用户名: 密码: 验证码:
可控骨组织工程支架材料的仿生构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为模拟天然骨组织的结构和成分,本研究以羟基磷灰石(HA)和壳聚糖(CS)为主要材料,利用间接快速原位成型(RP)、冷冻干燥和生物矿化技术制备了一系列具有可控结构、孔隙率和孔径的木垛型多孔复合支架。这些支架包括:HA/CS、HA/CS/PLLA木垛型支架、纳米-微米HA/CS木垛-网络型支架和生物矿化木垛型壳聚糖支架(BMCW)。通过改变材料的组成成分和结构,借助SEM、FTIR、XRD、细胞培养及压缩强度试验,研究了支架的形态、生物相容性和力学性能的变化。结果表明利用RP技术制备支架材料具有整体成型,批量制备,性质均一等特点,降低了平行试验中的个体差异;支架具有相互连通、直径为500μm的大孔及分布不均的微孔结构,以保证细胞接种和粘附以及血管和神经等的长入,大孔孔隙率为50 vol%;支架材料利于前体成骨细胞的分化,接种4周后,成骨细胞不仅沿大孔孔壁形成较厚的细胞复层,也渗透分布在支架细棱的微孔处,并且形成细胞-细胞及细胞-基体相互连接的网络,贯穿整个3D多孔支架;木垛网络型支架更接近于细胞生理环境,有利于真正的三维细胞培养,壳聚糖纤维网络有利于细胞的优先粘附和生长;在不影响支架生物相容性的前提下,纳米/微米级HA的共用,大大提高了支架的力学强度,nano-μm HA木垛-网络型复合支架具有更高的力学性能,压缩强度和压缩模量分别达到0.54±0.02 MPa和6.13±0.60 Mpa,但是粒子易渗出;通过生物矿化技术,以壳聚糖木垛型支架为模板,调控生长HA纳米晶体,在支架内形成了致密的高结晶度HA纳米晶体层,压缩强度和压缩模量分别达到0.54±0.005Mpa和5.47±0.65MPa,同时保证了支架的多孔结构,生物相容性和力学性能,该支架可应用于非承重骨组织工程支架材料。本研究同时探讨了乙醇/水共溶剂体系的矿化技术和矿化机理,此方法可以推广用于纳米HA的批量制备以及其他生物材料的快速矿化,将具有重大的理论和应用价值。
To mimic the structure and component of natural bone,a series of hydroxyapatite (HA) and chitosan(CS) composite woodpile scaffolds were designed with rapid prototyping technique(RP),freeze drying and biomineralization.These bone tissue engineering scaffolds with controlled architecture and porosity were HA/CS and HA/CS/PLLA woodpile,nano-micron HA/CS woodpile-network and biomineralized CS woodpile(BMCW).The morphology,biocompatibility and mechanical properties were characterized by SEM,FTIR,XRD,cell culture and compression test.Results showed that the scaffolds were produced with the RP technique in batch and the scaffolds had almost the same properties such as mechanical,geometry etc.The composite scaffolds possessed controlled woodpile structure,in which the dimension of one strut as well as the distance between two struts was 500μm,which will be suitable for cell seeding,attachment and rapid vascularisation.Osteoblast grew not only in the macropores but also micropores of the strut and formed thick cell multilayer after four weeks.The cells preferred to grow on the chitosan network in woodpile-network scaffold,which is similar to the real three dimensional physiological environment.Nano HA improved the compression strength and compressive modulus dramatically to 0.54±0.02 MPa and 6.13±0.60 MPa respectively.The BMCW was prepared by mineralization of CS woodpile scaffolds,and the thick nano HA crystal layer with high crystallization deposited in the scaffolds to form nanoscopic hybrid composites, which achieved the compression strength of 0.54±0.005Mpa and modulus of 5.47±0.65 MPa respectively.The rapid and efficient one-pot mineralization approach and ethanol/H_2O co-solvent system can be extended to the mineralization of other materials and will have a very broad application in the future.
引文
[1] Bonucci E. Basic Composition and Structure of Bone, in Mechanical Testing of Bone and the Bone-Implant Interface, Y.H. An and R.A. Draughn, Eds., CRC.Press, Boca Raton, 2000, 3-21.
