用户名: 密码: 验证码:
基于D-InSAR的杭州地区地壳形变监测及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达差分干涉测量(D-InSAR:Differential Interferometric Synthetic ApertureRadar)成像技术是20世界末兴起的一种新型空间对地观测技术,是精密地形测绘、微小地表形变测量的重要手段之一。现今地壳形变资料是地壳最新构造运动的直观表征,也反映了区域现今地壳运动特征。本文运用D-InSAR技术对杭州地区近期的地壳形变特征进行了监测,并结合区域地质资料、地球物理资料、水文地质资料以及钻孔资料等对地壳形变机理进行了深入的探讨。本论文主要取得以下研究成果:
     1、研究了D-InSAR地表形变监测的基本原理和技术流程,并结合杭州地区实际条件,提出了“三轨法”为杭州地区最优的地表形变监测模式。
     2、对SAR图像斑点噪声形成机理、数学模型进行了深入的研究,提出了改进的小波软阈值法SAR图像去噪方法,并根据平滑指数及边缘保持指数证明该方法的综合性能优于中值滤波、Lee滤波、小波硬阈值和小波软阈值等传统方法。
     3、分析了相位解缠方法的原理及数学模型,对当前七种相位解缠算法进行实现和优选,分析了各自的适用条件和优缺点,优选出其中最适合杭州地区的基于统计耗费网络流的相位解缠算法,并对解缠效果和计算效率进行了评价;
     4、提出了提升小波变换融合方法,并与IHS变换等方法进行了比较。同时结合边缘增强等方法对杭州地区断裂的遥感信息进行提取,并结合测年技术、重力及航磁异常处理及野外验证等手段对断裂的活动性进行了分析。认为杭州地区存在着第四纪活动断裂,但全新世晚期以来活动的可能性不大。
     5、获取了杭州部分地区1997~2000年的地壳形变图。形变整体上呈面状分布,分成了明显的三块区域,分别是以河山、新市为中心的东北平原形变区Ⅰ、以半山、彭埠为中心的中部平原形变区Ⅱ和棣溪北部形变区Ⅲ,其中形变区Ⅰ的范围最广,形变最强烈,最大累计形变量达4.41cm。同时,形变区呈现明显的扇形,并有向四周扩散的趋势。形变区内部及边缘未见明显的线性构造,说明与断裂关联性不大。
     6、研究了杭州地区地壳形变的区域构造背景、第四纪沉积序列以及地下水发育特征,并对地壳形变的控制因素和机理进行了研究。认为杭州地区的地壳形变不受断层所控制,而且受构造因素影响很小,长期过度地开采地下水是杭州地区大规模地壳形变的最主要原因。同时绘制了塘栖-乔司第四系综合柱状对比图和蒋村-下沙等3条地质剖面,认为杭州地区的地壳形变量与第四系地层厚度呈现明显的负相关性。同时证明了杭州地区地壳形变主要发生在土质松软的粘土层,砂砾石层则贡献有限;利用彭埠、杭州灯泡厂、良渚及沈家的钻孔资料证明了在同等条件下全新统粘土层对形变的影响大于上更新统粘土层;良渚-西兴剖面证明了在高压条件下,砂砾石层也会表现出较为高压缩性并导致杭州城区发生较强烈的形变。
     初步结果表明,D-InSAR技术用于杭州地区地壳形变监测还是可行的。然而其应用和推广还需作进一步的研究和完善,在具体的应用中还有很多瓶颈问题未得到很好的解决,比如斑点抑制问题、时间去相关问题、相位解缠算法的改进等。
Differential interferometric synthetic aperture radar (D-InSAR) imaging technology was emerging at the end of the 20th century. It uses the information of the phase of two SAR images to extract height information and brings a revolution for geodesy. It has the advantages of synthetic aperture radar (SAR), such as penetrating the cloudy layer or the barrier, carrying on all-weather work all day and all night, wide mapping area, real-time imaging and high flexibility etc. These can't be get through optical method.
