用户名: 密码: 验证码:
杭州湾地区北西向断裂新构造运动特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北西向断裂是杭州湾地区最晚形成的断裂,切割了先存的北东、北北东及东西向断裂,其新构造活动特征对区域防震减灾、工程地质环境评价等方面具有重要的意义。孝丰—三门湾断裂和长兴—奉化断裂是该地区具有代表性的两条北西向断裂。本文通过分析这两条断裂的空间发育特征和断裂活动性,对杭州湾地区的北西向断裂的新构造活动特征进行详细研究。
     通过断裂遥感解译、野外地质调查、断层泥定年分析(热释光、电子自旋共振)和浅层人工地震勘探研究,认为孝丰—三门湾断裂早期为张性断裂,后期转换为左旋走滑断裂,并兼具压性。该断裂在早更新世晚期至中更新世中期有强烈的活动,后期活动有所减弱,在晚更新世仍有活动。沿孝丰—三门湾断裂开挖的4个探槽显示,紧邻孝丰—三门湾断裂的北东走向、东西走向的次级断裂在晚更新世晚期仍有活动,可能受到了孝丰—三门湾断裂晚更新世活动的影响。断层断错地层及断层上覆地层的光释光定年研究显示,这些次级断裂活动时间集中在距今1.65~1.97万年,及4.2~5.12万年间,表明孝丰—三门湾断裂在这两个时间段有所活动。
     在综合区域地球物理场特征、桐乡凹陷和长河凹陷的人工地震勘探资料的基础上,对长兴—奉化断裂垂向上的构造特征进行了详细研究。认为自侏罗纪至古近纪,长兴—奉化断裂有强烈的活动,控制了中新生代沉积。杭州湾地区的野外地质勘探及浅层人工地震勘探证实,长兴—奉化断裂在晚更新世可能仍有所活动,但断裂活动有北强南弱的趋势。
     以孝丰—三门湾断裂和北东走向的萧山—球川断裂为例,研究了北西走向断裂与先存断裂之间的相互作用。通过地形地貌分析、定年分析、地球物理勘探分析,认为北西走向的孝丰—三门湾断裂控制了北东走向的萧山—球川断裂活动性分段。
     结合中国东部其它地区北西向断裂的新构造活动特征,研究了中国东部地区北西向断裂的几何展布、断裂活动性及其与先存断裂的相互作用,总结了中国东部地区北西向断裂的活动特征,提出中国东部的北西向断裂新构造活动具有新生性和成带性,与北东、北北东向断裂的活动具有一定的相关性,且结构面力学性质复杂。
The NW-SE trending faults are the latest fault which offset the older faults trending NE-SW, NNE-SSW and E-W in Hangzhou Bay region, China. The neotectonic activity of NW-SE trending faults is important for environment evaluation and earthquake disaster mitigation. The Xiaofeng-Sanmen Fault (XSF) and Changxing-Fenhua Fault (CFF) are the most typical faults in region. The f structural attitude and fault activity of XSF and CFF is investigated for neotectonic activity of NW-SE trending faults in Hangzhou Bay region.
     Interpretation of remote sensing, geologic survey, dating of fault gouge (Luminescence, Electron spin resonance) and shallow seismic exploration indicate that the XSF was tensional fault in early stage but changed to left-lateral strike-slip fault with squeeze character in later stage. The XSF was intensely active from late stage of Early Pleistocene to middle stage of medio Pleistocene and became weaker later. However, the XSF was still active in Late Pleistocene. There were four trenches excavated along the XSF. The trenches exposed that secondary fault trending NE-SE and E-W were active in late stage of Late Pleistocene. The activity of these subsidiary fractures was influenced by the activity of XSF. According to the Optically stimulated luminescence dating of fault-related sediments and overlying sediments, the activity of these secondary faults could sum up to two periods: 0.0165~0.0197Ma and 0.042~0.0512Ma. The XSF might have two fault movements in these periods.