    
    [2] Bone structure, 23.03.2004, http ://www. erigin.umich. edu/class/bme456/bonestructure/bonestructure.htm
    [3] Marieb, E.N., Bones and Skeletal Tissues, 03.08.2004, http://www.humankinetics.laurentian.ca/FeedStream/Content/2506_7.pdf
    [4] Rho JY, Kuhn-Spearing L, Zioupos P, Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 1998; 20: 92-102.
    [5] Kadler KE, Holmes DFT, CHAman JA. Collagen fibril formation. Biochemical Journal 1996;316:1-11.
    [6] Nagai, H, Tsukuda, R, and Mayahara, H. Effects of basic fibroblast growth factor (bFGF) on bone formation in growing rats. Bonel995; 16:367-73.
    [7] Weiner S, Wagner HD. The material bone: Structure mechanical function relations.Annual Review of Materials Science 1998; 28:271-298.
    [8] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 1998; 20:92-102.
    [9] Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. Journal of Materials Chemistry 2004; 14:2115-2123.
    [10] Martin R, Farjanel J, Eichenberger D, Colige A, Kessler E, Hulmes DJS, Giraud-Guille MM. Liquid crystalline ordering of procollagen as a determinant of threedimensional extracellular matrix architecture. Journal of Molecular Biology 2000; 301:11-17.
    
    [11] Hulmes DJS. Building collagen molecules, fibrils, and suprafibrillar structures. Journal of Structural Biology 2002; 137:2-10.
    
    [12] Giraudguille MM. Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons. Calcified Tissue International 1988; 42:167-180.
    [13] Prockop DJ, Kivirikko KI. Heritable diseases of collagen. N Engl J Med 1984; 311:376-396.
    [14] Yamauchi M, Collagen: The major matrix molecule in mineralized tissues. In Calcium and Phosphorus in Health and Disease, Anderson JJB, Garner SC, Eds. CRC Press: New York, 1996; 127-141.
    [15] Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. [Review]. Annual Review of Biochemistry 1995; 64:403-434.
    [16] Jee WSS. Integrated Bone Tissue Physiology: Anatomy and Physiology, in Bone Mechanics Handbook, S.C. Cowin, Ed., CRC Press, Boca Raton, 2001.
    [17] Currey, JD, Onto genetic Changes in Compact Bone Material Properties, in Bone Mechanics Handbook, S.C. Cowin, Ed., CRC Press, Boca Raton, 2001.
    [18] Sambrook P. Bone Structure and Function in Normal and Disease States, 03.08.2004, http://www.fleshandbones.com/readingroom/pdf/113.pdf
    [19] "A Proposal to the National Science Foundation for An Engineering Research Center at UCSD, CENTER FOR THE ENGINEERING OF LIVING TISSUES", UCSD 865023, courtesy of Y.C. Fung, August 23, 2001.
    [20] S Grampp. Radiology of osteoporosis springer. 2003
    [21] Jessica V, Lai B, Grad O. The Emergence of Tissue Engineering as a Research Field. The National Science Foundation report. October 14, 2003
    [22] Langer R.Tissue Engineering .Scienes.1993,260(5110):529
    
    [23] 沙镝,英彬,吕永利,高景恒。骨组织工程的进展.实用美容整形外科杂志 10(2)1999.
    [24] Thompson DW. On growth and form. 2nd ed., reprinted. Cambridge: Cambridge University Press; 1968.
    [25] Currey JD. Bones: structure and mechanics. New Jersey: Princeton University Press; 2002.
    [26] Vincent JFV. Structural biomaterials. Revised Ed. New Jersey: Princeton University Press; 1991.
    [27] Marc Andre' Meyers, Chen PY, YM Lin, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science 2008; 53:1-206.
    [28] Leng Y, Qu SX.TEM examination of single crystal hydroxyapatite diffraction. J.of mater. Sci. Lett. 2002; 21: 829- 830.
    [29] http://www.medicaldevice-network.com/
    [30] O'Keefe BJ, Hillmyer MA, and Tolman WB. Polymerization of lactide and related cyclic esters by discrete metal complexes. Journal of the Chemical Society2001 . DOI: 10.1039/b104197p
    [31] Freed LE, Guilak F, Franklin TM.A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilageNature Materials 2007; 6:162-167.