     Present crustal deformation information is intuitive characteristics of tectonic movement of the crust, and also reflects the regional characteristics of the crustal movement. The current characteristics of crustal deformation of Hangzhou area was monitored by the D-InSAR technology and the crustal deformation mechanism was discussed deeply combined with regional geological data, geophysical data, hydrogeology and drilling data etc. The paper falls into the following parts:
     1. The basic theories and methods of D-InSAR technology are studied and propose the "three-pass" method as the best monitoring model of Hangzhou area.
     2. Make a deep research on the formation mechanism and mathematical models of the speckles of SAR images, propose a new method of noise removal of SAR image based on improved wavelet soft-thresholding method, and in accordance with smoothness index and edge preservation index prove that the comprehensive performance of this method is better than other traditional filters such as median filter, Frost filter, Lee filter, wavelet hard-thresholding and soft-thresholding.
     3. Analysize the theory and methodology of phase unwrapping, demonstrate and compare the current seven popular phase unwrapping algorithms, analysize their advantages and disadvantages, select statistical-cost network-flow algorithm as the most suitable algorithm used in Hangzhou area and evaluate its effectiveness and efficiency.
     4. Propose a new image fusion method based on lifting wavelet transformation and carry on visual interpretation and quantitative evaluation with IHS transform, PCA transform, Brovey transform and so on. Extract the information of the faults in Hangzhou area by means of edge enhancement, directional enhancement, high-pass filter, texture analysis etc. and collect gravity and areomagnetic anomalies data, shallow artificial seismic exploration data, borehole data and dating data etc. to validate the interpreted results. The results show that the faults of Hangzhou area have been active since the Quaternary, but the possibility seems less since the late Pleistocene.
     5. Get the crustal deformation map of Hangzhou area between 1997 and 2000. the deformation shows the characteristic of area and divides into three relative obvious regions. At the same time, the subsidence areas show sector distribution and diffusion obviously. There is no linear structure in the inner and edge of the deformed zone, which shows that the deformation has less association with the faults.
     5. Make a careful research on the crustal deformation mechanism of Hangzhou area combined with regional structural background, Quaternary sedimentary succession and characteristics of ground water. Conclude that it is not the major faults of Hangzhou area but long time groundwater exploitation that control the crustal deformation of Hangzhou area. At the same time, draw isopach, contour and three-dimensional strata map of Hangzhou area and prove that the thickness of Holocence is the main factors. In addition, the unit subsidence of clay layer is far larger than sand and gravel layer in low pressure condition and the subsidence was mainly concentrated in the aquifer, less consolidation or compressible consolidation of the thick clay layer.
     The preliminary results show that using D-InSAR technology for monitoring the ground deformation of Hangzhou area is relatively satisfied. However, monitoring the ground deformation of eastern cities of China needs further research and improvement and there are many urgent problems to solve in specific applications, for example, despeckling, time decorrelation, baseline decorrelation and the improvement of phase unwrapping algorithms and so on.