     The vertical structural feature of CFF was investigated from geophysical field and artificial seismic exploration. From Jurassic Period to Paleogene Period, the CFF was had intensely fault movements and controlled sedimentary process of Mesozoic Era and Cenozoic Era. The Field geological exploration and Shallow seismic exploration indicates that the CFF was still active in late Pleistocene and the fault activity of north segment was stronger than that of south segment.
     The interaction between the NW-SE trending fault and pre-exist faults was studied through the case of interaction between the XSF and Xiaoshan-Qiuchuan Fault (XQF) which was a typical NE-SW trending fault and controlled the structural feature in Hangzhou Bay region. Based on the analysis of geomorphy, dating analysis of fault gouge, and geophysical exploration, the XSF controlled the fault activity of XQF.
     The neotectonic activity of NW-SE trending faults in east China was concluded based on the contrast between the Hangzhou Bay region and the other regions in the east China. The analysis of fault distribution, fault activity and the interaction with the pre-exist faults indicates the characteristic of NW-SE trending faults of east China: palingenesis, banding, pertinence with pre-exist faults and complexity of mechanical property.
引文
1.常廷改.断层活动性评价中关于测年资料的引用[J].工程地质学报,2006,14(2):190-195.
    2.陈汉宗,吴湘杰,周蒂,等.珠江口盆地中新生代主要断裂特征和动力背景分析[J].热带海洋学报,2005,24(2):52-61.
    3.陈沪生,张永鸿,徐师文,等.下扬子及邻区岩石圈结构构造特征与油气资源评价[M].北京:地震出版社,1999.1-287.
    4.陈化然,李轶群,汪翠芝,等.基于断层相互作用的地震活动有限元模型[J].大地测量与地球动力学,2002,22(2):86-90.
    5.陈家庚,陈存国,王里,等.宁波地区的地震与新构造运动[J].地震学报,1998,20(3):285-294.
    6.陈淑娥,李虎侯,庞奖励.释光测年的研究简史及研究现状[J].西北大学学报(自然科学版),2003,33(2):209-212.
    7.陈文寄,彭贵.年轻地质体系的年代测定[M].北京:地震出版社,1991.132-173.
    8.陈文寄,计凤桔,王非.年轻地质体系的年代测定(续)[M].北京:地震出版社,1999.258-269.
    9.戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995.1-212.
    10.邓起东,汪一鹏,廖玉华,等.断层崖崩积楔及贺兰山山前断裂全新世活动历史[J].科学通报,1984,(9):557-560
    11.邓起东,徐锡伟,张先康,等.城市活动断裂探测的方法和技术[J].地学前缘,2003,10(1):93-104.
    12.邓起东,张培震.活动断裂分段研究的原则和方法(一)[C].见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社,1995.1-196.
    13.邓起东,张培震.史前古地震的逆断层崩积楔[J].科学通报,2000,45(6):650-655.
    14.邓起东.中国活动构造研究[J].地质论评,1996,42(4):295-299
    15.邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
    16.丁伯阳,叶建青,孟凡丽,等.杭州市周边构造和断层及其对建、构筑物的影响[J].浙江工业大学学报,2003,31(3):319-323.
    17.丁国瑜,田勤俭,孔凡臣,等.活断层分段原则、方法及应用[M].北京:地震出版社,1993.1-143.
    18.丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991.308-315.
    19.丁国瑜.有关活断层分段的一些问题[J].中国地震,1992,8(2):1-10.
    20.丁国瑜.阿尔金活断层的古地震与分段[J].第四纪研究,1995,(2):97-106.
    21.丁祥焕,王耀东,叶盛基.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版 社,1999.1-171.
    22.国家地震局广州地震大队主办.中国大地构造图(1:400万)[M].北京:地图出版社,1977.1-130.
    23.胡惠民,黄立人,杨国华.长江三角洲及其邻近地区的现代地壳垂直运动[J].地理学报,1992,47(1):22-29.
    24.胡玲,何登发,胡道功.准噶尔盆地南缘霍尔果斯-玛纳斯-吐谷鲁断裂晚新生代构造变形的ESR测年证据[J].地球学报,2005,26(2):121-126.