    [32] Ma T, Li Y, Yang ST, Kniss DA. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development, Biotechnology and Bioengineering 2000; 70: 606- 618.
    [33] Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, Vacanti JP, Langer R, Mikos AG. In vitro degradation of porous poly(L-lactic acid) foams. Biomaterials 2000,21: 1595-1605.
    [34] Thomson RC, Mikos AG, Beahm E, Lemon JC, Satterfield WC, Aufdemorte TB, Miller MJ. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds, Biomaterials 1999; 20 : 2007-2018.
    [35] Glicklis R, SHAiro L, Agbaria R, Merchuk JC, Cohen S. Hepastocyte behaviour within threedimensional porous alginate scaffolds, Biotechnology and Bioengineering 2000; 67: 344-353.
    [36] Pekin S, Koehl D, and Zangvil A. A new HAEX-like biocomposite that can be sHAed by fused deposition of materials (FDM). Presented at the '99 SFF, Austin, TX, and August 9-11, 1999.
    [37] Pekin S, Zangvil A. Effect of powder characteristics on the sintering of hydroxyapatite feedstocks that can be sHAed by FDM. Presented at the '99 SFF, Austin, TX, and August 9-11, 1999.
    [38] Bose S, Avila M, and Bandyopadhyay A. Processing of bioceramic implants via fused deposition process. Presented at the '98 SFF, Austin, TX, August 10-12, 1998.
    [39] Landers R, John H, Mulhaupt R. Scaffolds for tissue engineering applications fabricated by 3D plotting. http://www.art-of-design.com/data/info/publications/9eAEPR_38_ newprocess_3 .pdf>
    [40] Chua CK, Leong KF. Rapid Prototyping: Principles and Applications in Manufacturing. New York: Wiley, 1997
    [41] Yang SF, Leong KF, Du ZH, Chua CK. The Design of Scaffolds for Use in Tissue Engineering.Part II. Rapid Prototyping Techniques. Tissue engineering 2002; 8:1-11
    [42] Chua CK, Chou SM, and Wong TS. A study of the state-of-the-art rapid prototyping technologies. Int. J. Adv.Manufact. Technol. 1998; 14:146.
    [43] Steidle C, Klosterman D, Osborne N. Automated fabrication of nonresorbable bone implants using laminated object manufacturing (LOM). Presented at the '98 SFF, 1998.
    [44] Steidle C, Klosterman D, Chartoff R. Automated fabrication of custom bone implants using rapid prototyping. Presented at the 44th International SAMPE Symposium and Exhibition, Long Beach, California, May 1999.
    [45] Cima MJ, Sachs E, Cima LG. Computer-driven microstructures by 3D printing: bio- and structural materials.Presented at the '94 SFF, Austin, TX, August 8-10, 1994.
    [46] Wu BM, Borland SW, Giordano RA. Solid free form fabrication of drug delivery devices. J. Controlled Release 1996; 40:77.
    
    [47] TheriForm~(?) technology [On-line]. Available: www.therics.com/theriform.html.
    [48] Cima LG, Cima MJ. Preparation of medical devices by solid free-form fabrication methods. U.S. patent 5,490,962.
    [49] Woesz A. Rumpler A. Stampfl J. Varga F. Fratzl-Zelman N. Roschger P. Klaushofer K. Fratzl P. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting .Materials Science & Engineering C: Biomimetic Materials, Sensors & Systems 2005; 25:181-186, 2005.
    [50] Lee G, Barlow JW. Selective laser sintering of bioceramic materials for implants. Presented at the '93 SFF, Austin, TX, August 9-11, 1993.
    [51] Lee G, Barlow JW, Fox WC. Biocompatibility of SLS-formed calcium phosphate implants. Presented at the '96 SFF, Austin, TX, August 12-14, 1996.
    [52] Vail NK, Swain LD, Fox WC. Materials for biomedical applications. Presented at the '98 SFF, Austin, TX, August 10-12, 1998.
    [53] Gesellschaft fur Mikrotechnologie mbH. Microsystems production with rapid micro product development (RMPD) [On-line]. Available: www. microtec-d.com/engl.htm.
    [54] Langton CM, Whitehead MA, Langton DK. Development of a cancellous bone structural model by stereolithography for ultrasound characterisation of the calcaneus. Med. Eng. Phys. 1997; 19:599.
