用户名: 密码: 验证码:
大豆抗豆卷叶螟和筛豆龟蝽的鉴定、遗传和QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对无公害绿色食品和环境保护意识的日益增强,抗虫育种逐渐被人们所重视。我国南方大豆害虫种类多,常造成严重的经济损失。豆卷叶螟、筛豆龟蝽和斜纹夜蛾是我国南方大豆上的主要害虫。目前已对大豆抗斜纹夜蛾进行了较深入的研究,继续探讨大豆对豆卷叶螟和筛豆龟蝽的抗性鉴定方法,筛选优异抗源,研究其抗性遗传机制,对开展我国南方大豆抗虫育种具有重要的理论与实践意义。本文从资源鉴定、遗传分析和QTL定位三个层次对大豆抗豆卷叶螟和筛豆龟蝽进行了研究,所获结果包括如下:
     1大豆抗豆卷叶螟和筛豆龟蝽的资源鉴定
     (1)豆卷叶螟抗性鉴定:1)治虫和品种两因子裂区试验表明豆卷叶螟危害可导致大豆品种平均减产26.27%,但受害处理的百粒重与对照无显著差异,外观品质也无显著差异;2)对虫包数、卷叶率和籽粒产量三个抗性鉴定指标进行了比较,确定在田间自然危害条件下以卷叶率为最佳抗性指标;3)2004-2006三年用卷叶率指标评价了从国内外大批资源中筛选出的58份抗、感食叶性害虫的大豆材料对豆卷叶螟的抗性稳定性,并用网室人工接虫试验验证了田间鉴定结果的可靠性,抗性鉴定结果表明,品种间、年份间、观察日期间、品种×观察日期和品种×年份都有极显著的差异;4)筛选出监利牛毛黄、吴江青豆3、沔阳白毛豆、丰平黑豆和安陆小黄豆等高抗种质,临沂糙绿豆、Morsoy、Bethol、Dare和皖82-178等高感种质,并建议把其分别作为高抗和高感标准品种;5)2006年全国抽样的387份材料抗性结果表明,地方品种和育成品种中高抗材料都有较高的频率;品种抗性程度与品种来源地的地理纬度呈显著负相关。株高高、开花期晚、成熟期晚、茸毛斜立型或紧贴型的品种较抗虫。
     (2)筛豆龟蝽抗性鉴定:1)确定按茎秆黑霉程度结合叶片紫斑数进行抗性分级;2)鉴定了从国内外大批资源中筛选出的58份抗、感食叶性害虫的大豆材料对筛豆龟蝽的抗性,发现品种间、观察日期间和品种×观察日期都有极显著差异;3)筛选出PI227687、安陆小黄豆、花柒黄毛豆和沔阳白毛豆等高抗种质,临沂糙绿豆、大黑豆、Morsoy、黄皮小青豆和皖82-178等高感种质,并建议把其分别作为高抗和高感标准品种。
     (3)豆卷叶螟、筛豆龟蝽和斜纹夜蛾抗性的相关性分析及兼抗资源鉴定:1)发现大豆对豆卷叶螟的抗性和对筛豆龟蝽的抗性高度正相关(r=0.92),而与对斜纹夜蛾的抗性负相关(r=-0.46),特别表现在豆卷叶螟和筛豆龟蝽的多数高感、高抗品种与斜纹夜蛾的正好相反;2)结合前人的研究结果筛选出具有较高的田间综合虫种抗性又具有较高的对豆卷叶螟、筛豆龟蝽和斜纹夜蛾单一虫种抗性的大豆种质PI227687、中豆14、日本、南农89-30和吴江青豆3,但除PI227687外,其它种质对三种害虫不全是高抗;3)筛选出高抗豆卷叶螟和筛豆龟蝽但高感斜纹夜蛾的大豆种质沔阳白毛豆、丰平黑豆、监利牛毛黄、枞阳猴子毛、巨县秋豆A和安陆小黄豆,同时筛选出高抗斜纹夜蛾但高感豆卷叶螟和筛豆龟蝽的大豆种质Lamar、PI171451、PI229358、矮秆黄、黄皮小青豆和山东大豆。
     2大豆抗豆卷叶螟和筛豆龟蝽的遗传分析
     (4)应用三个抗感杂交组合[科丰1号×南农1138-2(NJRIKY)、皖82-178×通山薄皮黄豆甲(NJRIWT)和苏88-M21×新沂小黑豆(NJRISX)]衍生的重组自交系群体,在田间自然虫源条件下,2004-2006年鉴定了大豆抗豆卷叶螟的植株反应:1)验证了9月上旬卷叶率为鉴定大豆对豆卷叶螟抗性的最佳指标;2)NJRIKY、NJRIWT和NJRISX三个群体抗性遗传分离分析结果,一致表明大豆对豆卷叶螟的抗性符合两对主基因+多基因的混合遗传模型,主基因遗传率分别为51.0%、80.5%和56.3%,多基因遗传率分别为39.1%、11.4%和29.1%。两对主基因的作用方式表现组合间有差异。
     (5)以NJRIKY和NJRIWT为材料,2004-2006三年在田间自然虫源下鉴定了筛豆龟蝽抗性,发现NJRIKY和NJRIWT两重组自交系群体对筛豆龟蝽的抗性分别由三对和两对主基因控制。
     3大豆抗豆卷叶螟和筛豆龟蝽的QTL分析
     (6)Mapmaker/Exp(3.0)在分子标记数量大时(多于500个)往往出现所绘制连锁图谱图距偏大的现象。本文从标记分群和标记排序两个遗传作图环节分析原因并概括出以下两个实施要点:1)标记分群不应强求同一LOD值,对特殊的连锁群可试用不同LOD值;2)在标记排序时,一次order命今后用ripple命令反复梳理有时并不能获得最佳排列顺序,而应多次使用order,每次order后用ripple反复梳理,经反复比较才能得出最佳的排列顺序,必要时还须结合人工调整。
     (7)豆卷叶螟抗性QTL定位发现:1)NJRIKY的抗性位点较多主要位于D1a、H、C2、D1b和O连锁群上,NJRIWT抗性QTL主要位于H、D1b和O连锁群上,NJRISX抗性QTL主要位于D1a连锁群上;2)抗虫QTL的抗性等位基因多数来自抗虫亲本南农1138-2、通山薄皮黄豆甲和苏88-M21;3)NJRIKY和NJRISX位于D1a连锁群上的qRLP-d1a-1处于相同区间且都是最主要的抗性QTL;4)NJRIKY和NJRIWT位于H连锁群上的qRLP-h-2处于相同区间且都是最主要的抗性QTL,NJRIKY和NJRIWT位于D1b连锁群上的qRLP-d1b-2也处于相同区间;5)大豆对豆卷叶螟抗性的QTL定位,在群体间、指标间、年度间、日期间能相互验证,说明QTL存在的真实性,QTL附近的标记有望用于标记辅助选择育种。
     (8)筛豆龟蝽抗性QTL定位发现:1)2004-2006三年NJRIKY群体均检测出的qRMC-d1a-1位于D1a连锁群,贡献率为7.6%-31.4%;2005和2006两年均检测出的qRMC-c2-1位于C2连锁群,与环境有互作,效应相对较小,抗性等位基因都来自南农1138-2;2)NJRIWT群体连锁群H上的qRMC-h-1在三年中都被检测到,贡献率为16.3%-36.2%,D1b连锁群上的qRMC-d1b-2在2004和2005年被检测到,效应相对较小,抗性等位基因都来自通山薄皮黄豆甲;3)本研究中两个群体抗性位点基本上是不同的。
     (9)豆卷叶螟抗性与筛豆龟蝽抗性QTL定位结果比较:筛豆龟蝽抗性检测出的QTL较少,但检测出的重要QTL与豆卷叶螟的重要QTL位于相近区间。NJRIKY群体中包括位于D1a连锁群上相同区间A947V-Satt482的qRMC-d1a-1和qRLP-d1a-1,位于C2连锁群上相同区间A748V-A397I的qRMC-c2-1和qRLP-c2-1;NJRIWT群体中包括位于H连锁群上相同区间Satt181-Satt434的qRMC-h-1和qRLP-h-2。
     (10)茸毛着生性状的基因定位及其与豆卷叶螟抗性位点的关系:1)利用重组自交系群体分别从关联分析和QTL定位两方面明确了大豆茸毛着生状态与豆卷叶螟的抗性存在密切联系,茸毛紧贴、茸毛斜立是抗性性状,而茸毛直立是感虫性状;2)茸毛紧贴、茸毛斜立比茸毛直立能提高27%-46%的抗性;3)大豆茸毛着生状态的基因在NJRIKY和NJRISX中都被定位在D1a上,且都处于qRLP-d1a-1所在的位置。
As the public concern about food and environment safety growing steadily,to develop insect resistant or tolerant cultivars is considered the most economical way in avoiding yield losses due to insect pests.There were many insect pests limiting soybean production,specially in southern China,where a subtropical climate characterized by mild winters and long growing seasons harbored a complex of potentially important insect species that attack soybean,and sometimes,soybean plants are seriously damaged.Bean pyralid[Lamprosema indicata(Fabricius)],globular stink bug[Megacopta cribraria (Fabricius)]and common cutworm[Spodoptera litura(Fabricius)]were reported as the most important insects on soybean in southern China.A study of soybean resistant to S. litura have been done at Soybean Research Institute of Nanjing Agricultural University.To establish the method for evaluation of resistance,to screen for genetic sources with resistance and to reveal the genetic mechanism of resistance of soybeans to L.indicate and M.cribraria is of great significance in breeding for insect resistant of soybeans in southern China.The main results of the present study were as follows:
     1 Evaluation and identification of genetic sources resistant to L.indicata and M. cribraria in soybean