引文
1. Ainsworth T L, Chubb R A, Fusina R M, et al. InSAR imagery of surface currents, wave-fields, and fronts. IEEE Transactions on Geoscience and Remote Sensing. 1995,33(5): 1117-1123
    2. Armijo R, Tapponnier P and Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. Journal of Geophysical Research, 1989, 94: 2787-2838
    3. Avouac J P, Tapponnier P, Bai M, et al. Active thrusting and folding along the northern Tien Shan and late cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 1993, 98 (B4): 6755-6804
    4. Bartlett W L, Friendman M and Logan J M. Experimental folding and faulting of rocks under confining pressure: Part IX. Wrench faults in limestone layers. Tectonophysics, 1981, 79: 255-277
    5. Benedicte F, Francesco S. Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophysical Research Letters, 2000, 27(24): 3981-3984
    6. Bone D J. Fourier fringe analysis: The two-dimensional phase unwrapping problem. Applied Optics, 1991, 30(25):3627-3632
    7. Burgmann R, Hilley G, Ferretti A, et al. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 2006, 3:221-224
    8. Calderbank R, Daubechies I and Sweldens W. Wavelet transform that map integers to integers. Applied and computational harmonic analysis, 1998, 5:332-369
    9. Carnec C, Masse nnet D, King C . Two examples of the Use of SAR interferometry on displacement-fields of small spatial extent. Geophys. Res. Lett. , 1996, 23(24):3579-3582
    10. Chang S G, Yu B and Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transaction on Geoscience and remote sensing, 2000,9(9):1532-1546
    11. Claypoole R. and G.Davis. Nonlinear wavelet transforms for image coding via lifting[J], IEEE Transactions on Image Processing, 2003,12(12):1449-1459
    12. Curlander J C and McDonough R N. Synthetic aperture radar systems and signal processing. New York: Wiley, 1991
    13. Dai M, Peng C, Chan A K, et al. Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Transaction on Geoscience and remote sensing, 2004,42(8):1642-1648
    14. Daubechies I and Sweldens W. Factoring wavelet transform into lifting steps. Journal of Fourier Analysis and Applications, 1998,4(3):245-267
    15. DENG Qindong, FENG Xianyue, ZHANG Peizhan, et al. Active reverse fault-fold zones and earthquakes along northern Tianshan, Xinjiang, China[J]. Seismology and Geology, 1996,18(Suppl):21-37
    16. Donoho D L. De-noising by soft-thresholding. IEEE Transaction on Information Theory, 1995, 41 (3):613-627
    17. Eineder M and Adam N. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms From Different Viewing Geometries Into One Digital Elevation Model. IEEE Transactions on Geoscience and remote sensing, 2005,43 (1): 24-36
    18. Erwan Pathier, Benedicte Fruneau, Benoit Deffontaines. Contributions of InSAR to study active tectonics of Taiwan[J]. IGARSS, 2003
    19. Fabrizio A and Luciano A, Speckle Removal From SAR Images in the Undecimated Wavelet Domain[J]. IEEE Transaction on Geoscience and remote sensing, 2002,40(11):2363-2373
    20. Fialko Y, Sandwell D, Simons M, et al. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 2005, 435:295-299