    [55] Chu GTM, Brady GA, Miao W. Ceramic SFF by direct and indirect stereolithography. Presented at Materials Research Society, Fall Meeting, November 30-December 3, 1999, Boston, MA, pp. 119-123
    [56] Fratzl-Zelman N, Fratzl P, Horandner H, Grabner B, Varga F, Ellinger A, Klaushofer K. Matrix mineralization in MC3T3-E1 cell cultures initiated by beta-glycerophosphate pulse. Bone 1998; 23: 511-520.
    [57] Tietz NW, Rinker AD, Shaw LM. IFCC methods for the measurement of catalytic concentrations of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1. Clin Chim Acta 135 (1983): 339F-367F.
    [58] O'Keefe BJ, Hillmyer MA, Tolman W B. Polymerization of lactide and related cyclic esters by discrete metal complexes. Journal of the Chemical Society 2001; 2215 - 2224.
    [59] Lisa E. Freed, Farshid Guilak Franklin T. Moutos, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilageNature Materials 2007; 6:162-167.
    [60] Ma T, Li Y, Yang ST, Kniss DA. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development, Biotechnology and Bioengineering 2000, 70: 606- 618.
    [61] Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, Vacanti JP, Langer R, Mikos AG. In vitro degradation of porous poly (L-lactic acid) foams, Biomaterials 2000; 21:2000 1595-1605.
    [62] Thomson RC, Mikos AG, Beahm E, Lemon JC, Satterfield WC, Aufdemorte TB, Miller MJ. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds, Biomaterials 1999, 20: 2007-2018.
    [63] Woesz A, Rumpler M, Stampfel J, Varga F. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting . Mater. Sci Eng. 2005, 25: 181.
    [64] Berman SA, Bursztajn S, Bowen B, Gilbert W. Localization of an acetylcholine receptor intron to the nuclear membrane. Science 1993; 259:776-779.
    [65] Giraud-Guille MM. Plywood structures in nature. Current Opinion in Solid State and Material Science 1998, 3:221-227.
    [66] Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K.Constant mineralization density distribution in cancellous human bone.Bone 2003; 32:316.
    [67] Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orth Rel. Res 1992; 281:275-294.
    [68] Whang K, Healy KE, Elenz DR, et al. Engineering bone regeneration with novel microarchitecture. Tissue Engineering 1999; 5:35-51.
    [69] Meredith JE, Fateli B, Schwartz MA. The extracellular matrix as a cell survival factor, Molecular Cellular Biology 1993; 9:953-961.
    [70] Bosman FT, stamenkovic I. Functional structure and composition of extracellular matrix. J Pathol 2003; 200:423-48.
    [71] F.Ungaro, M. Biondi, L. Indolfi. Bioactivated polymer scaffolds for tissue engineering. Topics in Tissue Engineering 2005; 2.
    [72] Stein GS, Lian JB, Stein JL, Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol 1996; 176:593-629.
    [73] Tong WD, Eppell SJ. Control of surface mineralization using collagen fibrils. J Biomed Mater Res 2002; .61:346-53.
    [74] Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab 2004; 89:1538-47.
    [75] Yin YJ, Zhao F, Song XF, Yao KD, Lu WW, Leong JC. Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite, J. Appl. Polym. Sci. 2000; 77: 2929-2938.
    [76] Lynch MP, Stein JL, Stein GS, Lian JB.The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization, Exp. Cell Res 1995; 216: 35-45.
    [77] Gotoh Y, Hiraiwa K, Narajama M. In vitro mineralization of osteoblastic cells derived from human bone. Bone Mineral 1990; 8: 239-250.
    [78] Roach HI. Association of matrix acid and alkaline phosphatases with mineralisation of cartilage and endochondral bone. Histochem J 1999; 3:53-61.
    [79] Kerin A, Wisnom M, Adams M. The Compressive Strength of Articular Cartilage. Journal of Engineering in Medicine 1998; 212: 273-280.
    [80] Seal BL, Otero TC and Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng 2001; 34: 147-230.
    [81] Keaveny TM, Hayes WC. Mechanical properties of cortical and trabecular bone, Bone growth. Florida: CRC, 1993. 285-344.