     (1) The results of evaluation and identification of genetic sources resistant to L. indicata:1) Damage to soybean infested by L.indicata larvae was estimated under with vs. without insecticide spray.The damage of L.indicata was mainly on seed yield rather than on seed quality.Yield losses caused by L.indicata infestation was averagely 26.27%.2) A set of resistance(damage) indices were designed and compared.Among them,rolled leave percentage was chosen to evaluate soybean resistance to L.indicata.3) The identification results of 58 varieties resistant or susceptible to leaf-feeding insect screened out from a total of 6724 domestic and foreign germplasm showed the existence of significant difference among years,observation dates and varieties in a three-year test during 2004-2006.There was also significant interaction between varieties and years and between varieties and dates. 4) After three years' tests,Jianliniumaohuang,Wujiangqingdou 3,Mianyangbaimaodou, Fengpingheidou and Anluxiaohuangdou were identified to be highly resistant and Linyicaolvdou,Morsoy,Bethol,Dare and Wan 82-178 were identified to be highly susceptible,and were suggested as the standard checks in field evaluation to compensate the fluctuations in materials and environmental conditions.5) 387 varieties were screened in 2006.Breeding lines have similar resistant frequency as land race.There was significant differential geographical distribution of resistant resources among varietal eco-regions. Materials with longer days to flowering and maturity,higher heights,semi-erect or appressed pubescence orientation might be more resistant to L.indicata and vice versa.
     (2) The results of evaluation and identification of genetic sources resistant to M. cribraria:1) Based on the observation of occurrence and symptoms of the insect on soybeans,a set of resistance(damage) indicators were designed and compared.Among them,the grade system according to the degree of black mildew on stem and purple spots on leaves was chosen to evaluate the resistance to M.cribraria.2) The identification results of 58 accessions showed that there existed significant difference among accessions, observation dates,and accession×date.3) A group of highly resistant accessions such as PI227687,Anluxiaohuangdou,Huaqihuangmaodou,Mianyangbaimaodou,and highly susceptible accessions such as Linyicaolvdou,Daheidou,morsoy,Huangpixiaoqingdou, Wan82-178,were screened out for breeding purposes,and was suggested as the standard checks in field evaluation.
     (3) Comparing results of resistance to L.indicata,M.cribraria and S.litura,the following was found:1) There existed significant positive correlation between resistance to L.indicata and that to M.cribraria,significant negative correlation between resistance to S. litura and that to M.cribraria and between resistance to S.litura and that to L.indicata.2) A group of accessions with high resistance to the three major insects,such as PI227687, Zhongdou 14,Riben,Nannong 89-30 and Wujiangqingdou 3 were screened out for breeding purposes.3) The accessions highly resistant to L.indicata and M.cribraria,such as Mianyangbaimaodou,Fengpingheidou,Jianliniumaohuang,Congyanghouzimao, Juxianqiudou A and Anluxiaohuangdou were highly susceptible to S.litura.On the contrary, the accessions highly resistant to S.litura,such as Lamar,PI171451,PI229358, Aiganhuang,Huangpixiaoqingdou and Shandongdadou were highly susceptible to L. indicata and M.cribraria.
     2 Inheritance of resistance to L.indicata and M.cribraria in soybean
     (4) Three recombinant inbred line(RIL) populations derived from susceptible by resistant crosses,i.e.NJRIKY,NJRIWT and NJRISX(derived from Kefeng No.1×Nannong 1138-2,Wan 82-178×Tongshanbopihuangdoujia and Su 88-M21×Xinyixiaoheidou,respectively) were tested in field under natural infestation.1) Rolled leave percentage evaluated in early September was chosen as the best indicator of resistance to L.indicata due to its higher genetic variation,heritability value and stability, as well as higher negative correlation with seed yield in the three populations.2) The segregation analyses were performed under major gene+polygene mixed inheritance model for the three populations.The results showed that the resistance to L.indicata was controlled by two major genes plus polygenes in the three populations with their major gene heritability being 51.0%,80.5%and 56.3%,and polygene heritability being 39.1%, 11.4%and 29.1%,respectively.