    21. Fielding E J, Blom R G, Goldstein R M . Rapid subsidence over oil fields meas ured by SAR inteferometry. Geophys. Res. Lett. , 1998, 25(17): 3215-3218.
    22. Flynn T J. Consistent 2-D phase unwrapping guided by a quality map[C]. In: IGARSS'1996. Piscataway, New Jersey, USA, 1996. 2057-2059
    23. FUIS G S, RYBERG T, GODEFREG N J, et al. Crustal Structure And Tectonics From The Los Angeles Basin To The Mojave Desert, Southern California[J]. GEOLOGY, 2001, 29(1):15-18
    24. Gabriel A K, Goldstein R M and Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 1989, 94 (B7): 9183-9191
    25. Gagnon L and Jouan A. Speckle filtering of SAR images-A comparative study between complex-wavelet-based and standard filters[C]. In: SPIE Proceedings. Beijing, PRC, 1997.31:80-91
    26. Galloway D L, Hudnut K W, Ingebritsen S E, et al. Detection of aquifer system compaction and land subsidence using interferometrie synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resource Res., 1998, 34(10):2573-2585
    27. Gens R and van Genderan J L. SAR interferometry-issues, techniques, applications. International Journal of Remote Sensing, 1996,17(10): 1803-1835
    28. Goldstein R M and Zebker H A. Interferometric radar measurement of ocean surface currents. Nature, 1987, 328:707-709
    29. Goodman J W. Some fundamental properties of speckle Optical Society of America, 1976, 66(11):1145-1150
    30. Graham L C. Synthetic interferometer radar for topography mapping. Proceedings of the IEEE, 1974, 62:763-768
    31. Guo H, Odegard J E, Lang M, et al. Wavelet based speckle reduction with application to SAR based ATD/R[C]. In: IEEE International Conference on Image Processing. Austin, Texas, USA, 1994.1:75-79
    32. Hanssen R F. Radar Interferometry-Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001
    33. King R W, Shen F, Burchfiel B C, et al. Geodetic measurement of crustal motion in southwest China. Geology, 1997, 25:179-182
    34. Lee J S. Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 1981,17(1):24-32
    35. Lin H, Shi H and Shan Y. The Relationship between Linear Weak-Information of Radar Image and Subordinate Faults in Landslide Area of Hong Kong. Geological Journal of China Universities, 2001,1(7): 34-42
    36. Lin Q, Vesecky J F and Zebker H A. New Approaches in Interferometric SAR data Processing. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (3): 560-567
    37. Massosnnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):506-520
    38. Massonnet D and Feigl K L. Radar Interferometry and Its Application to Changes in the Earth's Surface. Reviews of Geophysics, 1998, 36(4):441-500
    39. Massonnet D and Rabaute T. Radar interferometry: Limits and Potential. IEEE Transactions on Geoscience and Remote Sensing 1993, 31 (2):455-464
    40. Massonnet D, Rossi M, Carmona C, et al. The displacement field of the landers earthquake mapped by radar interfemmetry. Nature, 1993, 364:138-142
    41. Mering C, Huaman-Rodrigo D, Chorowicz J, et al. New data on the geodynamics of southern Peru from computerized analysis of SPOT and SAR ERS-1 images. Tectonophysics, 2000, 59 (2): 153-169
