用户名: 密码: 验证码:
棉花GhCNGC2基因的克隆与功能鉴定和夏威夷海洋海绵的真菌多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分棉花环化核苷酸调节的离子通道基因GhCNGC2的克隆和功能鉴定
     高等植物的生长和发育需要吸收大量的营养物质和离子,它们对植物的信号转导,渗透调节以及代谢都是至关重要的。因此,植物对营养物质吸收的调节成为一种影响植物内部营养平衡的重要机制。近年来,作为一种重要的离子吸收机制,植物细胞对于营养离子的单方向吸收运输引起了越来越多研究者的兴趣,但早期的一些研究却主要集中在那些高选择性的离子通道上。然而最近的研究表明,植物对离子的吸收很大程度上是依靠一些非选择性阳离子离子通道(non-selective cation channel, NSCC)来实现的。通常来说,这类离子通道对阳离子具有很高的透过性,却完全不能传导阴离子;它们对于一价的阳离子具有广泛的渗透性,有时也可以传导一些二价的阳离子。环化核苷酸调节的离子通道(cyclic nucleotide-gated cation channel, CNGC)就是一种非选择性的阳离子通道。
     环化核苷酸调节的离子通道蛋白是一种在动、植物中广泛存在的非选择性的阳离子通道。在动物中,CNGC是一种受环化核苷酸(cNMP)调节的视觉和嗅觉的传感器;在植物中,有关CNGC的研究还相对较少,只是在拟南芥(Arabidopsis thaliana)、大麦(Hordeum vulgare)和烟草(Nicotiana tabacum)中有过少量的研究报道,因此对它们功能的了解还是非常有限,通常认为它们与植物的离子传递以及抗病性有关。
     棉花是一种纤维用经济作物,它具有广泛的应用价值和研究价值。本文以耐盐棉花品种中棉19(ZM19)为试验材料,构建了盐诱导的棉花幼苗叶片cDNA文库,并通过反向northern差异筛选法从中分离得到了一个与盐胁迫相关的克隆GhCNGC2。通过序列比对发现,该基因可能编码一种环化核苷酸调节的离子通道蛋白,并对该基因的功能和分子机制进行了探索。主要结果如下:
     1.利用Clontech Smart~(TM) cDNA Library Construction Kit构建盐胁迫诱导的棉花幼苗叶片cDNA文库,通过反向northern差异筛选法获得一个与盐胁迫相关,长度为670 bp的克隆。设计特异引物,通过5'-RACE和3'-RACE PCR,克隆得到该基因的5'片段和3'片段,根据重叠片段进行拼接,再用特异引物扩增得到2388 bp的全长cDNA,其编码区全长为2145 bp,编码一个715个氨基酸的蛋白,推测其分子量为78 kDa。
     2.通过对该基因编码的蛋白同源性比较发现,该蛋白与植物的CNGCs家族具有较高的同源性,其中与拟南芥的AtCNGC2的蛋白同源性达到74.90%。聚类分析也表明,该基因编码的蛋白与拟南芥、水稻、大麦以及烟草中的CNGC序列也有一定的亲缘关系。因此,我们推测,该基因所编码的蛋白产物可能是一种环化核苷酸调节的离子通道,将该基因命名为GhCNGC2。
     3.跨膜结构和氨基酸序列的进一步分析表明,GhCNGC2的氨基端有6个保守的跨膜结构域(S1-S6),在第5个和第6个跨膜结构域之间还有一个孔状结构域(Pore region);在羧基端有一个保守的环化核苷酸结合域(CNBD)和一个钙调素结合域(CaMBD),这些都是植物环化核苷酸调节的离子通道的典型序列特征。
     4. Northern blot表达分析表明,GhCNGC2在棉花叶片(子叶)中具有较高的表达水平,在茎中的表达水平较低,而在根中检测不到该基因的表达。GhCNGC2还受到多种胁迫的诱导,其中在NaCl处理的棉花幼苗中表达明显增加,而甘露醇和ABA处理也产生显著的诱导,低温、Cu~(2+)和乙烯的诱导相对较弱。对不同萌发时期的棉花幼苗进行处理,发现该基因在不同的萌发时期表达水平基本不变。
     5.酵母互补试验证明,GhCNGC2作为一种离子通道,其K+的吸收能力在酵母突变体CY162中受到了内源钙调素的极大抑制,而表达GhCNGC2的缺失形式GhCNGC2ΔCaM和GhCNGC2ΔCNBD则可以使该突变体重新获得K+的吸收能力,从而互补该突变体,这表明CNBD和CaMBD作为羧基端调节区域的两个重要结构域,对GhCNGC2的功能起到了重要的调节作用。
     6.转基因植株内源离子含量测定的结果显示,超表达GhCNGC2及其缺失形式的拟南芥植株可以促进K~+的吸收,抑制Na~+的吸收,同时产生一个较高的K~+/Na~+比值,这表明该基因可能与胁迫条件下的种子萌发有密切关系。
     7.相比野生型拟南芥,超表达GhCNGC2基因及其缺失形式的转基因种子在高盐、盐碱、干旱、高温等各种胁迫条件下表现出较高的萌发率,说明GhCNGC2可能与种子萌发阶段的胁迫抗性紧密相关。另外,三种转基因种子所表现出来的萌发率高低关系可能是受到了环化核苷酸以及钙调素的双重调节。
