: Implications for phytoplankton in coastal waters. Estuarine, Coastal and Shelf Science, 2002, 55, 705-717
    [111] Markager, S., and W. Vincent. Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnology and Oceanography, 2000, 45: 642–650
    [112] Stedmon, C.A.,S. Markager, and H. Kaas. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science, 2000, 5l: 267- 278
    [113] Babin, M., A. Morel, V. Fournier-Sicre, F. Fell and D. Stramski. Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration. Limnology and Oceanography, 2003, 48: 843-859
    [114] Antti, H. Inherent and apparent optical properties in relation to water quality in NordicWaters. Report series in Geophysics, 2002, 45, pp56
    [115]李铜基,陈清莲,杨安安,毕大勇.黄东海春季水体后向散射系数的经验模型研究.海洋技术, 2004, 23 (3): 10-14
    [116]宋庆君,唐君武.黄海、东海海区水体散射特性研究.海洋学报, 2006, 28 (4): 56- 63
    [117]刘炜,李铜基,朱建华,陈清莲.黄东海海区总悬浮物散射特性的研究.海洋技术, 2007, 26(2): 42-46
    [118] Gould, R.W., R.A. Arnone, and P.M. Martinolich. Spectral dependence of the scattering coefficient in case 1 and case 2 waters. Applied Optics, 1999, 38: 2377–2383
    [119] Eurico J.D., and R.L. Miller. Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote Sensing of Environment, 2003, 84: 538-549
    [120]宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报, 2005, 26(6): 96-106
    [121]何贤强,潘德炉,毛志华等.利用SeaWiFS反演海水透明度的模式研究.海洋学报, 2004, 26(5): 56-62
    [122] Austin, R.W., and T.J. Petzold. The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Colour Scanner. In: eds. J F R Gower. Oceanography from Space. New York: Plenum, 1981, 239-256
    [123] Mueller, J. L. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water leaving radiances at 490 and 555 nm. SeaWiFS Postlaunch Tech Rep Series, Vol 11, Part3, 2000, 24-27
    [124] Lee, Z.P., K.P. Du, and R. Arnone. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research, 2005, C02016, doi:10.1029/2004JC002275
    [125]王晓梅,唐军武,丁静,马超飞,李铜基,汪小勇,毕大勇.黄海、东海二类水体漫衰减系数与透明度反演模式的研究.海洋学报, 2005, 27(5): 38-45
    [126] Smith, R. C., and K.S. Baker. Optical properties of the clearest natural waters. Applied Optics, 1981, 20: 177– 184
    [127] Aas, E. Two stream irradiance model for deep waters. Applied Optics, 1987, 26: 2095– 2101
    [128] Sathyendranath, S., and T. Platt. The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing. Journal of Geophysical Research, 1988, 93: 9270–9280
    [129] Sathyendranath, S., T. Platt, C.M. Caverhill, R.E. Warnock, and M.R. Lewis. Remote sensing of oceanic primary production: Computations using a spectral model. Deep Sea Research, 1989, 36: 431–453
    [130] Morel, A. and S. Maritorena. Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research, 2001, 106(C4): 7163-7180
    [131] Loisel, H., J.M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. Journal of Geophysical Research, 2006, 111, C09024, doi:10.1029/2005JC003367
    [132] Bukata, R. P., J.H. Jerome, K.Y. Kondratyev, and D.V. Pozdnyakov. Optical properties and remote sensing of inland and coastal waters. Optical properties and remote sensing of inland and coastal waters. Boca Raton: CRC Press, 1995
    [133] Sathyendranath, S. Remote sensing of ocean colour in coastal and other optically-complex, waters. IOCCG Report, vol. 3. Dartmouth, Nova Scotia: IOCCG Project Office, 2000, pp140
    [134] Tang, J. W., X.M. Wang, Q.J. Song, et al. The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea. Acta Oceanologica Sinica, 2004, 23(4): 617-626
    [135] Clark, D. K. MODIS Algorithm Theoretical Basis Document, Bio- Optical Algorithms—Case 1 Waters, version 1.2, 1997, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod18.pdf
    [136] O'Reilly, J. E., S. Maritorena, D.A. Siegel, et al. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2 and OC4: Version 4. NASA Technical Memorandum 2000-206892, Vol. 11 (NASA Goddard Space Flight Centre, Greenbelt, Maryland).