     (5) Two RIL populations,NJRIKY and NJRIWT were tested for their resistance to M. cribraria under natural infestation according to the degree of black mildew.The results of segregation analyses showed that the resistance to M.cribraria was controlled by three major genes and two major genes in the two populations,respectively.
     3 Mapping QTLs of resistance to L.indieata and M.cribraria in soybean
     (6) It was found that the distances of the map constructed with the software Mapmaker/Exp(3.0) were often exaggerated when large number of markers(e.g.more than 500) was involved.Two innovations were suggested in the application of Method 2 of Mapmaker/Exp(3.0) as:1) Different LOD values used for some specific linkage groups in addition to a common LOD value for the others;and 2) Multiple "order" commands each followed with multiple "ripple" commands used for ordering markers in linkage groups with a window size of 5,combined with some artificial adjustments when needed,for relatively higher likelihoods of the linkage group.
     (7) The results of mapping QTLs conferring resistance to L.indicata in soybean:1) The QTLs on linkage group Dla,H,C2,Dlb and O were detected often associated with resistance to L.indicata in NJRIKY during the three years;the QTLs on linkage group H, D1b and O were detected often associated with resisitance to L.indicata in NJRIWT during the three years;the QTL on linkage group Dla were detected consistently associated with resistance to L.indicata in NJRISX during the three dates in 2006.2) The resistance alleles were often from Nannong 1138-2,Tongshanbopihuangdoujia and Su 88-M21.3) The qRLP-d1a-1 on linkage group D1a in the NJRIKY population also identified in NJRISX population,is an important QTL resistant to L.indicata in soybean.4) The qRLP-h-2 on linkage group H in the NJRIKY population also identified in NJRIWT population,is another important QTL resistant to L.indicata in soybean.The qRLP-d1b-2 on linkage group D1b in the NJRIKY population was also identified in NJRIWT population.5) The fact that the QTLs was repeatedly detected in different populations,different years (environments),different dates and different indices,indicated the resistance was controlled stably by the major QTLs.Based on the results,it is inferred that the markers linked to the detected QTLs should be useful for marker-assisted selection for resistance to L.indicata in soybean.
     (8) The results of mapping QTLs conferring resistance to M.cribraria in soybean:1) The QTL qRMC-d1a-1 on linkage group D1a was detected consistently associated with resistnace to M.cribraria in NJRIKY during the three years,which accounted for about 7.6%-31.4%of the phenotypic variation;the QTL qRMC-c2-1 on linkage group C2 was detected during 2005-2006,which accounted for less phenotypic variation than the former one;the resistance alleles were from Nannong 1138-2.2) The QTL qRMC-h-1 on linkage group H was detected also consistently associated with resistance to M.cribraria in NJRIWT during the three years,which accounted for about 16.3%-36.2%of the phenotypic variation;the QTL qRMC-d1b-2 on linkage group D1b was detected during 2004-2005, which accounted for less phenotypic variation than the former one;the resistant alleles were from Tongshanbopi- huangdoujia.3) Therefore,basically different QTLs conferred resistance to M.cribraria in NJRIKY and NJRIWT.
     (9) The relationship between QTLs resistant to L.indicate and to M.cribraria in soybean:The number of QTLs resistant to M.cribraria was fewer,while important QTLs were mapped in homologous regions of linkage group.Such as,qRMC-d1a-1 and qRLP-d1a-1 were mapped between A947V and Satt482 on linkage group D1a in NJRIKY; qRMC-c2-1and qRLP-c2-1 were mapped between A748V and A397I on linkage group C2 in NJRIKY;and qRMC-h-1 and qRLP-h-2 were mapped between Satt181 and Satt434 on linkage group H in NJRIWT.
     (10) Gene mapping of pubescence orientation and association analysis between pubescence orientation and resistance to L.indicate:1) Association anlyisis between pubescence orientation and resistance to L.indicata and QTL/gene mapping in two recombinant inbred line populations NJRIKY and NJRISX were taken,indicating genetic association of pubescences orientation and resistance to L.indicata in soybean.2) The average rolled leave percentage reduced 27-46%in pubescence appressed and semi-appressed lines in comparision with pubescence erect line.3) The pubescence orientation gene and qRLP-d1a-1 resistant to L.indicata in the two populations were mapped in a homologous region of linkage group D1a.