     第二部分夏威夷海洋海绵的真菌多样性分析
     海洋真菌是海洋生态系统中一类重要的生物群落,由于其特殊的生存环境,以前对其研究较少。随着人们对海洋认识的深化,海洋生物的研究将成为二十一世纪生物研究的热点之一。海绵属于多孔动物门,在全球包括15000多种,分属于3个纲:钙质海绵纲(Calcarea)、六放海绵纲(Hexactinellida)和寻常海绵纲(Demopongiae)。作为滤食性动物,一千克的海绵组织一天可以过滤海水达24000升,海绵可以有效的从周围的海水环境中获取食物。各种浮游微生物都可以作为共附生微生物,生长在海绵的中质层中。
     共附生微生物的存在对寄主生物的健康和生活环境起到非常重要的作用。虽然在海洋海绵中共附生的原核生物已经被广泛的鉴定,但是人们还尚未使用过分子生物学的方法研究海绵中真菌群落的多样性。真菌是许多海洋和陆地生态系统重要的组成部分,它们也是海洋海绵中非常重要的一种生态群。
     本研究对现有的研究海绵中真菌群落的引物进行了可行性分析,选取了8对引物,分别构建rRNA或ITS克隆文库,都没有得到满意的结果;同时选取了11组DGGE引物,这些引物可以很好地扩增一些陆地环境样品中真菌的rRNA或ITS序列。结果发现,有3组能够成功地扩增海洋海绵中的真菌序列。DGGE结果显示,两种不同的夏威夷海洋海绵(Suberites zeteki和Mycale armata)中的真菌群落存在明显的差异,同时在海洋海绵和海水样品中的真菌群落也存在一定的差异。通过对所得DGGE条带的测序,在海绵S. zeteki中鉴定了23种真菌的存在;而在海绵M. armata中鉴定了21种真菌的存在。这些真菌属于11个不同的目,其中包括子囊菌门(Ascomycota)7个目,担子菌门(Basidiomycota)4个目,并且有5个目(Malasseziales, Corticiales, Polyporales, Agaricales和Dothideomycetes et Chaetothyriomcetes incertae sedis)是在海洋海绵中的首次鉴定。在S. zeteki和M. armata中,分别有7个和6个可能的真菌新种被鉴定出来,这些序列与它们在GenBank中的对应序列的序列相似性小于98%。系统进化分析发现,这些来自于海洋海绵的真菌序列与一些其他的来自于海洋生境的序列一起属于“海洋真菌”进化支。
     本研究是首次应用分子生物学的方法鉴定海洋海绵中的真菌群落,为以后进一步的研究海绵共附生微生物群落提供了新的思路和方法。
Isolation and Characterization of a Putative Cyclic Nucleotide-Gated Cation Channel Gene GhCNGC2 in Cotton
     The growth and development of higher plants require the uptake of sufficient nutrients and ions, which are helpful for signaling, osmotica and metabolites, and the regulation of nutrient ions uptake is one process affecting the internal nutrient balance of plants. The unidirectional influx of nutrient ions into the plant cell as an important ion uptake mechanism has been of great interest to most researchers in the field of plant ion transport. While early research mainly focused on highly selective ion channels, it has recently become clear that a diverse array of cations is transported via non-selective cation channels (NSCCs). NSCCs are ion channels that are selectively permeable for cations over anions, but that do not discriminate strongly between monovalent cations. Cyclic nucleotide-gated cation channels (CNGCs), which are a type of NSCC, have been identified by some researchers recently.