    42. Michael Eineder and Nico Adam. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms From Different Viewing Geometries Into One Digital Elevation Model, IEEE Transactions on Geoscience and remote sensing 2005, 43(1):24-36
    43. Molnar P and Tapponnier P. Cenozoic tectonics of Asia: Effects of continental collision. Science, 1975, 4201(189):419-426
    44. Orwig L P and Held D N. Interferometric Ocean Surface Mapping and Moving Object Relocation with a Norden Systems KuBand SAR[C].In:Proceeding of the 1992 International Geoscience and Remote Sensing Symposium.Houston, USA, 1992. 1598-1600
    45. P. Tizzani, P. Berardino, F. Casu, P. Euillades, et, al. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach, Remote Sensing of Environment, Volume 108, Issue 3, 15 June 2007, Pages277-289
    46. P. Vallone, M.S. Giammarinaro, M. Crosetto, et, al. Ground motion phenomena in Caltanissetta (Italy) investigated by InSAR and geological data integration, Engineering Geology, In Press, Corrected Proof,Available online 26 February 2008
    47. Quiroga J A, Gonzalez-Cano A and Bernabeu E. Phase-unwrapping algorithm based on an adaptive criterion. Applied Optics, 1955,34(14):2560-2563
    48. Rahnemoonfar M, Rahmati M, Tavakoli A, et al. Two dimensional phase unwrapping of Interferometric SAR data by means of wavelet technique[C]. In:IGARSS'2005. Seoul, Korea,2005.5467-5470
    49. Rogers A E E and Ingalls R P. Venus: mapping the surface reflectivity by radar interferometry. Science, 1969,165:797-799
    50. Roth M W. Phase unwrapping for interferometric SAR by the least-error path. Johns Hopkins University Applied Physics Lab Technical Report. Maryland, USA, 1995, March 30
    51. Sveinsson J R and Benediktsson J A. Speckle reduction and enhancement of SAR images in the wavelet domain[C]. In: IGARSS'1996. Piscataway, New Jersey, USA, 1996. 1:63-66
    52. Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM Journal of Mathematical Analysis, 1998, 29 (2): 511-546
    53. Tapponnier P, Mattauer M, Proust F, et al. Mesozoic philistines, suture and large-scale movement in Afghanistan. Earth and Plantary Science Letters, 1981, 52:355-371
    54. Tapponnier P, Xu Z, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294: 1671-1677
    55. Tae Hee Lee, Wooil M.Moon. Lineament Extraction from Landsat TM, JERS-1 SAR, and DEM for Geological Applications. IGARSS,2002:3276-3278
    56. Wang E Q. Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth and Planetary Science Letters, 1997, 150 (1-2): 55-64
    57. Wang Q, Zhang P, Freymueller T J, et al. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science, 2001, 294:574-577
    58. Wegmuller U, Strozzi T, W iesmann A, et al. Land subsidence mapping with ERS interferometry: evaluation of maturity and operational readiness. FRINGE'99. 1999. 173-175
    59. Wei Xu, Lan Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Transaction Geoscience and Remote Sensing, 1999, 37(1):163-174
    60.Ulaby F T,Kouyate F,Brisco B,et al.Textural information in SAR images.IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245
    61.Vidal-Pantaleoni A,Marti D and Ferrando M.An adaptive multiresolution method for speckle noise reduction in synthetic aperture radar images[C].In:IGARSS'1999.Piscataway,New Jersey,USA,1999.2:1325-1327