引文
[1]曹骥.作物抗虫原理与应用[M].北京:科学出版社,1984
    [2]陈忱,杜景红,樊叶扬,郑康乐,庄杰云.利用RHL群体验证水稻第6染色体短臂对产量相关性状的遗传控制.首届长三角农业生物技术论坛论文集[C],上海,2005,10:129-136
    [3]陈桂华,诸葛梓,童彩文.大豆筛豆龟蝽为害损失率测定及其防治指标研究[J].昆虫知识,1996,33(4):207-208
    [4]陈庆山,张忠臣,刘春燕,王伟权,李文滨.应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38(7):1312-1316
    [5]陈申宽,阎任沛,布仁巴雅尔.大豆品种(系)对根潜蝇抗性的研究[J].作物品种资源,1994,4:39-40
    [6]崔世友,耿雷跃,孟庆长,喻德跃.大豆苗期耐低磷性及其QTL定位[J].作物学报,2007,33(3):378-383
    [7]崔章林,盖钧镒,吉东风,任珍静.大豆种质资源对食叶性害虫抗性的鉴定[J].大豆科学,1997a,16(2):93-102
    [8]崔章林,盖钧镒,吉东风,任珍静.南京地区大豆食叶性害虫种类调查与分析[J].大豆科学,1997b,16(1):12-20
    [9]崔章林,盖钧镒.大豆抗豆秆黑潜蝇研究进展[J].中国油料,1996,18(3):19-81
    [10]崔章林,盖钧镒.大豆抗食叶性害虫研究进展[J].大豆科学,1996,15(2):149-158
    [111 范遗恒.大豆抗蚜品种的筛选[J].大豆科学,1988,7(2):167-169
    [12]方宣钧,吴为人,唐纪良.作物DNA标记辅助选择[M].北京:科学出版社,2001
    [13]方宣钧,吴为人.分子选择[J].分子植物育种,2003,(1)1:1-5
    [14]盖钧镒,崔章林.大豆抗食叶性害虫育种的鉴定方法与标准[J].作物学报,1997,23(4):400-407
    [15]盖钧镒,汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34(2):139-145
    [16]盖钧镒,夏基康,崔章林,任珍静,浦奉华,吉东风.我国南方大豆资源对豆秆黑潜蝇抗性的研究[J].大豆科学,1989,8(2):115-121
    [17]盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003
    [18]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    [19]巩鹏涛,木金贵,赵金荣,王晓玲,白羊年,方宣钧.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316
    [20]郭三堆,武东亮,崔洪志,王远,倪万潮,张保龙,张震霖,徐英俊.转双价抗虫基因大豆的研究[J].云南大学学报(自然科学版)遗传学专辑,1999,(21):125
    [21]何风华,席章营,曾瑞珍,Akshay Talukdar,张桂权.利用单片段代换系定位水稻抽穗期QTL[J].中国农业科学,2005,38(8):1505-1513
    [22]何富刚,刘晓东,颜范悦,王艳琴.大豆抗蚜性研究[J].辽宁农业科学,1995,4:30-34
    [23]何小红,徐辰武,蒯建敏,李韬,孙长森.构建数量性状基因图谱的几种统计方法[J].遗传,2001,23(5):482-486
    [24]何祯祥,林国忠,施季森.遗传作图软件应用及辅助软件的研制[J].南京林业大学学报,1999,23(3):1-5
    [25]贺道华,张献龙.数量性状由表型变异到基因发现的研究进展[J].遗传,2006,28(12):1613-1618
    [26]江苏省豆杆黑潜蝇研究协作组.大豆抗豆秆黑潜蝇(Melanagromyza see Zehntner)性能的研究Ⅱ:大豆产量损失和生理性状若干指标的测定[J].南京农学院学报,1984,3:31-37
    [27]江苏省豆秆黑潜蝇研究协作组.大豆抗豆秆黑潜蝇(Melanagromyza sojae)性能的研究Ⅰ:成虫生物学的观察[J].南京农学院学报,1981,3:33-42
    [28]江苏省农业科学院科技情报研究室(译).库什G S(著).水稻的抗病和抗虫育种[M].江苏:江苏科学技术出版社,1979
    [29]金文林,邢克宇,郝丽芳,李瑞媛,郭玉刚.我国北方小豆地方品种资源研究Ⅵ:小豆叶片茸毛性状的观察[J].北京农学院学报,2000,7,15(3):1-5
    [30]李颜辉,潘战胜,张建平,李旺盛.筛豆龟蝽生物学特性观察[J].植保技术与推广,2001,21(7):11-12
    [31]林谦,毛孝强,杨德,张雪梅.QTL作图主要统计方法及主要作图群体[J].云南农业大学学报,2004,19(2):121-127
    [32]刘德璞,袁鹰,王成武,周正平,郑培和.导入外源DNA大豆后代的抗虫性鉴定与筛选[J].大豆科学,2002,21,(4):245-249
    [33]刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(11):1018-1026
    [34]刘华,王慧,李群,徐鹏,盖钧镒,喻德跃.大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位[J].中国农业科学,2005,38(7):1369-1372
    [35]刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏[J].遗传,2003,25(3):317-321
    [36]刘锡若,辛惠普,李庆孝.大豆病虫害[M].北京:农业出版社,1979
    [37]刘学义,李淑香.大豆对红蜘蛛抗性研究[J].山西农业大学学报,1994,14(4):391-393
    [38]刘莹,盖钧镒,吕慧能,王永军,陈受宜.大豆耐旱种质鉴定和相关根系性状的遗传与QTL 定位[J].遗传学报,2005,32(8):855-863
    [39]刘志文,傅廷栋,刘雪平,涂金星,陈宝元.作物分子标记辅助选择的研究进展、影响因素及其发展策略[J].植物学通报,2005,22(增刊):82-90
    [40]龙丽萍,杨守臻,陈怀珠,覃建林,李初英,孙祖东.不同基因型大豆品种对豆卷叶螟实验种群的影响p].中国油料作物学报,2004,26(3):67-70
    [41]卢为国,盖钧镒,郑永战,李卫东.大豆遗传图谱的构建和抗胞囊线虫(Heterodera glycines Ichinohe)的QTL分析[J].作物学报,2006,32(9):1272-1279
    [42]孟国玲,邱胜桥。荆州大豆食叶性害虫种类及主要种生态位分化[J].湖北植保,2002,2:3-5
    [43]莫惠栋.数量性状遗传基础研究的回顾与思考-后基因组时代数量遗传领域的挑战[J].扬州大学学报(农业与生命科学版),2003,24(2):24-31
    [44]莫惠栋.数量遗传学的新发展-数量性状基因图谱的构建和应用[J].中国农业科学,1996,29(2):8-16
    [45]南相日,刘文萍,刘丽艳,吕晓波,何云霞.PEG介导BT基因转化大豆原生质体获转基因植株[J].大豆科学,1998,(17)4:326-330
    [46]潘学彪,张亚芳,左示敏,陈宗祥.作物重要数量性状基因鉴定与应用的若干问题[J].扬州大学学报(农业与生命科学版),2005,26(2):50-55
    [47]彭玉华,梅德圣,李卫.大豆对叶食性害虫抗性的自然鉴定[J].中国油料,1997,19(2):51-52
    [48]邱丽娟,常汝镇.大豆种质资源描述规范和数据标准[M].北京:中国农业出版,2006
    [49]任秀荣,许海涛.夏大豆豆圆蝽的综合防治[J].庄稼医院,2004,6:17
    [50]沈金雄,易斌,傅廷栋,杨光圣.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3):257-263
    [51]苏彦辉,王慧丽,俞梅敏,吕德扬,郭三堆.苏云金芽孢杆菌杀虫晶体蛋白基因导入大豆的研究[J].植物学报,1999,41(10):1046-1051
    [52]孙志强,田佩占,王继安.野生大豆抗蚜性的利用研究Ⅰ:栽培大豆和野生大豆杂交F_2代的抗蚜性[J].大豆科学,1991,10(2):98-103
    [53]孙志强,田佩占,岳德荣.大豆抗食心虫性的遗传及抗虫育种方法的研究Ⅰ:人工接虫条件下F_2代的抗虫性[J].大豆科学,1989,8(2):177-184
    [54]孙志强,阎日红,王继安,田佩占.大豆抗食心虫性的遗传及抗虫育种方法研究Ⅱ:开花期和成熟期与虫食率的关系[J].大豆科学,1993,12(2):113-122
    [55]孙祖东,盖钧镒,崔章林.大豆抗食叶性害虫遗传的初步研究[J].大豆科学,1999,18(4):300-305
    [56]孙祖东,盖钧镒.大豆对食叶性害虫抗性的研究[J].中国农业科学,1999,32(增刊):81-88
    [57]孙祖东,盖钧镒.大豆对食叶性害虫抗性机制的研究[J].中国油料作物学报,1999,21(2):60-64
    [58]孙祖东,盖钧镒.大豆抗斜纹夜蛾幼虫的遗传研究[J].作物学报,2000,26(3):341-346
    [59]孙祖东,杨守臻,陈怀珠,李初英,龙丽萍.大豆对豆卷叶螟的抗性鉴定[J].中国油料作物学报,2005,27(4):69-71
    [60]孙祖东,杨守臻,陈怀珠,韦德卫.南宁大豆食叶性害虫调查[J].广西农业科学,2001,2:104-106
    [61]童继平,盖钧镒.大豆品种对豆秆黑潜蝇产卵抗选性的研究[J].作物品种资源,1998,1:29-30