    [82] Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 1998; 22:57-66.
    [83] Qiu GZ, Mei XJ, Hong ZX. The development of artificial articular cartilage—PVA-hydrogel. Biomed Mater Eng 1998; 8:75-81.
    [84] Magnussen RA, Guilak F, Vail TP. Cartilage degeneration in post-collapse cases of osteonecrosis of the human femoral head: altered mechanical properties in tension, compression, and shear. J Orthop Res 2005; 23:576-583.
    [85] Hansen U., Schunke M., Doram C, Ioannidis N., Hassenpflug J., Gehrke T. and Kurz B.. Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J. Biomech 2001; 34:941-949.
    [86] Darling E M. and Anastasiou K A. Biomechanical strategies for articular cartilage regeneration. Annals Biomed. Eng. 2003; 31:1114-1124.
    [87] Lanza RP, Langer R. and Vacanti J. (Editors), in "Principles of Tissue Engineering". Academic Press, San Diego, 2000.
    [88] Whang K, Healy E, Elenz DR. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture Tissue Eng. 1999; 5:35-51.
    [89] M.C. Wake, C.W. Patrick, A.G. Midos. Pore mor-. Phologyeffectson the fibrovascular tissuegrowth in porous. Polymer substrates. Cess Transplant. 1994, 3: 339-343.
    [90] Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3-D. tissue cell cultures. Seminars in Cancer Biology 2005; 15:413-420.
    [91] Zhai Y, Cui FZ. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2006; 291: 202-206.
    [92] Bose S, Saha SK. Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique. Chem. Mater. 2003; 15:4464 -4469, 2003.
    [93] Berman SA, Bursztajn S, Bowen B, Gilbert W. Localization of an acetylcholine receptor intronto the nuclear membrane. Science 1990; 247: 212-214.
    [94] M.M. Giraud-Guille. Current Opinion in Solid State and Material Science 1998; 3:221.
    [95] X. Zhu, J. Chen, L. Scheideler, R. Reichl. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 2004; 25: 4087-4103.
    [96] Elliot JC. Structure, chemistry of the apatites, and other calcium orthophosphates. Amsterdam: Elsevier Science; 1994. 111 p.
    [97] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803-1810.
    [98] Miyamato Y, Ishikawa KI, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 1998; 19: 707-715.
    [99] Green D, Walsh D, Mann S, Oreffo R. The potential of biomimesis in bone tissue engineering: Lessons from design and synthesis of invertebrate skeletons. Bone 2002; 30: 810-815.
    [100] Li QL, Chen ZQ, Brian W., Biomimetic synthesis of the composites of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex. Materials Letters 2006; 60: 3533-3536.
    [101]Simkiss K, Wilbur KM. Biomineralization. Cell biology and mineral deposition. San Diego: Academic Press, 1989.
    [102]Bigi, A., Boanini, E., Panzavolta, S., Roveri, N. and Rubin, K., Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J. Biomed. Mater. Res., 2002; 59: 709-714.
    [103]Y. X. Pang and X. Bao.Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 2003; 23:1697-1704.
    [104]Phillips M. J., Darr J. A., Luklinska Z. B. and Rehman I. Synthesis and characterization of nano-biomaterials with potential osteological applications. J. Mater. Sci.: Mater. Med 2003;14:875-882.
    [105]Lim GK., Wang J, Ng SC, Chew CH, Gan LM. Processing of hydroxyapatite via microemulsion and emulsion routes.Biomaterials1997; 18:1433-1439.
    [106]KotHAalli CR, Wei M, LeGeros RZ, Shaw MT. Influence of temperature and. aging time on HA synthesized by a hydrothermal method. J. Mater. Sci.: Mater. Med. 2005; 16: 441-446.
    [107] Wang Y, Zhang S, Wei K, Zhao N, Chen J and Wang X. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater.Lett. 2006; 60: 1484-1487.
    [108]Riman R. E., Suchanek W. L., Byrappa K., Chen C, Shuk P. and Oakes C. S. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 2002 ; 151: 393-402.
    [109] Zhang F, Zhou Z, Yang S, Mao L, Chen H and Yu X Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater. Lett. 2005; 59:1422.
    [110] Liu J, Ye X, Wang H, Zhu M, Wang B and Yan H. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International 2003; 29: 629-633.