    62.Vrabel,J.Multispectral imagery band sharpening study[J],Photogrammetric Engineering and Remote Sensing,1996,62(9):1075-1083
    63.Xie H,Pierce L E and Ulaby F T.Despeckling SAR images using a low-complexity wavelet denoising process[C].In:IGARSS'2000.Hawaii,USA,2000.1:321-324
    64.Xu W and Cumming I.A region growing algorithm for InSAR phase unwrapping[C].In:IGARSS'1996.Piscataway,New Jersey,USA,1996.2044-2046
    65.Xu W and Cumming I.A region-growing algorithm for InSAR phase unwrapping.IEEE Transaction Geoscience and Remote Sensing,1999,37(1):163-174
    66.Yan F,Lu H,Yang H,et al.Determination of the Displacements along the Maergaichaka Fault,Using Remote Sensing Data,Tibet,China[C].In:IGARSS'2003.Touluse,France,2003.3332-3334
    67.Yue Y J and Liu J G.Two-stage evolution model for the Altyn Tagh Fault,China.Geology,1999,27(3):227-230
    68.Zebker H A and Goldstein R M.Topographic mapping from interferometric synthetic aperture radar observations.Journal of Geophysical Research,1986,91(B5):4993-4999
    69.Zeng Q,Jiao J and Zhang H.A Novel Hybrid Method to Unwrapping Interferometric Phase[C].In:IGARSS'2004.Anchorage,Alaska,USA,2004.2632-2635
    70.Zhang Jingfa,Qin Qiming.The Research ofDifference Interferometric SAR Technique.IGARSS2003,2003,Toulouse,France
    71.Zhang Jingfa.ToMeasure the Cumulate CrustalDeformation of Important Faults System on theWestern China by PS InSAR Technique,IGARSS2004,2004,Alaska,USA
    72.Zhong L,Charles W,Daniel D,et al.Aseismic inflation of Westdahl volcano,Alaska,revealed by satellite radar interferometry.Geophysical Research Letters,2000,27(11):1567-1570
    73.Zhu W,Wang X,Cheng Z,et al.Crustal motion of Chinese mainland monitored by GPS.Science in China(Series D),2000,43(4):394-400
    74.陈述彭.遥感地学分析的时空维[J].遥感学报,1997,1(3):161-171
    75.陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社,1991
    76.陈基炜.应用遥感卫星雷达干涉测量进行城市地面沉降研究[J].测绘通报, 2001.8:13-15
    77.程璞,许才军,王华.InSAR相位解缠算法研究[J].大地测量与地球动力学,2007,27(3):50-55
    78.池明曼,卢刚,黄盛璋,等.小波软阈值算法去除SAR图像中的Speckle噪声[J].厦门大学学报,2002,41(6):756-759
    79.崔笃信,王庆良,王建华等.用GPS监测西安市南郊地壳形变[J].大地测量与地球动力学,2003,23(2):47-51
    80.邓起东,徐锡伟,张先康等.城市活动断裂探测的方法和技术[J].地学前缘,2003,10(1):93-104
    81.邓起东.城市活动断裂探测和地震危险性评价问题[J].地震地质,2002,24(4):23-27
    82.邓起东.中国活动构造研究的进展与展望[J].地质评论,2002(a),18(2):168-177
    83.邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学(D辑),2002(b),32(12):1020-1031
    84.丁国瑜.中国活断层图集[M].北京:地震出版社.1989
    85.丁伯阳,叶建青,孟凡丽,等.杭州市周边构造和断层及其对建、构筑物的影响[J].浙江工业大学学报,2003,31(3):319-323
    86.邓清海,马凤山,袁仁茂等.基于GPS的江阴市地面沉降规律及机理研究[J].工程地质学报,2007,15(1):621-625
    87.鄂建,孙爱荣.华北平原地面沉降机理与特点及防治措施[J].资源环境与工程,2007,21(2):156-159
    88.范湘涛,卢华复,郭华东,等.库车冲断带新构造遥感分析[J].地质评论,2000,5(46):499-506
    89.范湘涛,卢华复,阎福礼,等.航天飞机成像雷达数据在库车冲断带前缘构造分析中的应用[J].地质科学,2002,37(3):257-263
    90.葛大庆,王艳,范景辉,等.地表形变D-InSAR监测方法及关键问题分析[J].国土资源遥感,2007,74(4):14-22
    91.郭华东.雷达对地观测理论[M].北京:科学出版社,2001
    92.郭华东.雷达图像分析及地质应用[M].北京:科学出版社,1991
    93.郭华东.中国雷达遥感图像分析[M].北京:科学出版社,1999
    94.何庆成,方志雷,李志明,等.InSAR技术及其在沧州地面沉降监测中的应用[J].地学前缘,2006,13(1):179-184
    95.贾三满,王海刚,赵守生等.北京地面沉降机理研究初探[J].城市地质,2007,2(1):20-26