     Cyclic nucleotide-gated cation channel (CNGC) is one kind of non-selective cation channel in animals and plants. In animal cells, CNGCs have been verified to function as a kind of sensors transducing olfactory and visual stimuli which is regulated by cellular cNMP, whereas in plants, only several CNGCs have been isolated from Arabidopsis, barley and tobacco, but their functions are still obscure, they are thought to be related with ion transportation and disease resistance.
     Cotton is one of the most important and valuable fiber and oil crops. In this research, a cDNA library was constructed by using mRNA isolated from salt-induced cotton seedlings and screened by differential hybridization. We present the isolation and characterization of a cDNA clone, GhCNGC2, encoding a novel cyclic nucleotide-gated cation channel from cotton seedlings. The main results are as follows:
     1. A salt-induced cDNA library of cotton seedlings was constructed with Clontech Smart~(TM) cDNA Library Construction Kit. We obtained a salt-induced clone by differential hybridization, and the length of the fragment was 670 bp. The 5'-end and 3'-end of the gene was further isolated by RACE-PCR then used RT-PCR to amplify the full length cDNA of the gene. The isolated cDNA is 2388 bp in length and harbors an opening reading frame of 2145 bp encoding a 78 kDa protein of 715 amino acids.
     2. Sequence and homology comparison revealed that the isolated cDNA shared high sequence similarity with CNGCs in plants, and the sequence identity to AtCNGC2 is up to 74.90%. The phylogenetic analysis also indicated that the kinship of this isolated cDNA was close to CNGCs in Arabidopsis, rice, barley and tobacco. Therefore, it is suggested that the isolated cDNA might belong to the cyclic nucleotide-gated cation channel in cotton, and it is designated GhCNGC2.
     3. The Transmembrane domains prediction and amino acids analysis further indicated that there were 6 conserved transmembrane domains in the N-terminus of GhCNGC2, and a pore region is located between the 5th and 6th transmembrane domains; while, one cyclic nucleotides binding domain (CNBD) and one calmodulin-binding domain (CaMBD) exist in the C-terminus of this protein. All of them are typical sequence characteristics of plant CNGCs.
     4. Northern blot analysis revealed that GhCNGC2 transcripts were easily detected in the leaves, less detected in the stems, and could not be detected in roots. The GhCNGC2 mRNA levels were also assayed in different stress-treated seedlings, and it was strongly and rapidly induced in salt stress conditions, obviously induced in mannitol- and ABA-treated seedlings, and less induced in low temperature-, Cu~(2+)- and ethylene-treated seedlings. Moreover, no evident difference could be observed in mRNA accumulation between different germination stages.
     5. Yeast complementation test demonstrated that the K+ uptake ability of GhCNGC2 in yeast was blocked by endogenous calmodulin (CaM), and expression of the truncated forms of GhCNGC2 could completely rescue the K~+ uptake ability of yeast mutant CY162, the results suggested that the regulation domains (CNBD and CaMBD) in C-terminus played an important role in the function of GhCNGC2.
     6. Ion content assay showed that overexpression of the full length and truncated GhCNGC2 could promote the uptake of K~+ and inhibit the uptake of Na~+, which led to a high K~+/Na~+ ratio. These results suggested that GhCNGC2 might be involved in seed germination under stress conditions.
