用户名: 密码: 验证码:
壳聚糖、琼胶糖的提取及其对藻胆蛋白缓释体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,癌症已成为威胁人类健康的第一大杀手,传统疗法象放疗、化疗和手术疗法均会给病人带来极大的痛苦。光动力疗法(Photodynamic therapy, PDT)治疗肿瘤是近年发展起来的一种新方法,毒副作用小,疗效确切。其基本原理是利用一些荧光量子产额高的光敏剂注射体内,肿瘤细胞与其亲和性高于正常细胞,因而潴留在肿瘤细胞中。当用强光照射后,光敏剂吸收光子跃迁至激发态,处于激发态的光敏剂再将能量传至周围的氧分子,产生单线态氧,杀伤肿瘤细胞,而对正常组织损伤极小。
     PDT疗法的核心是找到合适的光敏剂,藻胆蛋白是一类水溶性色蛋白,由脱辅基蛋白和开链四吡咯结构的色基通过硫醚键共价交联而成,具有极高的荧光量子产额。能够在适宜波长光的激发下,产生单线态氧和其他的氧自由基,近年来的研究表明藻胆蛋白极有可能成为新一代高效低毒的光敏剂。但由于藻胆蛋白的蛋白特性,使得它易于被酶所降解,因此藻胆蛋白要想实现药物化,必须寻找一种合适的剂型。
     药物控制释放技术为藻胆蛋白药物化提供了有效途径。壳聚糖和琼胶糖都是天然易降解高分子多糖,它们在医药方面都有应用,而壳聚糖更是在药物缓释方面有着良好的口碑。本论文从对虾壳中提取了甲壳素,并探讨甲壳素脱乙酰化过程中碱处理方式及温度对脱乙酰度和分子量的影响。结果表明:加入乙醇、升高温度能够提高甲壳素的脱乙酰度;乙醇存在下的脱乙酰反应是一级反应;采用间歇碱处理的方式能够在提高脱乙酰度的同时,保持较高的分子量。
     采用多种方法从江蓠龙须菜中提取了琼胶,并研究了碱处理、微波处理、超声波辅助处理等方法对龙须菜的琼胶提取率、硫酸基含量和多糖含量的影响。研究结果表明:当碱质量分数由2.5%增加到10%时,琼胶产率由15%降低到9.8%,硫酸基含量由2.66%降低到2.06%,同时,多糖含量由98.3%增加到102.6%;微波和超声波辅助处理在不同程度上增加了琼胶的提取率和多糖含量,同时降低了硫酸基含量。另外,本文还从宏观和微观两个角度考察了碱处理前后龙须菜藻体的变化。对龙须菜琼胶,经DE-22和Sephadex G-200柱层析纯化,得到一种含微量硫酸基的琼胶糖,此多糖经Q-Sepharose柱层析鉴定为单一组分。紫外光谱显示它不含蛋白质、多肽及核酸,红外光谱揭示它含3,6-内醚半乳糖特征吸收以及微量的硫酸基,热学性质表明在其0~700℃升温过程中存在两个失重过程,旋光分析表明随温度的升高,该多糖水溶液存在一个由有序构象(螺旋结构)向无序构象(无规线团)转变的过程。
     本论文还通过硫酸铵沉淀法和柱层析法从多管藻和螺旋藻中分离提取了光谱纯和电泳纯的藻胆蛋白,可以用于藻胆蛋白药物缓释的研究。
     本论文还采用两种亲水性高分子材料-壳聚糖、琼胶糖通过悬浮聚合的方法制备出凝胶球、磁力球与孔球,所得微球被用作藻红和藻蓝蛋白的吸附材料,发现其对藻红蛋白的最大吸附量出现藻红蛋白的等电点附近,当藻红蛋白浓度低于1.25 mg/ml时,吸附量随藻红蛋白浓度的增加而增加。并且,吸附量还随温度升高而增大,受离子强度的影响较小。微球中加入琼胶糖可在一定程度上降低吸附量。改变藻红蛋白的负载量和在微球中加入琼胶糖都可以改变藻红蛋白的释放速度;对藻蓝蛋白的吸附和释放均受颗粒、交联度、壳聚糖的脱乙酰度、微球的孔度等因素影响,减小颗粒大小、降低交联度,增大壳聚糖的脱乙酰度和将凝胶球变为孔球,都有利于藻蓝蛋白的吸附,而减小颗粒大小、降低交联度,降低壳聚糖的脱乙酰度和微球的交联度,以及将凝胶球变为孔球有利于藻蓝蛋白的释放。
Cancer becomes to be the first threaten to the health of people these years. The traditional therapeutic methods including radiation therapy, chemical therapy and operation therapy can all bring a lot of suffering to the patients. Photodynamic therapy (PDT) is a new endoscopic treatment of cancers based on the photosensitization of neoplasms following the administration of a photosensitizer prior to laser light-induced tissue destruction. It requires both light and light sensitive agents (also called photosensitizers) and acts in an oxygen-rich environment; that is to say, this therapy involves the appropriate photosensitizer and irradiation with light of a particular wavelength, thereby initiating tumor necrosis presumably through formation of singlet oxygen.
     The core of PDT is to find a suitable photosensitizer. Phycobiliproteins are water-soluble and its apoproteins carry two different, covalently bound tetrapyrrole prosthetic groups: phycoerythrobilin and phycourobilin. Recent studies show that phycobiliproteins may be used as photosensitizers in tumor photodynamic therapy. As phycobiliprotein is a kind of protein, it is easily to be degraded by the enzymes in the body. Thus, the problem to be faced at present is the development of suitable protein delivery devices.