    25.火恩杰,刘昌森,章振铨,等.上海市隐伏断裂及其活动性研究[M].北京:地震出版社,2004.43-227.
    26.火恩杰,章振铨,刘昌森,等.长江口海域新生代地层与断裂活动性初探[J].中国地震,2003,19(3):206-216
    27.江苏省地质矿产局.江苏省及上海市区域地质志一:区域地质,第1号[M].北京:地质出版社,1984.1-857.
    28.李家彪.中国边缘海形成演化与资源效应[M].北京:海洋出版社,2005.228-254.
    29.李起彤.活断层及其工程评价[M].北京:地震出版社,1991.23-46.
    30.李四光.地质力学概论[M].北京:地质出版社,1973.1-228.
    31.李祥根.中国新构造运动概论[M].北京:地震出版社,2003.15-353.
    32.李增悦,叶定衡.中国新构造运动幕、期的划分[C].见:中国地质科学院562综合大队集刊,第14号.北京:地质出版社,1999.1-171.
    33.李志宏.浙江地区新生代地貌的基本特征及演化[D]:[硕士学位论文].广州:中山大学地球科学系,2004.
    34.李祖武.中国东部北西向构造[M].北京:地震出版社,1992.1-192.
    35.林敏,贾丽,丁艳秋.ESR测年研究中人工辐照吸收剂量的确定[J].地震地质,2005,27(4):698-705.
    36.刘以宣,钟建强,詹文欢.南海及邻域新构造运动基本特征[J].海洋地质与第四纪地质,1994,14(4):1-14.
    37.马志江,叶建青,赵冬,等.奉化-丽水-庆元断裂第四系活动性研究[J].华南地震,2006,26(2):55-60.
    38.栾光忠,任鲁川,段本春.青岛及其邻区NE、NW向断裂的活动性研究[J].青岛海洋大学学报,1999,29(4):727-732.
    39.毛凤英,张培震.古地震研究的逐次限定法与新疆北部主要断裂带的古地震研究[C].见:断裂研究(4).北京:地震出版社,1995.153-164.
    40.闵伟,朱金芳,冉永康,等.福州盆地活动断裂的探槽研究[J].地震地质,2002,24(4):514-523.
    41.丘元禧,夏亮辉.中国东部及邻区中新生代大陆边缘性质的讨论[J].中国区域地质,1994,(12):258-267.
    42.丘元禧.中国及其西南邻区新生代NW向扭动构造体系的成生发展和形成机制[J].地质力学学报,2001,17(4):335-345.
    43.丘元禧.地质力学与板块构造学[M].北京:地质出版社,2006.52-61.
    44.邱元禧.广东的北西向构造[C].见:中国地质科学院地质力学所所刊,第3号.北京:地质出版社,1982.15-18.
    45.冉洪流,何宏林.鲜水河断裂带北西段不同破裂源强震震级(M≥6.7)及复发间隔研究[J].地球物理学报,2006,49(1):153-161.
    46.冉勇康,邓起东.古地震学研究的历史、现状和发展趋势[J].科学通报,1999,44(1):12-20.
    47.宋海斌,耿建华,Wong H K,等.南海北部东沙海域天然气水合物的初步研究[J].地球物理学报,2002,44(5):687-695.
    48.孙岩,沈修志.苏南地区北西向压性构造的确立[C].见:中国地质科学院(562大队集刊)第6号.北京:地质出版社,1987.1-175.
    49.孙珍,庞雄,钟志洪,等.珠江口盆地白云凹陷新生代构造演化动力学[J].地学前缘,2005,12(4):489-498.
    50.万天丰.中国第四纪的构造事件与应力场[J].第四纪研究,1994,(1):48-55.
    51.汪一鹏.青藏高原活动构造基本特征[C].见:马宗晋主编.青藏高原岩石圈现今变动与动力学.北京:地震出版社,2001.251-262.
    52.王清远,刘永杰,曾祥国,等.多裂纹相互作用下混凝土断裂参量的有限元数值分析[J].四川建筑科学研究,2006,32(6):73-77.