    [62]宛煜嵩,王珍,肖英华,吕蓓,方宣钧.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    [63]万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462
    [64]万向元,刘世家,王春明,江玲,翟虎渠,吉村醇,万建民.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275-1283
    [65]王光杰.大豆抗豆荚螟品种种质资源抗性鉴定及遗传研究[J].安徽农业科学,2006,34(24):6474-6477
    [66]王合松,张春生,于东坡.筛豆龟蝽的暴发为害及防治技术初探[J].中国植保导刊,2004,24(8):45
    [67]王宏林,喻德跃,王永军,陈受宜,盖钧镒.应用重组自交系群体定位大豆根重QTL[J].遗传,2004,26(3):333-336
    [68]王慧,喻德跃,吴巧娟,盖钧镒.大豆对斜纹夜蛾抗生性基因的微卫星标记(SSR)的研究[J].大豆科学,2004,23(2):91-95
    [69]王慧.大豆对食叶性害虫抗性的遗传及其相关基因的SSR标记和定位的研究[D].2003,硕士学位论文,南京农业大学
    [70]王继安,罗秋香.大豆食心虫抗性品种鉴定及抗性性状分析[J].中国油料作物学报,2001,23(2):57-59
    [71]王贤智,张晓娟,周蓉,沙爱华,吴学军,蔡淑平,邱德珍,周新安.大豆重组自交系群体荚粒性状的QTL分析[J].作物学报,2007,33(3):441-448
    [72]王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260
    [73]王植杏,王华弟,陈桂华,诸葛梓,童彩文.筛豆龟蝽发生规律及防治研究[J].植物保护,1996,22(3):7-9
    [74]韦荣编,邱高峰,张源.几种常用生物分析软件的特点及其使用简介[J].生物技术通报,2003,3:30-34
    [75]韦涛,盖钧镒,夏基康,马育华.大豆抗豆秆黑潜蝇的鉴定方法及成虫产卵选择性的初步研究[J].南京农业大学学报,1989a,12(3):11-16
    [76]韦涛,盖钧镒,夏基康,马育华.大豆抗豆秆黑潜蝇遗传的初步研究[J].遗传学报,1989b,16(6):436-441
    [77]吴梅香,吴珍泉,华树妹.筛豆龟蝽及其2种卵寄生蜂若干生物学特性的初步研究[J].福建农林大学学报(自然科学版),2006,35(2):147-150
    [78]吴梅香,许开腾.福州郊区菜用大豆害虫的初步研究[J].武夷科学,2002,18:27-32
    [79]吴巧娟,吴娟娟,吴业春,王慧,盖钧镒,喻德跃.大豆资源对斜纹夜蛾的抗性鉴定[J].大豆科学,2006,25(4):410-413,409
    [80]吴巧娟.大豆对食叶性害虫抗性的鉴定和抗虫相关基因克隆及其CAPS标记[D].2004,硕士学位论文,南京农业大学
    [81]吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061
    [82]吴业春,王慧,吴巧娟,盖钧镒,喻德跃.大豆对食叶性害虫田间抗性的相对稳定性[J].中国油料作物学报,2004,26(4):66-70
    [83]吴业春.大豆对食叶性害虫抗性的鉴定及对斜纹夜蛾抗生性的遗传研究[D].2003,硕士学位论文,南京农业大学
    [84]吴颖,王萍,季静,张艳贞,王罡.农杆菌转化法将抗虫基因导入大豆获转基因植株[J].吉林农业大学学报,2003,25(4):371-373,377
    [85]夏基康,浦奉华,张建.大豆抗豆秆黑潜蝇性能的研究Ⅳ:豆秆蝇各虫态历期和不同日龄幼虫的特征与蛀害习性[J].南京农业大学学报,1986,1:23-28
    [86]辛惠普,台莲梅,范文艳.大豆病虫害防治彩色图谱[M].北京:北京农业出版社,2003
    [87]邢光南,赵团结,盖钧镒.大豆资源的筛豆龟蝽[Megacopta Cribraria(Fabricius)]抗性鉴定[J].作物学报,2006,32(4):491-496
    [88]徐冉,张礼凤,王彩洁,王金龙.抗烟粉虱大豆种质资源筛选和抗性机制初探[J].植物遗传资源学报,2005,6(1):56-58
    [89]徐香玲,高晶,刘伟华,李集临.Ti质粒介导的Bt、k-d内毒素蛋白基因转化大豆的初步研究[J].大豆科学,1997,16(1):6-11
    [90]杨庆凯,曹越平,崔岩,周思军.利用花粉管通道技术将抗虫基因导入大豆的研究[J].中国油料作物学报,2002,24(3):17-20
    [91]杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报, 2007,33(4):523-530
    [92]杨喆,关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4):309-314
    [93]杨振宇,本多健一郎,王曙明,马晓萍.中国东北抗蚜野生大豆重复鉴定的研究[J].吉林农业科学,2004,29(5):3-6
    [94]岳德荣,郭守桂,单玉莲.野生大豆(Glycine Soja)抗大豆蚜(Aphis glycinece)研究[J].吉林农业科学,1989,3:15-9,39
    [95]岳德荣,郭守桂,单玉莲.野生大豆(Glycine Soja)抗蚜鉴定技术方法研究初报[J].吉林农业科学,1988,3:1-3,11
    [96]翟凤林,袁士畴,张发成,赵来顺(译).马克斯维尔F G(著).植物抗虫育种[M].北京:北京出版社,1985
    [97]詹秋文,盖钧镒,章元明,喻德跃.大豆对食叶性害虫的抗性遗传[J].中国农业科学,2002,35(8):1016-1020
    [98]詹秋文,盖钧镒,章元明.大豆对斜纹夜蛾幼虫抗性遗传的发展表达过程[J].遗传学报,2001,28(10):956-963
    [99]詹秋文,盖钧镒.大豆种质资源对斜纹夜蛾(PRODENIA LITURA)抗性的鉴定[J].应用与环境生物学报,2000,6(1):18-23
    [100]詹秋文,盖钧镒.大豆资源对食叶性害虫抗性的差异反应及种质鉴定[J].安徽农业技术师范学院学报,1999,13(4):1-6
    [101]张宝红,丰嵘.棉花的抗虫性与抗虫棉[M].北京:中国农业科技出版社,2000
    [102]张复宁,冯其虎,章迪.大豆抗豆秆黑潜蝇(Melanagromyza sojae Zehnter)性能的研究Ⅲ:淮北夏大豆抗蝇性品种筛选试验[J].南京农学院学报,1984,2:26-31
    [103]张海英,许勇,王永健.基因组图谱综述[J].分子植物育种,2003,1(5/6):741-745
    [104]张天真.作物育种学总论[M].北京:中国农业出版社,2003
    [105]张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535
    [106]章元明,盖钧镒,王永军.利用P1、P2和DH或RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470
    [107]章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应[J].遗传学报,2000,27(7):634-640
    [108]赵爱莉,王陆玲,王晓丽,王大伟.大豆品种抗大豆食心虫性与其形态学和生物学因子关系的研究[J].吉林农业大学学报,1994,16(4):43-48
    [109]赵桂云,李文滨,韩英鹏,滕卫丽,宿飞飞,王继安.杂交F_2代大豆食心虫抗性性状分析[J]. 大豆科学,2006,25(1):38-41
    [110]郑康乐.水稻抽穗期基因的精细定位、克隆和生物学功能分析[J].中国水稻科学,2005,19(1):85-90
    [111]中国农作物病虫图谱编绘组.中国农作物病虫图谱,第五分册,油料病虫(一)[M].北京:农业出版社,1982
    [112]周明(?).植物抗虫性原理及应用[M].北京:北京农业大学出版社,1991
    [113]周思军,李希臣,刘昭军,刘丽艳,杨庆凯.通过农杆菌介导法将Bt(cry1A)基因导入大豆[J].大豆科学,2001,20(3):157-163
    [114]朱成松,顾和平,陈新.大豆对食叶性害虫抗性的自然鉴定[J].江苏农业科学,1998,2:33-35
    [115]朱成松,张宝龙,王学军.大豆对食叶性害虫的抗性与农艺性状的关系[J].中国油料作物学报,1999,21(1):59-62
    [116]朱军.复杂数量性状基因定位的混合线性模型方法.王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998,11-20
    [117]Abel C A,Kilen T C.Registration of D95-6271 soybean germplasm line resistant to velvetbean caterpillar[J].Crop Science,2004,44:1495-1496
    [118]Abel C A,Tyler J M.Registration of DT98-2448 soybean germplasm resistant to defoliating insect damage[J].Crop Science,2003,43:1136-1137
    [119]Beach R M,Todd J W.Foliage consumption and developmental parameters of the soybean lopper and the velvetbean caterpillar(Lepidoptera:Noctuidae) reared on susceptible and resistant soybean genotypes[J].J.Econ.Entomol.,1988,81:310-316