     Control-release is a technique or method by which active chemicals are made available to a specified target at a rate and duration to accomplish an intended effect. Therefore, the technology of drug controlled-release offers the effective way to medicate phycobiliproteins.
     In this study, the chitin was extracted from the exoskeleton of the prawn. The influences of alkali treatment and temperature on the deacelation process of chitin were discussed. The results showed that the addition of ethanol and raising temperature could increase the deacelation degree of chitin; the deacelation reaction with the lying of the ethanol was a first order reaction; the intermission alkali treatment can obtain chitosan of high deacelation degree with high molecule weight.
     Agar is a polysaccharide complex extracted from the agarophyte members of Rhodophyta. Several experimental methods for agar extraction from Gracilaria lemaneiformis were studied in this paper. The effects of alkali, microwave, ultrasonic treatment on the agar yield, sulfate content and polysaccharide content were investigated. The results obtained showed that the alkali treatment could decrease the agar yield as well as the sulfate content and the agar yield, the sulfate content were negatively affected by the increase of the NaOH concentration; on the contrary, the microwave and ultrasonic treatment could increase the agar yield, as well as the sulfate content, and the agar yield and the sulfate content were increased with the increasing of microwave and ultrasonic treatment time. Moreover, the states of the alga before and after alkali treatment were observed in microscopical and macroscopical conditions.
     The agar was extracted from Gracilaria Lemaneiformis with hot water and was then purified by DE-22 and Sephadex G-200 column chromatograph. The purified agarose contained little sulfate. Its homogeneity was identified with Q-Sepharose column chromatography. The ultraviolet spectrum showed that there was no protein and nucleic acids in the purified polysaccharide. The infrared spectrum indicated that there were special absorption of 3,6-anhydro-galactose and very little sulfate absorbance peaks. There were two weight loss processes during the increasing temperature from 0 to 700℃, and there was a transition from double helix structure to random coil with the increasing temperature in the polysaccharide solution.
     Phycobiliproteins were isolated and purified from alga Polysiphonia urceolata Grev and Spirulina Platensi using Streamline column combined with ion-exchange chromatography or hydroxyapatite chromatography. The purified phycobiliproteins were identified with absorbance spectra and electrophoresis.
     In this article, a hydrophilic natural polymer, chitosan and agarose were used to form gel-microspheres, macroporous microspheres and magnetic microspheres by suspension cross-linking method. These microspheres were used to load phycobiliproteins by adsorption method. The R-PE loading efficiency was highest when pH value was 3.59 (close to its isoelectric point). When R-PE concentration was below 1.25 mg/ml, the loading efficiency increased with enhancing of R-PE concentration. In addition, the R-PE loading efficiency was enhanced with the increasing temperature, and little influenced by the ion strength. The presence of agarose in the microspheres can somewhat slow down the loading capacity and accelerate the release rate of R-PE. Changing R-PE concentration and adding agarose to the chitosan microspheres can adjust the release rate of R-PE someway.
     The particle size, crosslinking degree, adsorption and release,deacelation degree of chitosan, and the porous of microspheres were all the factors that could effect the adsorption and release ability of C-PC. Reduce the particle size, pull down the crosslinking degree, increase the deacelation degree of chitosan and turn the gel-microspheres to porous microspheres were profitable to the adsorption, and reduce the particle size, pull down the crosslinking degree, reduce the deacelation degree of chitosan and turn the gel-microspheres to porous microspheres were profitable to the C-PC release.
引文
1沈彬,刘粱,赵承梅,陈平,肿瘤光动力疗法研究进展,继续医学教育,2005,19(6):42-48
    2 Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer. Nat Rev Cancer, 2003, 3(5): 380-387.
    3 David Phillips, Chemical mechanisms in photodynamic therapy with phthalocyanines. Prog. Reaction Kinetics, 1997, 22:175-300.
    4王洪武,光动力治疗肿瘤,中国保健营养, 2004, 12, 34-35.
    5 Marcacci A. Sur l’action des alcaloides dans le regne vegetal et animal. Arch Ital Biol 1888;9:2–4.
    6 O. Raab, Ueber die Wirkung fluorescirender Stoffe auf Infusorien, Z. Biol., 1900, 39.
    7. Von Tappeiner H, Jodblauer A.über die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Dtsch Arch Klin Med 1904, 80: 427-487.
    8 Tappenier H, Jessionek A. Therapeutische versuche mit fluieszerenden stoff. Münch Med Wochenschr, 1903, 47:2042-2044.
    9 Hausmann W.über die giftige Wirkung des H?matoporphyrins auf Warmblüter bei Belichtung. Wien Klin Wchnschr 1909; 22: 1820-1.
    10 Rassmussen Taxdal DS. Fluorescence of human lymphatic and cancer tissue following doses of intravenous Hp. Cancer, 1955, 8:78.
    11 Lipson RL, Baldes EJ, Olsen AM. The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst ,1961, 26:1-12.
    12 Doughterty TJ, Photoradiation therapy for the treatment of malignant tumors. Cancer Res, 1978, 38:2628.
    13陈祖林,葛海燕,肖卫东,激光光动力治疗胃肠肿瘤,世界华人消化杂志,2004,12(8):1918-1921.
    14岳武,胡韶山,史怀璋,宋学明,光动力学疗法辅助显徽技术治疗脑胶质瘤,中国激光医学杂志,2004,13(2):75—77.
    15李立,富永明,董齐,光动力疗法治疗现状,中国误诊学杂志, 2005,5(3): 439-440.