    53.王文正,栾光忠.华北地区NNW向断裂的现代活动性特征[J].海洋湖沼通报,2001,4:6-11.
    54.王晓山,吕坚.台湾地区可能存在整体顺时针旋转运动-兼论周边地区的地震活动特征及地震预测[J].华南地震,2006,26(2):48-54.
    55.吴磊伯.湖南大义山系构造并略述中国南部走向北偏西10-20°之构造山系[C].见:前国立中央研究院地质研究院丛刊,第八号.北京:商务印书馆,1984.1-15.
    56.徐杰,马宗晋,陈国光,等.中国大陆东部新构造期北西向断裂带带的初步探讨[J].地学前缘,2003,10(zl):193-198.
    57.徐锡伟.活动断层、地震灾害与减灾对策问题[J].震灾防御技术,2006,1(1):7-14.
    58.徐亚军,杨坤光,马昌前.秦岭地区城口-房县断裂变形特征及ESR定年[J].现代地质,2005,19(1):127-132.
    59.杨坤光,梁兴中,谢建磊,等.ESR定年:一种确定脆性断层活动年龄的方法原理与应用[J].地球科学进展,2006,21(4):430-435.
    60.姚立殉,虞雪君,张士印,等.1998年嵊州4.0级地震及其前兆特征[J].地震,1999,19(4):365-371.
    61.叶定衡.中国及毗邻海区新构造图(1:500万)[M].北京:地质出版社,1996.1-61.
    62.叶建青.城市活断层研究与浙江省的城市化建设[J].上海地质,2001,(4):31-33.
    63.易明初.新构造运动与渭延裂谷构造[M].北京:地震出版社,1993.24-35.
    64.张虎男.福建长乐.诏安断裂带的新构造运动[J].地质学报,1987,(3):231-239.
    65.张家富,周力平.释光技术在构造事件定年中的应用[J].核技术,2007,30(11):934-939.
    66.张克旗,陈杰,刘进峰,等.海原断裂带刺儿沟剖面烘烤次生黄土的光释光测年及其地质意义[J].地震地质,2007,29(2):390-401.
    67.张路,曲国胜,朱金芳,等.福建沿海盆地第四纪构造运动模式与动力学环境[J].地质通报,2007,26(3):275-288.
    68.张培震,常向东.重大工程地震安全性评价中活动断裂分段的准则[J].地震地质,1998,20(4).289-301.
    69.张培震,闵伟,邓起东,等.海原活动断裂带的古地震与强震复发规律[J].中国科学D 辑,2003,33(8):705-713.
    70.张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441.
    71.张培震.中国大陆岩石圈最新构造变动与地震灾害[J].第四纪研究,1999,(5):404-413.
    72.张强勇,朱维申,向文,等.节理岩体断裂破坏强度计算及工程应用[J].山东大学学报(工学版),2005,35(1):98-101,105.
    73.张秋文,王乘,张培震,等.断层相互作用产生同震库仑应力改变分布图像[J].华中科技大学学报(自然科学版),2007,35(8):44-47.
    74.张秋文,张培震.地震中长期预测研究的进展和方向[J].地球科学进展,1999,14(2):147-152.
    75.张秋文.断层问相互作用的触震与缓震效应定量评价[J].地球学报,2004,25(4):483-488.
    76.张微,陈汉林,李启敏,等.高分辨遥感在杭州活断层探测中的应用[J].煤田地质与勘探,2007,35(3):10-14.
    77.张永鸿.苏北盆地北北西向构造对油气的再分配[C].见:石油地质文集(构造-3).北京:地质出版社,1981.105-112.
    78.张永庆,谢富仁.活动断裂地震危险性的研究现状和展望[J].震灾防御技术,2007,2(1).64-74.
    79.张永兴,周小平,朱可善.加载条件下裂隙间相互作用对断续裂隙岩体变形的影响[J].工程力学,2005,22(2):218-223.
    80.章振铨,刘昌森,王锋.上海地区断裂活动性与地震关系初析[J].中国地震,2004,20(2):143-151.