    [12o]Beach R M,Todd J W.Resistance of the soybean line GatIR81-296 to foliar feeding by three Spodoptera sp[J].J.Agric.Entomol.,1987,4:193-199
    [121]Bernard R L,Nelson R L,Cremeens C R.USDA soybean genetic collection:Isoline collection [J].Soybean Genet.Newsl,1991,18:27-57
    [122]Bernard R L,Singh B B.Inheritance of pubescence type in soybeans:glabrous,curly,dense,sparse,and puberulent[J].Crop science,1969,9:192-197
    [123]Bernard R L.The inheritance of appressed pubescence[J].Soybean Genet.Newsl,1975,2:34-36
    [124]Bernard R L.The inheritance of semi-sparse pubescence[J].Soybean Genet.Newsl,1975,2:33-34
    [125]Boerma H R,Specht J E.Soybeans:Improvement,Production,and Uses(third edition)[M].Madison,Wisconsin USA,2004
    [126] Boenna H R, Walker D R. Discovery and utilization of QTLs for insect resistance in soybean [J]. Genetica, 2005,123:181-189
    [127] Bowers G R, Kenty M M, Way M O, Funderburk J E, Strayer J R. Comparison of three methods for estimating defoliation in soybean breeding programs [J]. Agronomy Journal, 1999, 91: 242-247
    
    [128] Bowers G R. Registration of soybean cultivar Crockett [J]. Crop Science, 1990,30(2): 427
    [129] Broersma, D B, Bernard R L, Luckman W H. Some effects of soybean pubescence in populations of the potato leafhopper [J]. J. Econ. Entomol, 1972, 65: 78-82
    [130] Brown G R, Bassoni D L, Gill G P, Fontana J R, Wheeler N C, Megraw R A, Davis M F, Sewell M M, Tuskan G A, Neale D B. Identification of Quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping [J]. Genetics, 2003,164:1537-1546
    [131] Butter B R, Buzzell R I. Varietal differences in leaf flavonoids of soybeans [J]. Crop Science, 1973,13:103-106
    [132] Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat [J]. Theor Appl Genet, 2001,103: 962-971
    [133] Choi Ik Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, Tassell C P van, Specht J E, Cregan P B. A Soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis [J]. Genetics, 2007,176: 685-696
    [134] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994,138(3): 963-971
    [135] Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K. An introduction to markers, quantitative trait loci (QTL) mapping and marker assisted selection for crop improvement: the basic concepts [J]. Euphytica, 2005,142:169-196
    [136] Cooper R L, Hammond R B. Registration of insect-resistant soybean germplasm lines HC95-24MB and HC95-15MB [J]. Crop Science, 1999,39(2): 599
    [137] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome [J]. Crop Science, 1999,39:1464-1490
    
    [138] Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character [J]. Genetics, 1996,142(1): 285-294
    [139] Elden T C, Bernard R L, Kogan M, Helm C G, Bledsoe L W. Registration of three group III maturity insect-resistant soybean germplasm lines: MBB 80-133, L86K-73, and L86K-96 [J]. Crop Science, 1992,32(4): 1082-1083
    [140] Fehr W R, Caviness C E, Burmood D, Pennington J S. Stage of development descriptions for soybean, Glycine max (L.) Merrill [J]. Crop Science, 1971,11: 929-933
    [141] Forcada C, Alcacer E, Garcera M D, Martinez R. Differences in the midgut proteolytic activity of two Heliothis virscens strains, one susceptible and one resistant to Bacillus thuringiensis toxins [J]. Arch. Insect Biochem. Physiol, 1996,31: 257-272
    [142] Franceschi V R, Giaquinta R T. Glandular trichomes of soybean leaves: Cytological differentiation from initiation through senescence [J]. Bot. Gaz., 1983,144:175-184
    [143] Gai J Y, Xia J K, Cui Z L, Ren Z J, Ji D F. A study on resistance of soybeans from southern China to soybean agromyzid fly (Melanagromyza sojae Zehntner) [C]. In WSRC IV proceedings (3), 1989,1240-1245. AASOJA, Buenos Aries, Argentina
    [144] Gannon A J, Bach C E. Effects of soybean trichome density on Mexican bean beetle (Coleoptera: Coccinellidae) development and feeding preference [J]. Environmental Entomology, 1996, 25(5): 1077-1082
    [145] Gunashinghe U B, Irwin M E, Kampmeir G E. Soybean leaf pubescence affects aphid vector transmitsion and field spread of soybean mosaic virus [J]. Ann. Appl. Biol., 1988,112: 259-272
    [146] Hartman G L, Domier L L, Wax L M, Helm C G, Onstad D W, Shaw J T, Solter L F, Voegtlin D J, D'Arcy C J, Gray M E, Steffey K L, Isard S A, Orwick P L. Occurrence and distribution of Aphis glycines on soybeans in Illinoisin 2000 and its potential control. 2001, Online. Available at http://www.plantmanagementnetwork.org/php/default.asp.