    16 Fromm D, Kessel D, Wesser J. Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer, Arch Surg, 1996, 131: 667-669.
    17 Furise K, Fukuoka M. A prospective phaseⅡstudy on photodynamic therapy with photofrinⅡfor centrally located early stage lung cancer. J. Clin. Oncol, 1993, 11: 1852-1857.
    18 Savary JF, Monnia P, Fontolliet C, Mizeret J, Wangieres G, Braichotte P, VanDenBergh H, Photodynamic therapy for early squamous cell carcinomas of the esophagus bronchi and mouth with meta tetrahydroxyphenylchlorin, Arch Otolaryngol Head Neck Surg, 1997, 123: 162-168.
    19 Gomer CJ, Dougherty TJ, Determination of [3H]- and [14C] hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res, 1979, 39(1): 146-151.
    20 Kahan, 1998, FDA Approval Number:NDA 020-451/S-002, 003
    21 Jessup M. Shively, Prokaryote Complex Intracellular Structures:Descriptions and Discoveries, Microbiol Monogr May 2006,13 (2), 1-4.
    22 Kutzing F T, Phycologia Generalis. Leipzig. 1843. (Chareaepp. 313-321)
    23 He Jinan,Hu Yizhen,Jiang Lijin.Phetodynamic action of phycobiliproteins: in situ generation of reactive oxygen species. Biochimca et Biophysica Acta, 1997, 1320:165-174.
    24王广策,邓田,曾呈奎,藻胆蛋白的研究概况(I)–藻胆蛋白的种类与组成,海洋科学,2000, 24(2):22-25.
    25王广策,钝顶螺旋藻C-藻蓝蛋白和多管藻藻红蛋白的分离纯化及摩尔消光系数的测定,海洋科学, 1996, 1:52-54.
    26喻玲华,罾繁杰,蒋丽金,周百成,海洋多管藻的R-藻红蛋白的亚基组成和发色团的含量,生物化学与生物物理学报, 1990,22(3):221-227.
    27 Goodwin TW, Carotenoids and biliproteins. In“algal physiology and biochemistry”, eds (Stewart, WDP), Blackwell Science, Publications, 176-205.
    28 O’Carra P, C O’h Eocha, Algal biliproteins and phycobilins, In“Chemistry and biochemistry of plant pigments”(eds Goodwin TW) Vol. 1, Academic Press, London, 328-376.
    29 Morcos NC, Berns M, Henry WL, Phycocyanin: Laser activation, cytotoxic effects, and uptake in human atherosclerotic plaque. Lasers Surg Med, 1988, 8(1):10-17.
    30蔡心涵,何立明,蒋豪伦,螺旋藻藻蓝蛋白对癌激光疗法增敏作用的实验研究。中国海洋药物杂志,1995, 1-15
    31李冠武,王广策,温博贵,李振刚,曾呈奎,藻红蛋白应用于肿瘤光动力治疗的研究,肿瘤防治杂志,2000,8(4), 353-356.
    32李冠武,王广策,李振刚,曾呈奎,藻红蛋白介导光动力治疗的光化学机制研究,激光生物学报, 10(2):116-119.
    33黄蓓,王广策,李振刚,藻蓝蛋白色素肽光动力学抗肿瘤作用的实验研究,激光生物学报, 2002, 11(3): 194-198.
    34李冠武,温博贵,王广策,李振刚,曾呈奎, R一藻红蛋白介导的光敏反应诱导小鼠S180细胞凋亡的研究,汕头大学医学院学报, 2002,15(3):133-135.
    35 MacColl R, Calican J, Berns DS, the chromophore and polypeptide composition of aplysia ink. Biol Bull, 1990, 179:326-331.
    36李冠武,吴健谊,陈爱云,温博贵,王广策,李振刚,藻胆蛋白与血卟啉衍生物光敏剂的光毒性比较,汕头大学医学院学报, 2005,18(4):193-136.
    37 R Chard, W Baker, In: P M Bungay. Ed, Synthetic Membrane: Science Engineering and Applications, D. Reidel Publishing Company, 1986, 581.
    38 K G Das, Controlled Release Technology, Bioengineering Aspects, John Wiley & Sons, 1983.
    39 I-Chien Liao, Andrew C.A. Wan, Evelyn K.F. Yim, Kam W. Leong, Controlled release from fibers of polyelectrolyte complexes, Journal of Controlled Release 104 (2005) 347–358.
    40 Jong Eun Leea, Ko Eun Kimb, Ick Chan Kwonb, Hyun Jeong Ahna, Sang-Hoon Leea,Hyunchul Choa, Hee Joong Kima, Sang Chul Seonga, Myung Chul Leea, Effects of the controlled-released TGF-b1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold, Biomaterials, 2004, 25: 4163–4173.
    41 Bangham AD,Standish MM,Watkins JC, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965, 13:238-252.
    42 Rahman Y F, Chetty DJ, Chen YW. Novel methods of delivery system, Proc Exp Biol Med.I974,146(4):173.
    43 Ogura Y, Yamasaki Y, Drug delivery for Diabetes, Invest Ophthalmol Vis Sci, 1991,32(2): 35l.
    44 Reimer K.Povidone-odine liposome- an overview, Dermatology, 1997,195(Suppl 2):93-99.
    45 Oku N. Anticancer therapy using glucuronate modified long-circulating liposomes. Adv Drug Deliv Rev, 1999, 40(1-2) : 63-73.
    46张晟,杜建,孙蕊,熊成东,彭宇行,蛋白质、多肽类药物控制释放体系的研究,高分子通报, 2005,1:14-19.