    81.Allen A P,Allen R J.Basin Analysis(Second Edition)[M].Australia:Blackwell Publishing,2005.145-160.
    82.Angiolillo J P,Graneto N.Characterization,stability,and origin of natural radiation-induced defects in the biogenic calcite of Belemnitella Americana from the Upper Cretaceous:An electron paramagnetic resonance study [J]. Radiation Physics and Chemistry, 2008, 77(5): 545-552.
    83. Caputo R, HellyB, Pavlides S, et al. Palaeoseismological investigation of the Tyrnavos Fault (Thessaly, Central Greece) [J]. Tectonophysics, 2004, 394(1-2): 1-20.
    84. Crouzet C, Dunkl I, Paudel L, et al. Temperature and age constraints on the metamorphism of the Tethyan Himalaya in Central Nepal: A multidisciplinary approach [J]. Journal of Asian Earth Sciences, 2007, 30(1): 113-130.
    85. Ding Y Z, Lai K W. Neotectonic fault activity in Hong Kong: evidence from seismic events and thermoluminescence dating of fault gouge [J]. Journal of the Geological Society, 1997, 154: 1001-1007.
    86. Duller GAT. Behavioural studies of stimulated luminescence from feldspars [J]. Radiation Measurements, 1997, 27: 663 - 694.
    87. Duller G A T. Equivalent dose determination using single aliquots [J]. Nuclear tracks and radiation measurements, 1991, 18: 371-378.
    88. Duller G A T. Luminescence dating of sediments using single aliquots: new procedures [J]. Quaternary Geochronology, 1994, 13: 149-156.
    89. Frank A, Audemard M. Paleoseismology in Venezuela: Objectives, methods, applications, limitations and perspectives [J]. Tectonophysics, 2005, 408: 29-61.
    90. Fukuchi T. Assessment of fault activity by ESR dating of fault gouge; an example of the 500 m core samples drilled into the Nojima earthquake fault in Japan [J]. Quaternary Science Reviews, 2001, 20: 1005-1008.
    91. Fukuchi T. Vacancy-associated type ESR centers observed in natural silica and their application to geology [J]. Applied Radiation and Isotopes, 1993, 44: 179-184.
    92. Gomberg J, Belardinelli M E, Cocco M, et al. Time-dependent earthquake probabilities [J]. Journal of Geophysical Research, 2005, 110: B05S04.
    93. Hardebeck L J. Stress Triggering and Earthquake Probability Estimates [J]. Journal of Geophysical Research, 2004, 109: B04310.
    94. Jackson J, NorrisR, Youngson J. The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns [J]. Journal of Structural Geology, 1996, 18(2-3): 217-234.
    95. Kagan Y Y. Double-couple earthquake focal mechanism: Random rotation and display [J]. Geophysical Journal International, 2005, 163(3): 1065-1072.
    96. Lewis A O, Jordon B, Robert C F, et al. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods [J]. Quaternary International, 2007, 166(1): 87-110.
    
    97. Li C, Cirrincione R, Rosanna D R, et al. Thermal (TL) and optical stimulated luminescence (OSL) techniques for dating Quaternary colluvial volcaniclastic sediments: An example from the Crati Basin (Northern Calabria) [J]. Quaternary International, 2006, 148(1): 149-164.
    98. Liberty M L, Hemphill M A, Madin I P, et al. The Portland Hills Fault: uncovering a hidden fault in Portland, Oregon using high-resolution geophysical methods [J]. Tectonophysics, 2003, 368(1-4): 89-103.
    99. Machette M N, Presonius S F, Nelson A R, et al. Segmentation models and Holocene movement history of the Wasatch fault zone, Utah [J]. Journal of Structural Geology, 1991, 13: 137-149.
    100.Nakajima T, Danhara T, Iwano H, et al. Uplift ofthe Ou Backbone Range in Northeast Japan at around 10 Ma and its implication for the tectonic evolution of the eastern margin of Asia [J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2006, 241(1): 28-48.