    [111]Rhee S. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002; 23: 1147-1152.
    [112] Darr JA, Guo ZX, Raman V, Bououdina M, Rehman IU. Metal Organic Chemical Vapour Deposition of Bone Mineral like Carbonated Hydroxyapatite CoatingsChem. Commun 2004; 6:696- 697.
    
    [113]Falini G, Fermani S. Chitin mineralization. Tissue engineering 2004; 10:1-7.
    [114]Danilchenko SN, Koropov AV, Sulkio-Cleff B, Sukhodub LF. Thermal behavior of biogenic apatite crystals in bone: An X-ray diffraction study. Cryst. Res Technol 2006; 41:268-275.
    [115]Ito H, Oaki Y, and Imai H. Selective Synthesis of Various Nanoscale Morphologies of Hydroxyapatite via an Intermediate phase. Crystal growth and design 2008; 8: 1055-1059.
    [116]Newman WF, Newman MW. The Chemical Dynamics of Bone Mineral. The University of Chicago Press, Chicago, 1958.
    [117] Gonzalez M, Herna'ndez E, Ascencio JA, Pacheco F, Pacheco S, Rodriguez R. Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent. J. Mater. Chem. 2003; 13:2948-2951.
    [118] Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 2007; 28: 2275-2280.
    [119] Huang FZ, Shen YH, Xie AJ, Zhu JM, Zhang CY, Li SK. Study on synthesis and properties of hydroxyapatite nanorods and its complex containing biopolymer. J.mater. Sci. 2007; 42: 8599-8605.
    [120] Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2007; 2: 51-61.
    [121] Jiang H.D., Liu X.Y., Zhang G. and Li Y. Kinetics and template nucleation of self-assembled hydroxyapatite nanocrystallites by chondroitin sulphate. The journal of biological chemistry2005; 280:42061-42065
    [122]Follet H, Boivin G, Rumelhart C, Meunier P J. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 2004; 34:783-789
    [123] Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 2006; 103: 17741-17746.
    [124]Kerin A, Wisnom M, Adams M. The Compressive Strength of Articular Cartilage. Journal of Engineering in Medicine 1998; 212: 273-280.
    [125] Seal BL, Otero TC and Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng 2001; 34: 147-230.
    [126]Keaveny TM, Hayes WC. Mechanical properties of cortical and trabecular bone, Bone growth. Florida: CRC, 1993. 285-344.
    [127]Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 1998; 22:57-66.
    [128]Qiu GZ, Mei XJ, Hong ZX. The development of artificial articular cartilage—PVA-hydrogel. Biomed Mater Eng 1998; 8:75-81.
    [129] Suzuki O. Interface of synthetic inorganic biomaterials and bone regeneration. International Congress Series 2005; 1284: 274-283.
    [130]Rudin VN, Komarov VF, Melikhov IV, Minaev VV, Orlov AY, Bozhevolnov VE. Method for producing nano-sized crystalline hydroxyapatite. United States Patent 7169372.
    [131]Park, HC, Baek DJ, Park YM, Yoon SY. Computational modeling of ionic transport in continuous and batch electrodialysis. J. Mater. Sci. 2004; 39, 2531-2555.
    [132]Dickinson S.R. and McGrath K.M.. Switching between kinetic and thermodynamic control: calcium carbonate growth in the presence of a simple alcohol. J. Mater. Chem. 2003; 13: 928-933.
    [133] Giuseppe Falini, Massimo Gazzano and Alberto Ripamonti. Magnesium calcite crystallizatin from water-alcohol mixtures. Chem. Commun. 1996; 1037-1038.
    [134]Lahiri, J.; Xu, G.; Dabbs, D.M.; Yao, N.; Aksay, I.A.; Groves, J.T. Designed amphiphilic porphyrin templates for the oriented nucleation of calcium carbonate J. Am. Chem. Soc. 1997; 119:5449-5450.
    [135]Manoli F, E.Dalas. Effect of ferricenium salts on the crystal growth of hydroxyapatite in aqueous solution. J. Cryst. Growth 2000; 218, 359-364.
    [136]Qi LM, Li J, Ma J. Morphological control of CaCO3 particles by a double-hydrophilic block Copolymer in Mixed Alcohol-water solvent. Chem. J. Chin. Univ. 2002; 23: 1595-1600.