    47徐斌,徐丽洒,叶磊,药物控制释放体系的研究进展,山东医药工业, 2001,20(4):20-23.
    48丘晓琳,李国明,微囊化载药高分子微球制备方法研究进展,天津化工, 2004,18(1):20-24.
    49 Taek Kyoung Kim, Jun Jin Yoon, Doo Sung Lee, Tae Gwan Park, Gas foamed open porous biodegradable polymeric microspheres, Biomaterials, 2006, 27: 152–159.
    50 Badri Viswanathan N. , Thomas P.A., Pandit J.K. , Kulkarnia M.G., Mashelkarc R.A, Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique, Journal of Controlled Release, 1999, 58: 9–20.
    51马千里,顺利霞.复合微球的制备、性能及应用,离子交换与吸附,2000,l6(1):89.
    52任现文,江明,交联度对原位聚合法制备聚合物胶束性质的影响及相应的空心球制备,高等学校化学学报, 2006, 27(12): 2422-2425
    53 Scopes K.Protein Purification,Springer Vedag.New York. Inc.1987:190.
    54 Tsuruta M,JP622045l,l987.
    55 Solc nee Hajna J USP4, 421, 660, 1983.
    56 Yanase N, Noguchi H, Asakura H, J Appl Polym Sci, 1993, 50(765): l7.
    57 Hwee Peng Khng, David Cunlife, Stephen Davies, Biotechnol&bioengineering, 1998, 60(4): 419.
    58翟慕衡,张文敏,张峰,叶寅,微波种子聚合法合成均分散无皂高分子微球,安徽师范大学学报(自然科学片),1999,22(2):2l3.
    59 Blackshear PJ, Krantz A,Park H,_et al.1ocal therapy for cytomegalovirusrefinapathy.Diabetes,1979,28:634.
    60 Collins R, Paul z, Reynold DB, Short, R. F. and Wasuwanich, S, Controlled difussional release of dispersed solute drugs from biodegradable implants of various geometries. Biomed Sci Instrum, 1997, 33:137-142.
    61 Morley MG,Duker JS,Ashton P, Robinson MR.. Replacing ganciofovir implants, Ophthalmology, 1995, 102(3): 388-392.
    62徐丽洒,叶磊,孙勇,部分药物控释技术研究概述,药学专论,2002,11(4):38-39.
    63 Zaffaroni A, Special requirements for hormone releasing intrauterine devices, Acta Endocrinol Suppl, 1974, 185:423-434.
    64徐惠南,马路深,磷酸丙吡胺缓释包衣片及生物利用度研究,中国医药工业杂志, 1991, 22(1): 21-24.
    65吴礼光,刘茉娥,控制释放技术,应用化学, 1994, 11(3):1.
    66 Guosen He, Lwin Lwin Ma, Jie Pan and Subbu Venkatraman, ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and“stealth”particle characteristics, International Journal of Pharmaceutics, 2007, 334(1-2): 48-55
    67 Benicewicz C,Hopper P K, Polymers for absorbable surgical. Sutures, J Bioact Compat Polymer,1991, 6: 64-94.
    68亚楠,尹静波,刘芳,高分子材料在药物控制释放方面的应用,吉林工学院学报, 2001, 22(3): 38-40.
    69 Sato T, Kanke M, Schroeder HG, DeLuca PP. Porous biodegradable microspheres for controlled drug delivery I. Assessment of processing conditions and solvent removal, techniques, Pharm. Res, 1988, 5: 21-30.
    70 H. Kranz, R. Bodmeier, A novel in situ forming drug delivery system for controlled parenteral drug delivery, International Journal of Pharmaceutics, 2007, 332(1-2) : 107-114.
    71 Juni Kazuhiko, Nakano Masahiro, Kubota Miho, Controlled release of aclarubicim, an anticancer antibiotic, from poly-β-hydroxybutyric acid microspheres, J Contr Rel, 1986, 4(1): 25-32.
    72 Lian-Yan Wang, Yong-Hong Gu, Zhi-Guo Su and Guang-Hui Ma, Preparation and improvement of release behavior of chitosan microspheres containing insulin, International Journal of Pharmaceutics, 2006, 311(1-2):187-195.
    73 Heller J, Controlled release of biologically active compounds from bioerodible polymers, Biomaterials, 1980, 1(1):51-57.
    74 Edejman E R.J Biomed Mater Res, 1987, 21: 339.
    75 Siegel R A.Ronald A. Siegel, Joseph Kost, Robert Langer, Mechanistic studies of macromolecular drug release from macroporous polymers. I. Experiments and preliminary theory concerning completeness of drug release, J Control Rel, 1989, 8(3):223-236.
    76 Langer R.Robert Langer, Dean S. T. Hsieh, William Rhine , Judah Folkman, Control of release kinetics of macromolecules from polymers, J Member Sci,1980, 7(3): 333-350.
    77 Miyazaki S, Yokouchi C, Takada M. External control of drug release: controlled release of insulin from a hydrophilic polymer implant by ultrasound irradiation in diabetic rats, J Pharm Pharmacol, 1988, 40(10): 716-717.
    78 David C Harsh, Stevin H. Gehrke, Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels, J Control Rel, 1991, 17(2): 175-185.
    79 Bae Y. H., Okano T., Hsu R., Kim S. W., Thermo-sensitive Polymers as On-Off Switches for Drug Release, Makromol. Chem. Rapid Commun, 1987, 8, 481–485.
    80 Zhu-Zhu Li, Li-Xiong Wen, Lei Shao, Jian-Feng Chen, Fabrication of porous hollow silica nanoparticles and their applications in drug release control, Journal of Controlled Release, 2004, 98(2 ): 245-254.