    [137]詹海刚,施平,陈楚群.利用神经网络反演海水叶绿素浓度.科学通报, 2000, 45(17): 1879-1884
    [138]张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素-a浓度反演方法.遥感学报, 2002, 6(1): 40-44
    [139] Keiner, L.E. and X.H. Yan. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sensing of Environment, 1998, 66(2): 153-165
    [140] Gordon, H. R., and W.R. McCluney. Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics, 1975, 14: 413-416
    [141] Dandonneau, Y. Concentrations en chlorophylle dans le Pacifique tropical sud-ouest: comparaison avec d’autres aires océaniques tropicales. Oceanologica Acta, 1979, 2: 133-142
    [142] Cullen, J. J., and R.W. Eppley. Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance. Oceanologica Acta, 1981, 4: 23-32
    [143] Gordon, H. R., and D.K. Clark. Remote sensing optical properties of a stratified ocean: an improved interpretation. Applied Optics, 1980, 19: 3428-3430
    [144] Gordon, H. R. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile. Applied Optics, 1992, 31: 2116-2129
    [145] André, J. M. Oceanic color remote sensing and the subsurface vertical structure of phytoplankton pigments. Deep Sea Research, 1992, 39 (5): 763-779
    [146] Frette, O., S.R. Erga, J.J. Stamnes, and K. Stamnes. Optical remote sensing of waters with vertical structure. Applied Optics, 2001, 40: 1478–1486
    [147] Stramska, M., and D. Stramski. Effects of nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean. Applied Optics, 2005, 44: 1735-1747
    [148]曹文熙.叶绿素垂直分布结构对离水辐亮度光谱特性的影响.海洋通报, 2000, 19(3): 30-37
    [149] Lewis, M. R., J.J. Cullen, and T. Platt. Phytoplankton and thermal structure in the upper ocean: consequence of non-uniformity in chlorophyll profile. Journal of Geophysical Research, 1983, 88: 2565-2570
    [150] Prieur, L. and S. Sathyendranath. An optical classification of coastal and oceanic waters based in the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnology and Oceanography, 1981, 26: 671-689
    [151] Gordon, H. R., O.B. Brown, and M.M. Jacobs. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 1975, 14: 417-427
    [152] Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters. New York: Academic, 1994
    [153] Sathyendranath, S., and T. Platt. Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile. Applied Optics, 1989, 28(3): 490-495
    [154] Cullen, J. J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries, 1982, 39: 791-803
    [155] Davis, R.F., C.C. Moore, J.R.V. Zaneveld, and J.M. Napp. Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments. Journal of Geophysical Research, 1997, 102: 5851–5855
    [156] Chang, G.C. and T.D. Dickey, T.D. Optical and physical variability on time scales from minutes to the seasonal cycle on the New England shelf: July 1996 - June 1997. Journal of Geophysical Research, 2001, 106: 9435-9453
    [157] Fennel, K. and E. Boss, E. Subsurface maxima of phytoplankton and chlorophyll: Steady state solutions from a simple model. Limnology and Oceanography, 2003, 48(4): 1521-1534
    [158] Sullivan, J.M., M.S. Twardowski, P.L. Donaghay, and S.A. Freeman. Use of opticalscattering to discriminate particle types in coastal waters. Applied Optics, 2005, 44: 1667-1680
    [159] Platt, T., S. Sathyendranath, C.M. Caverhill, and M.R. Lewis. Ocean primary production and available light: Further algorithms for remote sensing. Deep Sea Research, 1988, 35: 855-879
    [160] Matsumura, S., and A. Shiomoto. Vertical distribution of primary productivity functionΦ(II)-for the estimation of primary productivity using by satellite remote sensing. Bulletin of the National Research Institute of Far Seas Fisheries, 1993, 30: 227-270
    [161] Millán-Nú?ez, R., S. Alvarez-Borrego, and C.C. Trees. Modeling the vertical distribution of chlorophyll in the California Current System. Journal of Geophysical Research, 1997, 102: 8587-8595
    [162] Kimura, N., and Y. Okada. Estimation of vertical profile of chlorophyll concentration around the Antarctic Peninsula derived from CZCS images by the statistical method. Proceedings of the NIPR Symposium on Polar Biology, 1997, 10: 66-76
    [163] Kameda, T., and S. Matsumura. Chlorophyll biomass off Sanriku, Northwestern Pacific, Estimated by ocean colour and temperature scanner (OCTS) and a vertical distribution model. Journal of Oceanography, 1998, 54: 509-516
    [164] Platt, T., and S. Sathyendranath. Oceanic primary production estimation by remote sensing at local and regional scales. Science, 1988, 241: 1561-1724
    [165] Tassan, S. Local algorithms using SwaWIFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 1994, 33(12): 2369-2378
    [166] Esaias, W. E., M.R. Abbott, I. Barton, O.B. Brown, et al. An Overview of MODIS capabilities for ocean science observations. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36 (4): 1250-1265
    [167] Maritorena, S., A. Morel, and B. Gentili, B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and Oceanography, 1994, 39: 1689–1703
    [168] Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Applied optics, 1978, 17: 379-383
    [169] Paredes, J.M., and R.E. Spero. Water depth mapping from passive remote sensing data under a generalized ratio assumption. Applied Optics, 1983, 22: 1134-1135
    [170] Kirk, J.T.O. Volume scattering function, average cosines, and the underwater light field. Limnology and Oceanography, 1991, 36: 455-467
    [171] Pope, R.M., and E.S. Fry, E.S. Absorption spectrum (380–700 nm) of pure waters: II. Integrating cavity measurements. Applied Optics, 1997, 36: 8710–8723
    [172] Lee, Z. P., K.L. Carder, R.G. Steward, T.G. Peacock, C.O. Davis, and J.L. Mueller, J. L.Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements. Proceedings of SPIE (Ocean Optics XIII), 1996, 2963: 160-166
    [173] Albert, A., and C.D. Mobley. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Optics Express, 2003, 11: 2873-2890
    [174] Davis, C.O., K.L. Carder, and Z.P. Lee. Using Hyperspectral Imagery to Characterize the Coastal Environment. IEEE Aerospace Conference, 2002, 3: 1515-1521
    [175] Goodman, J.A. Hyperspectral remote sensing of coral reefs: deriving bathymetry, aquatic optical properties and a benthic spectral unmixing classification using AVIRIS data in the Hawaiian Islands. PhD Dissertation, University of California, Davis, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700