    [137]Fulmer M.T.; Brown P.W. J. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. Mater. Sci.: Mater. Med. 1998; 9: 197-202.
    [138]Colfen H, Mann S. Higher-Order Organization by Mesoscale Self-assembly and transformation of hybrid nano structures. Angew. Chem 2003; 42:2350- 2365.
    [139]Dickinson SR, McGrath KM. Switching between kinetic and thermodynamic control: calcium carbonate growth in the presence of a simple alcohol Journal of Materials Chemistry 2003; 13: 928-933.
    [140] Chen SF, Yu S, Yu B, Ren L, Yao WT, Colfen H. Solvent Effect on Mineral Modification: Selective Synthesis of Cerium Compounds by a Facile Solution Route. Chem. Eur. J. 2004; 10: 3050 - 3058.
    [141]Liu XY. Generic mechanism of heterogeneous nucleation and molecular interfacial effects. Advances in Crystal growth research 2001; 42-61. Published by ELSEVIER SCIENCE BV, Amsterdam, July, 2001.
    [142]Wina PP, Shin-ya Y, Hong KJ. Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan (PCS). Carbohydrate Polymers 2003; 53: 305-310.
    [143]Ilyina V, Varlamov VP, Tikhonov VE, Yamskov I A, Davankov VA. Chitinolytic digestibility of cross-linked chitosan gels by an enzyme complex from Streptomyces kurssanovii. Biotechnol. Appl. Biochem 1994; 17:251-256.
    [144]Sugihara J, Imamura T, Yanase T, Yamada H, Imoto T. Separation of peptides by cellulose-phosphate chromatography for identification of a hemoglobin variant. J. Chromatogr 1982;. 229: 193-199.
    [145]Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 2001, 22: 261-268.
    [146]Amaral IF, Granja PL, Barbosa MA. Chemical modification of chitosan by phosphorylation: and XPS, FT-IR and SEM study. J. Biomater. Sci. Polymer Edn 2005; 16:1575-1593.
    [147] Yokogawa Y, Nishizawa K, Nagata F, Kameyama T. Bioactive Properties of Chitin/Chitosan—Calcium Phosphate Composite Materials. Journal of Sol-Gel Science and Technology 2001; 21: 105-113.
    [148] Wang XH, Ma JB, Wang YN. Structural characterization of phosphorylated chitosan and their applications as elective additives of calcium phosphate cements. Biomaterials 2001; 22:2247-2255.
    [149] Yokogawa Y, Reyes JP, Mucalo MR, Toriyama M, Kawamoto Y, Suzuki T, Nishizawa K., Nagata F, Kamayama T. J. Mater. Sci. Mater. Med 1997; 8: 407.
    [150] Wong ATC, Czernuszka JT. Colloids and Surf. A: Physico- chem. Eng. Aspects 1993; 78: 245.
    [151]Varma H, Yokogawa Y., Espinosa FF., Kawamoto Y, Nishizawa K, Nagata F, Kameyama T. Biomaterials1999; 20: 879.
    [152] Wang XH, Ma JB, Wang YN, He BL. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials 2001; 22:2247-2255.
    [153] Wan Y. Katherine AM, Brant P, Bui VT. Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol. Chem.phys. 2003; 204: 850-858.
    [154]Varma HK. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials 1999; 20: 879-884.
    [155]Nishi N, Ebina A, Nishimura S, Tsutsumi A, Hasegawa O, Tokura, S. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. Int. J. Biol. Macromol. 1986; 8: 311-317.
    [156]Nishi N, Maekita Y, Nishimura S, Hasegawa O, Tokura S. Highly Phosphorylated Derivatives of Chitin, Partially Deacetylated Chitin and Chitosan as New Functional Polymers: Metal Binding Property of the Insolubilized Materials , Int. J. Biol. Macromol. 1987; 9: 109-114.
    
    [157]Roeges NPG. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley, Chichester 1994.
    
    [158] Pearson FG, Marchessault RH, Liang CY. IR spectra of crystalline polystalline polysaccharides. J. Polym. Sci. 1960; 43:101-116.
    
    [159] Gibson LJ, Ashby MF. Cellular solids structure and properties. Second edition. Cambridge University press 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700