    81 Kenji Kono, Fumiya Tabata and Toru Takagishi, pH-responsive permeability of poly(acrylic acid)- poly(ethylenimine) complex capsule membrane, J Membr Sci, 1993, 76(2-3):233-243.
    82 Qingguo Xu, Yasuhiro Tanaka, Jan T. Czernuszka, Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes, Biomaterials, 2007, 28(16): 2687-2694
    83 Shoei Sakata, Kumao Uchida, Isao Kaetsu, Yoshimi Kita, Programming control of intelligent drug releases in response to single and binary environmental stimulation signals using sensor and electroresponsive hydrogel, Radiation Physics and Chemistry, 2007, 76 (4): 733-737.
    84 Yu Gao, Wangwen Gu, Lingli Chen, Zhenghong Xu,Yaping Li,A multifunctional nano device as non-viral vector for gene delivery: In vitro characteristics and transfection, Journal of Controlled Release, 2007, 118(3): 381-388.
    85 Matthew D. Phaneuf, Scott A. Berceli, Martin J. Bide, William G. Quist and Frank W. LoGerfo, Covalent linkage of recombinant hirudin to poly(ethylene terephthalate) (Dacron): creation of a novel antithrombin surface, Biomaterials, 1997, 18(10): 755-765.
    86 M. Fernandez Cervera, J. Heinamakib, M. Rasanenc, S.L. Maunuc, M. Karjalainen, O.M. Nieto Acosta, A. Iraizoz Colarte, J. Yliruusi, Solid-state characterization of chitosans derived from lobster chitin, Carbohydrate Polymers 58 (2004) 401–408.
    87 K. Kuhlmann, A. Czupala. Preparation and characterization of chitosan from mucorales, in: M.G. Peter, A. Domard, R.A.A. Muzzarelli, et al. (Eds.), Advances in Chitin Science, The European Chitin Society, Potsdam, 2000, pp. 7–14.
    88 Andreas Niederhofer, Bernd W. Muller*, A method for direct preparation of chitosan with low molecular weight from fungi, European Journal of Pharmaceutics and Biopharmaceutics 2004, 57:101–105.
    89 Brugnerotto, J., Lizardi, J., Goycoolea, F. M., ArgUelles-Monal, W., Desbrie`res, J., & Rianudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001, 42, 3569–3580.
    90 Eun Hee Kim, Yangkyu Ahn and Hyo Sook Lee, Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan, Journal of Alloys and Compounds, 2007, 434-435: 633-636.
    91 Marina Burkatovskaya, George P Tegos, Emilia Swietlik, Tatiana N Demidova, Ana P Castano, Michael R. Hamblin, Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice, Biomaterials, 2006, 27(22): 4157-4164.
    92 Jiyoung M. Dang, Kam W. Leong, Natural polymers for gene delivery and tissue engineering, Advanced Drug Delivery Reviews, 2006, 58(4): 487-499.
    93 Majeti N.V. Ravi Kumar,A review of chitin and chitosan applications,Reactive & Functional Polymers 2000, 46: 1–27.
    94张一峰,张富饶,高脱乙酰度壳聚糖的制备及结构与性能研究,浙江化工, 1992, 23 (2): 20-23.
    95薛志欣,杨桂朋,马晓梅,张希琴,壳聚糖的提取及其脱乙酰化研究,鲁东大学学报(自然科学版), 2006, 22(3):208-210.
    96董英,徐自明,徐斌,壳聚糖制备技术的研究进展,食品研究与开发, 2005, 26(5):23-26.
    97 Trang Si Trung, Wah Wah Thein-Han,Nguyen Thi Qui, Chuen-How Ng, Willem F.Stevens, Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation, Bioresource Technology, 2006, 97(4): 659-663.
    98 Menemse Gumusderelioglu, Pelin Agi,Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes,Reactive & Functional Polymers, 2004, 61: 211–220.
    99 Zhi-Ping Zhao, Zhi Wang, Shi-Chang Wang,Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane,Journal of Membrane Science, 2003, 217: 151–158.
    100蒋挺大,甲壳素和壳聚糖膜材料的研究进展,膜科学与技术, 1995,15(3): 20-25.
    101 Majeti N. V, Ravi Kumar. A review of chitin and chitosan applications, React Funct Polym, 2000, 46: 1-27.
    102 Wang K, He ZM. Alginate-/konjac glucomannan-chitosan beads as controlled release matrix. Int. J. Pharm. 2002, 244:117-126.
    103 Yang JM, Lin HT. Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing, J. Membrane Sci, 2004, 243: 1-7.
    104 Hua Hong, Jie Wei, Changsheng Liu, Development of asymmetric gradational-changed porous chitosan membrane for guided periodontal tissue regeneration, Composites Part B: Engineering, 2007, 38(3) :311-316.
    105苏秀榕,李太武,用壳聚糖制备可吸收性手术缝合线的研究辽宁师范大学学报自然科学版, 1996, 19(4): 312-329.
    106 Mi FL, Shyu SS, Chen CT. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release, Biomaterials, 1999, 20: 1603-1612.
    107张春艳,孟宪军,壳聚糖固定化树莓超氧化物歧化酶的研究, 2006,31(8):53-56.
    108霍宇凝,薛莉,袁虹,王静华,顾晓蔚,高分子复合絮凝剂对活性印染废水的脱色性能研究,工业水处理, 2006, 26(1): 33-35.