    [147] Hartwig E E, Kilen T C, Young L D. Registration of 'Lyon' soybean [J]. Crop Science, 1994, 34: 1412
    [148] Hartwig E E, Lambent L, Kilen T C. Registration of soybean cultivar Lamar [J]. Crop Science, 1990, 30(1): 231
    [149] Hartwig E E, Turnipseed S G, Kilen T C. Registration of soybean germplasm line D75-10169 [J]. Crop Science, 1984, 24: 214-215
    [150] Hesler L S, Dashiell K E, Lundgren J G Characterization of resistance to Aphis gfycines in soybean accessions [J]. Euphytica, 2007,154: 91-99
    [151] Hill C B, Li Y, Hartman G L. A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling [J]. Crop Science, 2006a, 46: 1601-1605
    [152] Hill C B, Li Y, Hartman G L. Resistance of glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae) [J]. J. Econ. Entomol., 2004a, 97(3): 1071-1077
    [153] Hill C B, Li Y, Hartman G L. Resistance to the soybean aphid in soybean germplasm [J]. Crop Science, 2004b, 44: 98-106
    [154] Hill C B, Li Y, Hartman G L. Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene [J]. Crop Science, 2006b, 46:1606-1608
    [155] Hulburt D J, Boerma H R, All J N. Effect of pubescence tip on soybean resistance to lepidopteran insects [J]. Journal of Economic Entomology, 2004, 97(2): 621-627
    [156] Hulburt D J. Identifying additional insect resistance quantitative trait loci in soybean using simple sequence repeats [D]. M.S. Thesis, University of Georgia, Athens. 2002
    [157] Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for qutatitve trait loci [J]. Genetics, 1999,152:1203-1216
    [158] Karasawa K Crossing experiments with Glycine soja and G. assuriensis [J]. Jpn. J. Bot., 1936, 8: 113-118
    [159] Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J, Zilberstein A. Digestion of d-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CrylAC [J]. Insect Biochem. Mol. Biol., 1996, 26: 365-373
    [160] Kenty M M, Hinson K, Quesenberry K H, Wofford D S. Inheritance of resistance to the soybean looper in soybean [J]. Crop Science, 1996,36(6): 1532-1537
    [161] Kenty M M, Young L D, Kilen T C. Registration of DMK93-9048 soybean germplasm with resistance to foliar feeding insects and stem canker and possessing high protein [J]. Crop Science, 2001, 41(2): 603
    [162] Kilen T C, Hatchett J H, Hartwig E E. Evaluation of early generateon soybeans for resistance to soybean looper [J]. Crop Science, 1977,17: 397-398
    [163] Kilen T C, Lambert L. Evidence for different genes controlling insect resistance in three soybean genotypes [J]. Crop Science, 1986,26: 869-871
    [164] Kilen T C, Lambert L. Genetic control of insect resistance in soybean germplasm PI 417061 [J]. Crop Science, 1998, 38: 652-654
    [165] Kilen T C, Lambert L. Registration of three glabrous and three dense pubescent soybean germplasm lines susceptible (D88-5320, D88-5295), moderately resistant (D88-5328, D88-5272), or resistant (D90-9216, D90-9220) to foliar-feeding insects [J]. Crop Science, 1993, 33(1): 215
    [166] Komatsu K, Okuda S, Takahashi M, Matsunaga R. Antibiotic effect of insect-resistant soybean on common cutworm (Spodoptera litura) and its inheritance [J]. Breeding Science, 2004, 54: 27-32
    [167] Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y. QTL mapping of antibiosis resistance to common cutworm (Spodoptera litura Fabricius) in soybean [J]. Crop Science, 2005, 45(5): 2044-2048
    [168] Lambert L, Beach R M, Kilen T C, Todd J W. Soybean pubescence and its influence on larval development and oviposition preference of lepidopterous insects [J]. Crop Science, 1992, 32: 463-466
    [169] Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989,121:185-199
    [170] Lander E S, Green P. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987,1:174-181
    [171] Lee J M, Bush A L, Specht J E, Shoemaker R C. Mapping of duplicate genes in soybean [J]. Genome, 1999,42: 829-836
    [172] Lee Y I, Kogan M, Lersen J R Jr. Attachment of potato leafhopper to soybean plant surfaces as affected by morphology of the pretarsus [J]. Entomologia Experimentalis et Applicata, 1986, 42(2): 101-107
    [173] Li Y, Hill C B, Carlson S R, Diers B W, Hartman G L. Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M [J]. Mol breeding, 2007, 19: 25-34
    [174] Li Y, Hill C B, Hartman G L. Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of soybean aphid (Homoptera: Aphididae) [J]. J Econ Entomol, 2004, 97:1106-1111
    [175] Lincoln S E, Daly M J, Lander E S. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. A Whitehead Institute for Biomedical Research Technical Report [C]. Third Edition, January, 1993
    [176] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature [J]. Rice Genetics Newsletter, 1997,14: 11-13
    [177] Mebrahtu T, Kenworthy W J, Elden T C. Genetic study of resistance to Mexican bean beetle in soybean lines [J]. Journal of Genetics and Breeding, 1990, 44(1): 7-12
    [178] Mebrahtu T, Kraemer M, Andebrhan T. Evaluation of soybean breeding lines for corn earworm antibiosis [J]. Crop Science, 2002, 42:1465-1470
    [179] Mebrahtu T, Kraemer M. Registration of VS94-11 VS94-12 and VS94-21 soybean germplasm lines resistant to corn earworm foliar damage [J]. Crop Science, 2004, 44: 701-702
    [180] Mensah C, DiFonzo C, Nelson R L, Wang D C. Resistance to soybean aphid in early maturing soybean germplasm [J]. Crop Science, 2005, 45(6): 2228-2233
    [181] Michael M K, Quesenberry K H, Wofford D S. Inheritance of resistance to the soybean looper in soybean [J]. Crop Science, 1996, 36(6): 1532-1537
    [182] Miklos J A, Alibhai M F, Bledig S A, Connor-Ward D C, Gao A G, Holmes B A, Kolacz K H, Kabuye V T, MacRae T C, Paradise M S, Toedebusch A S, Harrison L A. Characterization of soybean exhibiting high expression of a synthetic bacillus thuringiensis cry1a transgene that confers a high degree of resistance to lepidopteran pests [J]. Crop Science, 2007,47:148-157
    [183] Mochida O. Soybean pest management in japan. Abstracts of Papers WSRC V [C], pl3. Funny Publishing limited Partnership, Bangkok, Thailand, 1994.