    96.荆燕,王建军,张红,等.D-InSAR技术及其在活断层运动学研究中的应用 [J].灾害学,2003,18(3):13-18
    97.李起彤.活断层及其工程评价[M].北京:地震出版社,1991
    98.李长江,王永江,沈晓华,等.浙江省国土资源遥感调查与综合研究[M].北京:地质出版社,2004
    99.李后尧,冯启言.江苏典型的城市地质灾害与防治[J].中国矿业,2003,12(1):67-70
    100.李明良.河北省京津以南平原区地面沉降机理及其防治对策[J].南水北调与水利科技,2006,4(1):52-53
    101.李延兴,史粦华,陈聚忠,等.台湾集集7.6级地震前后福建沿海地区的地壳运动[J].大地测量与地球动力学,2006,26(2):5-9
    102.刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999
    103.刘耀峰,李事业,项汉昌等.基坑降水引起的地面沉降机理探讨[J].安全与环境工程,2004,11(2):51-54
    104.廖明生,林珲.雷达干涉测量学:原理与信号处理处理[M].北京:测绘出版社,2003
    105.马德宝.星载合成空间雷达回波相干斑抑制和干涉研究[D]:[博士学位论文].河南:中国人民解放军信息工程大学,2000
    106.马建文,赵忠明,布和敖斯尔.遥感数据模型与处理方法[M].北京:中国科学技术出版社,2001
    107.潘时祥,范永宏,刘智.雷达摄影测量[M].北京:解放军出版社,2000
    108.彭洪.浙江省杭嘉湖平原地面沉降造成的环境影响及防治对策[J].浙江水利科技,2002,5:11-13
    109.齐跃明,陈启国.安徽南部东西向断裂构造的遥感研究[J].西部探矿工程,2003,11:77-79
    110.乔书波,李金岭,孙付平,等.InSAR技术现状与应用[J].天文学进展,2003,21(1):11-25
    111.舒宁.微波遥感原理[M].武汉:武汉测绘科技大学出版社,2000
    112.隋志龙,,杨巍然,张利华.西藏定结幅区调工作中的断裂构造遥感研究方法探讨[J].大地构造与成矿学,2002,4(26):452-458
    113.隋志龙,李德威,黄春霞.断裂构造的遥感研究方法综述[J].地理学与国土研究,2002,18(3):34-37
    114.孙家捅.遥感原理与应用[M].武汉:武汉大学出版社,2003
    115.孙建宝,徐锡伟,石耀霖,等.东昆仑断裂玛尼段震间形变场的InSAR观测及断层滑动率初步估计[J].自然科学进展,2007,17(10):1361-1370
    116.孙文盛.长江三角洲地区地面沉降防治工作调研报告[J].国土资源通讯,2002,11:41-46
    117.唐伶俐,张景发,王新鸿,等.极具应用潜力的PS技术[J].遥感技术与应用,2005,20(3):309-313
    118.武百超,邹徐文.GPS/InSAR数据融合在大范围地表沉降监测中的应用[J].矿山测量,2006,1:33-35
    119.王超,张红,刘智,等.基于D-InSAR的1993-1995年苏州市地面沉降监测[J].地球物理学报,2002,45(增刊):244-253
    120.王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002
    121.王超.利用航天飞机成像雷达干涉数据提取数字高程模型[J].遥感学报,1997,1(1):46-49
    122.王超,刘智,张红,等.张北-尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2554
    123.王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑),2003,33(增):21-32
    124.王翠珍,郭华东.雷达图像分析及地质应用[M].北京:科学出版社,1991
    125.王胜利,卢华复,贾东,等.甘肃昌马盆地构造特征与成因[J].高校地质学报,2001,7(1):13-20
    126.魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001
    127.武强,谢海澜,赵增敏等.弱透水层变形机理的研究[J].北京科技大学学报,2006,28(3):207-210
    128.徐华平,周萌清,李春升.星载干涉SAR中的基线问题[J].电子学报,2003,31(3):437-439
    129.薜禹群.地面沉降与“禁采地下水”[J].江苏科技信息,2007,8:1-3
    130.杨清友,王超.干涉雷达复图像配准与干涉纹图的增强[J].遥感学报,1999,3(2):122-126
    131.叶建青.城市活断层研究与浙江省的城市化建设[J].上海地质,2001,4:31-33.
    132.于勇,王超,张红,等.基于不规则网络下网络流算法的相位解缠方法[J].遥感学报,2003,7(6):472-477
    133.于晶涛.星载SAR干涉技术的理论与方法研究[J].测绘学报,2004,33(4):368-369
    134.于军,王晓梅,武健强,等.苏锡常地区地面沉降特征及其防治建议[J].高校地质学报,2006,12(2):179-184
    135.曾琪明,焦健.合成孔径雷达遥感原理及应用[J].遥感信息,1998,4:42-46
    136.张景发,陶夏新,田云峰,等.城市周边活断层探测中遥感技术的应用[J].自然灾害学报,2004,13(1):137-145
    137.章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社, 1997
    138.张微,陈汉林,程晓敢,等.高分辨遥感在杭州活断层探测中的应用[J].煤田地质与勘探,2007,35(3):10-14
    139.张微,丁献文,陈汉林.基于改进的IHS方法的SAR图像增强与融合[J].海洋学研究,2007,25(1):73-79
    140.张微,陈汉林,李启敏,等.基于遥感技术研究萧山-球川断裂带[J].科技通报,2008,24(2):156-162
    141.张微,孙荣桦,章孝灿.基于改进的小波软阈值法的SAR图像去噪[J].遥感信息,2004,4:4-7
    142.郑铣鑫.宁波地面沉降系统分析[J].水文地质工程地质,1991,18(2):35-37
    143.中国科学院地学部“中国地球科学发展战略”研究组.地球科学:世纪之交的回顾与展望[J],中国科学院院刊,2001,2:101-105
    144.邹谨敞,邵顺妹.活动断裂的遥感影像研究[J].环境遥感,1995,10(3):182-187
    145.张俊,柳健.SAR图像斑点噪声的小波软门限滤除算法[J].测绘学报,1998,27(2):119-125
    146.朱金芳,徐锡伟,黄宗林,等.福州市活断层探测与地震危险性评价[M].北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700