    109 Meng-Wei Wan, Ioana G. Petrisor, Hsuan-Ting Lai, Daeik Kim, Teh Fu Yen,Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination, Carbohydrate Polymers, 2004, 55(3): 249-254.
    110 Ying-Chien Chung, Huey-Lan Wang, Yen-Meng Chen, Song-Lin Li, Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens, Bioresource Technology, 2003, 88, (3): 179-184.
    111张延坤,刘国忠,甲壳素与壳聚糖及其衍生物的制备和日化工业中的应用,日用化学工业, 1998, 4,36-40.
    112张锐,孙美榕,提取琼胶糖的树脂新方法,中困海洋药物杂志2006,25(3): 28-32.
    113纪明侯.海藻化学.北京:科学出版社. 1997. 5.
    114 Koch R, Die Aetiologie, der tuberculose Berl Klin Wochenschr. 1882, 19:221-230.
    115周光正,绳江篱的琼胶特性及其与东南亚其他江篱品种的比较,
    116 Alvaro Israel, Milagrosa Martinez-Goss, Michael Friedlander, Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation, Journal of Applied Phycology, 1999, 11: 543–549.
    117许忠能,林小涛,林继辉,谢隆初,黄长江,营养盐因子对细基江茵繁枝变种氮、磷吸收速率的影晌,生态学报, 2002,22(3):366-374.
    118 Payen M, Sur la gelose et les nids de salangance, Compt rend Paris, 1859, 49: 521-530.
    119 Neuberg C, Ohle H, the sulfur content of agar, Biochem Z, 1921, 125:311-313.
    120 Samec M, et V Isajevic, Sur la composition de l’agar, Compt rend, Paris, 1921, 173:1474-1475.
    121 Pirie N W, the preparation of heptaacetyl-dl-galactose by the acetolysis of agar, Biochem J, 1936, 30:369-373.
    122 Bernard Quemener, Marc Lahaye, Francois Metro, Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agarose by HPLC, Carbohydrate Research, 1995, 266, 53-64.
    123 A I Usov, Structural analysis of red seaweed galactose of agar and carrageenan groups, Fodd Hydrocolloids, 1998, 12: 301-308.
    124 MRS Melo, JPA Feitosa, ALP Freitas, RCM de Paula, Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea, Carbohydrate Polymers, 2002, 49: 491-498.
    125 M.H. Norziah, S.L. Foo, A Abd. Karim, Rheological studies on mixtures of agar (Gracilaria changii) and k-carrageenan, Food Hydrocolloids, 2006, 20: 204–217,
    126 Masaru Matsuo, Toshie Tanaka, Lin Ma, Gelation mechanism of agarose and k-carrageenan solutions estimated in terms of concentration fluctuation, Polymer, 2002, 43: 5299–5309.
    127 KC Labropoulos, DE Niesz, SC Danforth, PG Kevrekidis, Dynamic rhelogy of agar gels: theory and experiments. Part II: gelation behavior of agar sols and fitting of a theoretical rheological model, Carbohydrate polymers, 2002, 50: 407-415.
    128 Samec M, et V Isajevic, Studien uber Pflanzenkolloide, XIV Physikochemische Analyse der Agar-gallerte, Kolloidchem Beiheftr, 1922,16:285-300.
    129纪明侯.海藻化学.北京:科学出版社. 1997. 6.
    130 Marinho-Soriano, E. Silva, TSF, Moreira, WSC, Seasonal variation in the biomass and agar yield from Gracilaria cervicornis and Hydropuntia cornea from Brazil, Bioresource Technology, 2001, 77, (2), 115-120.
    131 Thierry Givernaud, Abderrazak El Gourji, Aziza Mouradi-Givernaud, Yves Lemoine,Nadia Chiadmi, Seasonal variations of growth and agar composition of Gracilaria multipartita harvested along the Atlantic coast of Morocco, Hydrobiologia, 1999, 398/399: 167–172.
    132 Kimon T. Bird, Jennifer R. Johnson, Jerilyn Jewett-Smith, In vitro culture of the seagrass Halophila decipiens, Aquatic Botany, 1998, 60(4): 377-387.
    133王璐,李智恩,琼胶的研究及进展,海洋科学, 1999, 4:34-37.
    134刘力,李智恩,徐祖洪,低凝固温度琼脂糖的制备方法研究,海洋科学, 2003, 27(12):71-75.
    135 Yu-Feng Yang, Xiu-Geng Fei, Jin-Ming Song, Hai-Yan Hu, Guang-Ce Wang, Ik Kyo Chung, Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters, Aquaculture xx (2005) xxx–xxx
    136任国梅,黄雪芳,戴丽冰,叶惠贞,梁佩红,纤维连接蛋白-一种创伤修复剂制备方法的研究,生物医学工程学杂志, 2003, 20(3):531-533.
    137 Dweltz NE. the structure of chitin. Biochem Biophys Acta 1960, 44: 416-453.
    138蒋挺大.甲壳素,北京:化学工业出版社,2003:4-6.
    139 Genta I., Costantini M., Asti A., Conti B., Montanari L.,Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Cabonhydrate Polymers, 1998, 36:81-88.
    140 Benesch J., Tengvall P., Blood protein adsorption onto chitosan. Biomaterials. 2002, 23: 2561-2568.
    141范国枝,韦一良,红螯螯虾壳制备壳聚糖的研究.精细化工中体,2004,34(2):47-48.
    142蒋挺大,甲壳素,北京:化学工业出版社,2003,259-263.
    143 Roberts GAF and Donszy JG. Determination of the viscometric constants of chitosan. International Journal of Biological Macromoles, 1982, 4:374-377.