    101.Nicholson C, Seeber L, Williams P, et al. Seismicity and fault kinematics through the eastern Transverse Ranges, California: block rotation, strike-slip faulting and shallow-angel thrusts [J]. Journal of Geophysical Research, 1986, 91: 4891-4908.
    102.Office of the Federal Register. Code of Federal Regulation[S]. Energy National Archives and Records Administration, Washington DC, USA. 1991.
    103.Papadimitriou E, Wen X, Karakostas V, et al. Earthquake triggering along the Xian shuihe fault zone of western Sichuan, China[J]. Pure and Applied Geophysics, 2004, 161(8): 1683-1707.
    104.Prescott J R, Robertson G B. Sediment dating by luminescence: A review [J]. Radiation Measurements, 1997, 27(5-6): 893-922.
    105.Pun W K. A new method proposed by Wood & Mallard (1992) to identify active faults [J]. Geological Society of Hong Kong. Newsletter, 1992, 10: 18-19.
    106.Ren J, Tamaki K, Li S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas [J]. Tectonophysics, 2002, 344(3-4): 175-205.
    107.Riedel W. Zur mechanik geologischer brucherscheinungen [J]. Zentralblatt fur Mineralogie, Geologie und Palaontologie, 1929, 1929B: 354-368.
    108.Rink W J, Bartoll J, Schwarcz H P, et al. Testing the reliability of ESR dating of optically exposed buried quartz sediments [J]. Radiation Measurements, 2007, 42(10): 1618-1626.
    109.SIEH K E. Pre-historic large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California [J]. Geophy Research, 1978, 83: 3907-3939.
    110.Skinner R A. ESR dating: is it still an 'experimental' technique? [J]. Applied Radiation and Isotopes, 2000, 52: 1311-1316.
    111.Tanaka K, Hataya R, Spooner AN, et al. Dating of marine terrace sediments by ESR, TL and OSL methods and their applicabilities [J]. Quaternary Science Reviews, 1997, 16(3-5): 257-264.
    112.Tapponnier P, Peltzer G, Le-Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982,10:611-616.
    113.Tchalenko J S, Ambraseys N N. Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures [J]. GSA Bulletin, 1970, 81 (1): 41-59.
    114.Wang S Z, Li J G, Zhou Y S. Experimental evidence for intraplate deformation controlled by netlike plastic-flow in central-eastern Asia [J]. Physics of the Earth and Planetary Interiors, 2007, 165: 208-228.
    115 .Wang X L, Wintle A G, Lu Y C. Testing a single-aliquot protocol for recuperated OSL dating [J]. Radiation Measurements, 2007, 42(3): 380-391.
    116. Wintle G, Murray A S. The relationship between quartz thermoluminescence, photo-transferred thermoluminescence, and optically stimulated luminescence [J]. Radiation Measurements, 1997, 27(4): 611-624.
    117.WoodRM, Mallard D J. When is a fault 'extinct' ?[J]. Journal of the Geological society, 1992, 149: 251-255.
    118.Working Group on California Earthquake Probabilities. Earthquake probabilities in the San Francisco Bay Region, 2000-2030 [C]. In: A summary of findings: U S Geological Survey Open-File Report, 1999. 99-517.
    119.Working Group on California Earthquake Probabilities. Earthquake probabilities in the SanFrancisco Bay Region, 2002-2031 [C]. In: U S Geological Survey Open-File Report, 2003. 3-214.
    120.Zhang P, Slemmons D B, Mao F. Geometric pattern, rupture termination, and fault segmentation of the Dixie Valley-Pleasent Valley active normal fault system, Navada, USA [J]. Journal of Structural Geology, 1991, 13: 165-176.
    121.Zmazek B, Italiano F, Zivcic M, et al. Geochemical monitoring of thermal waters in Slovenia: relationships to seismic activity [J]. Applied Radiation and Isotopes, 2002, 57(6): 919-930.
    122.Zwart G, Moore C J, Cochrane R G. Variations in temperature gradients identify active faults in the Oregon accretionary prism [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 485-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700