    
    [184] Nagai I, Saito S. Linked factors in soybeans [J]. Jpn. J Bot., 1923,1:121-136
    [185] Narvel J M, Walker D R, Rector B G, All J N, Parrott W A, Boerma H R. A retrospective DNA marker assessment of the development of insect resistant soybean [J]. Crop Science, 2001, 41: 1931-1939
    [186] Oppert B, Kramer K J, Beeman R W, Johnson D, Mc-Gaughey W H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins [J]. J. Biol. Chem., 1997,272: 23473-23476
    [187] Painter R H. Insect Resistance in Crop Plants [M]. Macmillan Co., New York, 1951
    [188] Parrott W A, All J N, Adang M J, Bailey M A, Boerma H R, Stewart C N, Jr. Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene [J]. In Vitro Cell. Dev. Biol. Plant, 1994, 30:144-149
    [189] Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato [J]. Genetics, 1990, 124: 735-742
    [190] Peleman J D, Voort J R van der. Breeding by Design [J]. Trends in Plant Science, 2003, 8(7): 330-334
    [191] Rector B G, All J N, Parrott W A, Boerma H R. Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm [J]. Theor Appl Genet, 1998, 96: 786-790
    [192] Rector B G, All J N, Parrott W A, Boerma H R. Quantitative trait loci for antixenosis resistance to corn earworm in soybean [J]. Crop Science, 1999, 39: 531-538
    [193] Rector B G, All J N, Parrott W A, Boerma H R. Quantitative trait loci for antibiosis resistance to corn earworm in soybean [J]. Crop Science, 2000, 40: 233-238
    [194] Reichelderfer K H. Economic contribution of pest management to agriculture development [J]. Trop. Pest Mgmt., 1989, 35: 248-251
    [195] Santos M O, Adang M J, All J N, Boerma H R, Parrott W A. Testing transgenes for insect resistance using Arabidopsis [J]. Mol Breed, 1996,3:183-194
    [196] Sharma A N, Bhatnagar P S, Singh R N. Radiation-induced variability for stem-fly (Melanagromyza sojae) resistance, yield and maturity in soybean (Glycine max) [J]. Indian Journal of Agricultural Sciences, 1996, 66(8): 497-501
    [197] Sisson V A, Miller P A, Campbell W V, Van Duyn J W. Evidence of inheritsance of reisitance to the Mexican bean beetle in soybeans [J]. Crop Science, 1976,16: 835-837
    [198] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet, 2004, 109:122-128
    [199] Specht J E, Graef G L. Registration of soybean germplasm lines possessing a dense pubescence (Pd1Pd1) phenoltype [J]. Crop Science, 1992,32:501
    [200] Specht J E, Williams J H, Pearson D R. Near-isogenic analyses of soybean pubescence genes [J]. Crop Science, 1985, 25: 92-96.
    [201] Stewart C N Jr, Adang M J, All J N, Boerma H R, Cardineau G, Tucker D, Parrott W A. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene [J]. Plant Physiology, 1996a, 112: 121-129
    [202] Stewart C N Jr, Adang M J, All J N, Raymer P L, Ramachandran S, Parrott W A. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis crylAc gene [J]. Plant Physiology, 1996b, 112:115-120
    [203] Stewart R T, Wentz J B. A recessive glabrous character in soybeans [J]. J. Am. Soc. Argon., 1926, 18: 997-1009
    [204] Symonds V V, Godoy A V, Alconada T, Botto J F, Juenger T E, Casal J J, Lloyd A M. Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density [J]. Genetics, 2005,169: 1649-1658
    [205] Terry L I, Chase K, Orf J, Jarvik T, Mansur L, Lark K G. Insect resistance in recombinant inbred soybean lines derived from non-resistant parents [J]. Entomologia Experimentalis et Applicata, 1999, 91:465-476
    [206] Terry L I, Chase K, Jarvik T, Orf J. Soybean quantitative trait loci for resistance to insects [J]. Crop Science, 2000,40: 375-382
    [207] Ting C L. Genetic studies on the wild and cultivated soybeans [J]. J. Am. Soc. Argon., 1946, 38: 381-393
    [208] Tucker D M, Griffey C A, Liu S, Brown-Guedira G, Marshall D S, Saghai Maroof M A. Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations [J]. Euphytica, 2007,155:1-13
    [209] Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis: A method for developing near-isogenic lines that differ at quantitative trait loci [J]. Theor Appl Genet, 1997, 95:1005-1011
    [210] Turnipseed, S G. Influence of trichome density on populations of small phytophagous insects on soybean [J]. Environ. Entomol, 1977,6: 815-817
    [211] Van Duyn J W, Turnipseed S G, Maxwell J D. Resistance in soybeans to the Mexican bean beetle I: Source of resistance [J]. Crop Science, 1971,11:572-573
    [212] Van Duyn J W, Turnipseed S G, Maxwell J D. Resistance in soybeans to the Mexican bean beetle II: Reactions of the beetle to resistant plants [J]. Crop Science, 1972,12: 561-562
    [213] Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for crop improvement [J]. Trends in Plant Science, 2005,10(12): 621-630
    [214] Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs [J]. The Journal of Heredity, 2002, 93(1): 77-78
    [215] Walker D R, All J N, Mcpherson R M, Boerma H R, Parrott W A. Field evaluation of soybean engineered with a synthetic crylac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera:noctuidae), and Lesser cornstalk borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology, 2000: 613-622
    [216] Walker D R, Narvel J M, Boerma H R, All J N, Parrott W A. A QTL that enhances and broadens Bt insect resistance in soybean [J]. Theor Appl Genet, 2004,109:1051-1057
    [217] Walker D, Boerma H R, All J, Parrott W. Combining cry1Ac with QTL alleles from PI229358 to improve soybean resistance to lepidopteran pests [J]. Molecular Breeding, 2002, 9: 43-51
    [218] Wang J K, Gai J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean [J]. Euphytica, 2001,122: 9-18
    [219] Weber K, Eisman R, Morey L, Patty A, Sparks J, Tausek M, Zeng Z B. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster [J]. Genetics, 1999, 153: 773-786
    [220] Wolfenbarger D A, Sleesman J P. Variation in susceptibility of soybean pubescent types, broad bean, and runner bean varieties and plant introductions to the potato leafhopper [J]. J. Econ. Entomol, 1963,56: 895-897
    
    [221] Woolley J T. Water relations of soybean leaf hairs [J]. Agron. J. 1964,56: 569-571
    [222] Wu W R, Huang B G. Strategy for the mapping of interactive genes using bulked segregant analysis method and Mapmaker/Exp software [J]. Chinese Science Bulletin, 2006, 51(21): 2619-2623
    [223] Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line [J]. Theor Appl Genet, 2005,110: 634-639
    [224] Yencho G C, Cohen M B, Byrne P F. Applications of tagging and mapping insect resistance loci in plants [J]. Annual Review of Entomology, 2000, 45: 393-422
    
    [225] Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994,136: 1457-1468
    [226] Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci USA, 1993, 90: 10972-10976.
    [227] Zhang J, Specht J E, Graef G L, Johnson B E. Pubescence density effects on soybean seed yield and other agronomic traits [J]. Crop Science, 1992, 32: 641-648
    [228] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers [J]. Theor Appl Genet, 2004, 108:1131-1139
    [229] Zhang Y M. Advances on methods for mapping QTL in plant [J]. Chinese Science Bulletin, 2006,51(23): 2809-2818
    [230] Zhu S Q, Saski C A, Tomkins J P, Boerma H R, All J N, Parrott W A. Construction of a BAC library for soybean PI229358 and identification of clones associated with a defoliating insect resistance QTL [C]. Plant & Animal Genomes XIV Conference, 2006a, P52
    [231] Zhu S, Walker D R, Boerma H R, All J N, Parrott W A. Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs [J]. Crop Science, 2006b, 46: 1094-1099

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700