    144 Sannan T, Kurita K, Iwakura Y. Effect of deacetylation on solublility, Makromo. Chem, 1976, 177: 3589.
    145沈建,何春桃,陈兴凡,张妍,顾玲玲,不同反应条件对壳聚糖性能的影响,天然产物研究与开发, 2005, 17(B06):35-38.
    146傅献彩,陈瑞华,物理化学(下),北京:高等教育出版社,1980:395-397.
    147 Mima S, Miya M, Iwamoto R, Yoshikawa S. Highly deacetylated chitosan and its properties, J Appl Polym Sci, 1983, 28:1909.
    148张一峰,张富尧,陈剑峰,沈之莹.高脱乙酰度壳聚糖的制备及结构与性能,浙江化工, 1992, 23(2): 20-23.
    149蒋挺大,甲壳素,北京:化学工业出版社, 2003:34.
    150纪明侯,海藻化学,北京:科学出版社, 1997: 17.
    151陈毓荃,生物化学实验方法与技术,北京:科学出版社,2002, 179
    152陈毓荃,生物化学实验方法与技术,北京:科学出版社,2002, 108
    153陈毓荃,生物化学实验方法与技术,北京:科学出版社,2002, 246.
    154曾呈奎,王素娟,刘思俭,海藻栽培学,上海:科技出版社, 1985. 277.
    155徐永健,钱鲁闽,水动力条件对龙须菜N吸收的影响,海洋环境科学, 2004, 23(2)32-35.
    156曾呈奎,经济海藻种质种苗生物学,济南:山东科学技术出版社, 1999. 155.
    157刘思俭,我国江蓠的种类和人工栽培,湛江海洋大学学报, 2001, 21(3)71-79.
    158 Craigie J S, Wen Z C, van der Meer J P. Interspecific, intraspecific, and nutritionally-determined variations in the composition of agars from Gracilaria spp. Bot mar, 1984, 27(2): 55-61.
    159 Santelices B, Doty M S. A review of Gracilaria farming. Aquaculture, 1989, 78: 95-133.
    160 Verma B C, Swaminathan K, Sad K C. An improved turbidimetric procedure for determination of sulfate in plants and soils. Talanta, 1977, 24, 49-50.
    161 Dubois M, Gilles K A, Hamilton J K, Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28, 350-356.
    162边清泉,杨振萍,红车轴草中刺芒柄花素的微波法提取工艺,化学研究与应用, 2005, 17(3) 431-432.
    163 Hromadkova Z, Ebringerova A. Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls. Ultrason Sonochem, 2003, 10 (3)127-133.
    164纪明侯,海藻化学,北京:科学出版社, 1997, 90.
    165赵谋明,江蓠琼胶加工中碱处理的作用及机理.食品科学, 1991, 11,14-17.
    166赵谋明,吴晖,江蓠琼胶加工过程中受碱处理及最佳工艺条件的研究,食品与发酵工业, 1996, 4, 33-37.
    167 Y. Freile-Pelegrin E. Murano. Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula, Bioresource Technol, 2005, 96(3): 295-302.
    168林颖,吴毓敏,天然产物中的糖含量测定方法正确性的研究,天然产物研究与开发, 1996, 8(3): 5-9.
    169王璐,刘力,王艳梅,苑全云,李智恩,徐祖洪,几种红藻琼脂的组分结构及理化性质的比较,海洋与湖沼, 2001, 32(6): 658-664.
    170 Armisen R, World-wide use and importance of Gracilaria. J Appl Phycol, 1995, 7:231–243.
    171赵谋明,刘通讯,江蓠藻的营养学评价,营养学,1997,19(1):64-70.
    172唐德才,虞舜,鹿角菜名实考辨,山东中医杂志,1996,15(12):558-559.
    173徐永健,钱鲁闽,焦念志,江篱作为官营养化指示生物及修复生物的氮营养特性,中国水产科学, 2004, 11(3): 276-280.
    174汤坤贤,袁东星,林泗彬,林亚森,游秀萍,沈东煜,陈敏儿,洪万树,江篱对赤潮消亡及主要水质指标的影响,海洋环境科学, 2003, 22(2):24-27.
    175许忠能,林小涛,江篱的资源与利用,中草药, 2001,32(7): 654-657.
    176张惟杰,糖复合物生化研究技术,浙江:浙江大学出版社, 2003,16.
    177王积涛,胡青眉,张宝申,王咏梅,有机化学,天津:南开大学出版社.1993,436~437.
    178邓志峰,纪明侯,龙须菜和扁江篱多糖的组成及其抗抗肿瘤效果,海洋与湖沼, 1995, 26(6): 575-581.
    179 Duckworth M, YaPhe W., The Structure of agar. Part I, Functional of a complex mixture of PoIysaccharides, Carbohydrate Research, 1971, 16: 189-197.
    180 Matsuo M, Tanaka T, Ma L, Gelation mechanism of agarose and k-carrageenan solutions estimated in terms of concentration fluctuation, Polymer, 2002, 43: 5299-5309.
    181 Rees D A, structure conformation and mechanism in the formation of polysaccharide gel and network, Advances in Carbonhydrate Chemistry, 1969, 24: 267-332.
    182纪明侯,海藻化学,北京:科学出版社,1997,96.
    183陈小强,史锋,龚兴国, R-藻红蛋白的结构、功能及其应用,细胞生物学杂志, 2004, 26: 399-403.
    184仵小南,傅元蕴,张学成,几种红藻和蓝藻藻胆体的分离和光谱特性,海洋湖沼通报, 1993, 3: 88-93.
    185张学成,程晓杰,施定基,江蓠藻胆蛋白的研究Ⅱ龙须菜藻胆蛋白光谱特性和荧光动力学研究,海洋学报, 1999,21(1):90-96.
    186 Hari S. Misra, Suresh K. Mahajan, Excitation energy transfer from phycobilisomes to photosystems: a phenomenon associated with the temporal separation of photosynthesis and nitrogen oxation in a cyanobacterium, Plectonema boryanum, Biochimica et Biophysica Acta, 2000, 1459:139-147
    187 Guangce Wang, Isolation and purification of phycoerythrin from red alga Gracilaria verrucosa by expanded-bed-adsorption and ion-exchange chromatography, Chromatographia, 2002, 56, 509-513.
    188马圣媛,紫球藻藻红蛋白和藻蓝蛋白共价交联物的构建及其与天然藻胆体特性的比较研究,中国科学院硕士研究生学位论文, 2001, 17-18.
    189 Bermejo R.R., Alvarez-Pez J.M, Acien Fernandez F.G, Molina G.E, Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum, J. Biotechnol, 2002, 93: 73–85.
    190黄峙,杨芳,郑文杰,富硒螺旋藻中硒别藻蓝蛋白的纯化及其特性,微生物学报, 2006,46(3):401—405.
    191王勇,钱凯先,董强,高纯度藻蓝蛋白分离纯化及光谱特性研究生物化学与生物物理进展,1999,26(5): 457-460.
    192 Ronge Xing, Song Liu, Huahua Yu, Zhanyong Guo, Pibo Wang, Cuiping Li, Zhien Lia, Pengcheng Lia, Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation, Carbohydrate Research, 2005, 34: 2150–2153.
    193 Dongwen Ren, Hongfu Yi, Wei Wang, Xiaojun Ma, The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation, Carbohydrate Research, 2005, 340: 2403–2410.
    194Zhang M., Li X.H., Gong Y.D., Zhao N.M., Zhang X.F., Properties and biocompatibility of chitosan films modified by blending with PEG, Biomaterials, 2002, 2641–2648.
    195 Sunil A. Agnihotri, Tejraj M. Aminabhavi, Controlled release of clozapine through chitosan microparticles prepared by a novel method, Journal of Controlled Release, 2004, 96: 245– 259.
    196 Hjerten, S., The preparation of agarose spheres for chromatography of molecules and particles, Biochem Biophys Acta, 1962, 79: 393-398.
    197 Denkbas EB, Kilicay E, Birlikseven C, Oztuirk E. Magnetic chitosan microspheres: preparation and characterization. React. Funct. Polym, 2002, 50(3): 225–232.
    198 He P, Davis SS, Illum L.. Chitosan microspheres prepared by spray drying. Int. J. Pharm,1999, 187: 53–65.
    199 Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and interactionically crosslinked chitosan hydrogels for biomedical applications, Europ. J. Pharm. Biopharm, 2004, 57 (1): 19-34.
    200赵大庆,高明,磁性壳聚糖微球的释药和靶向研究,中国新药杂志,2006,15:698-701.
    201 Zhi-Xin Xue, Gui-Peng Yang, Zheng-Pu Zhang, Bing-Lin He, Application of chitosan microspheres as carriers of LH-RH analogue TX46, Reactive & Functional Polymers, 2006, 66: 893–901.
    202吕彩真,欧光南,红毛菜藻红蛋白的提取及稳定性研究,集美大学学报(自然科学版), 2002, 7(1): 15-19.
    203蔡春尔,吴庆磊,徐春和,何培民,藻红蛋白光敏剂研究进展,生物技术通讯, 2004,15 (6):629-632.
    204 Alvaro Israel, Milagrosa Martinez-Goss& Michael Friedlander, Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology, 1999, 11: 543–549.
    205Rossano R., Ungaro N, D’Ambrosio A., Liuzzi G.M., Riccio P., Extracting and purifyingR-phycoerythrin from Mediterranean red algae, Corallina elongata Ellis & Solander, Journal of Biotechnology, 2003, 101: 289-293
    206 Yang JM, Lin HT. Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing, J. Membrane Sci. 2004, 243: 1-7.
    207 Martinac A, Filipovi?-Gr?i? J, Voinovich D, Perissutti B, Franceschinis E. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery, Int. J. Pharm. 2005, 291(1-2): 69-77.
    208 Ganza GA, Anguiano IS, Otero EFJ, Blanco MJ. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide, Eur. J.Pharm. Biopharm. 1999, 48: 149-155.
    209 Wang K, He ZM. Alginate-/konjac glucomannan-chitosan beads as controlled release matrix. Int. J. Pharm. 2002, 244:117-126.
    210 Mi FL, Shyu SS, Chen CT. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release, Biomaterials, 1999, 20: 1603-1612.
    211 Yu LH, Zeng FJ, Jiang LJ, Zhou BC. Subunit composition and chromophore content of R-phycoerythrin from Polysiphonia Urceolata Grev. Acta Bioch. Bioph.Sin, 1990, 22(3): 221-227.
    212 Shi QH, Tia n Y, Dong XY, Bai S, Sun Y. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochem. Eng. J, 2003, 16:317–322.
    213 Hu J, Li SJ, Liu BL. Adsoption of BSA onto sulfonated microspheres, Biochem. Eng. J, 2005, 23: 259-263.
    214 Xu YM, Du YM. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm, 2003, 250: 215-/226.
    215何炳林,黄文强,离子交换与吸附树脂,上海:上海科技教育出版社, 1995, 94.上海:上海科技教育出版社, 1995, 9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700