     7. The transgenic seeds exhibited higher germination percentages than wild type seeds under different stress conditions, suggesting that GhCNGC2 is involved in stress tolerance at the germination stage. Moreover, the germination percentages of three kinds of transgenic seeds revealed that GhCNGC2 might accommodate the dual regulatory functions of cyclic nucleotide and calmodulin.
    
     Sponges (phylum Porifera) contain an estimated 15,000 species in three taxonomic classes: Calcarea (Calcareous sponges), Hexactinellida (Glass sponges), and Demospongiae (Demosponges). As sedentary filter-feeding organisms, sponges are remarkably efficient at obtaining food from the surrounding water and can pump up to 24,000 liters of seawater through a 1-kg sponge per day. Any planktonic microbe can become a resident in sponges, provided that it can survive the digestion and immune response in sponges as well as capable of growing in the microenvironment of the sponge mesohyl.
     Symbiotic microbes play a variety of fundamental roles in the health and habitat range of their hosts. While prokaryotes in marine sponges have been broadly characterized, the diversity of sponge-inhabiting fungi has never been explored using molecular approaches. Fungi are an important component of many marine and terrestrial ecosystems, and they may be an ecologically significant group in sponge-microbial interaction.
     This study tested the feasibility of existing fungal primers for molecular analysis of sponge-associated fungal communities. None of 8 selected primer pairs yielded satisfactory results in fungal rRNA gene or ITS library constructions. However, 3 of 11 DGGE primer sets, which were designed to preferentially amplify fungal rRNA gene or ITS regions from terrestrial environmental samples, were successful to amplify fungal targets in marine sponges. DGGE analysis indicated that fungal communities differ among different sponge species (Suberites zeteki and Mycale armata) and also varies between sponges and seawater. Sequence analysis of DGGE bands identified 23 fungal“species”from sponge S. zeteki and 21 fungal“species”from sponge M. armata. These“species”were representatives of 11 taxonomic orders and belonged to the phyla of Ascomycota (7 orders) and Basidiomycota (4 orders). Five of these taxonomic orders (Malasseziales, Corticiales, Polyporales, Agaricales, and Dothideomycetes et Chaetothyriomcetes incertae sedis) are identified for the first time in marine sponges. Seven and six fungal“species”from S. zeteki and M. armata, respectively, were potentially new species because of their low sequence identity (≤98%) with their references in GenBank. Phylogenetic analysis indicated sponge-derived sequences were clustered into“marine fungus clades”with those from other marine habitats.
     This is the first report of molecular analysis of fungal communities in marine sponges, adding new depth and dimension to our understanding of sponge-associated microbial communities.
引文
1.董先平,智刚,徐天乐。钙调素参与离子通道和受体功能的调控。自然科学进展,2002,12:232-239
    2.费云标,孙龙华等。沙冬青活性抗性蛋白的发现。植物学报,1994,36:640-650
    3.何军贤等。种子Lea蛋白的研究进展。植物生理学通讯,1996,32:241-246
    4.黄国存,崔四平,马春红,周洪显。水分胁迫下小麦幼苗中CaM水平变化及其与SOD活性的关系。植物生理学通讯,1995,31:335-337
    5.江勇等。抗冻蛋白及其在植物抗冻生理中的作用。植物学报,1999,7:687-692
    6.梁峥,马德钦,汤岚,洪益国,骆爱玲,戴秀玉。菠菜甜菜碱醛脱氢酶基因在烟草中的表达。生物工程学报,1997,13:236-240
    7.刘欣等。转录因子与植物抗逆性研究进展。中国农学通报,2006,22:61-65
    8.卢存福,简令成,匡廷云。低温诱导唐古特红景天细胞分泌抗冻蛋白。生物化学与生物物理进展,2000,27:555-559
    9.孙小芳,刘友良。棉花品种耐盐性鉴定指标可靠性的检验。作物学报,2001,27:794-801
    10.王忠华,李旭晨,夏英武。作物抗旱的作用机制及其基因工程改良研究进展。生物技术通报,2002,1:16-19
    11.尹明安等。胡萝卜抗冻蛋白基因克隆及植物表达载体构建。西北农林科技大学学报,2001,29:6-10
    12.曾华宗,罗利军。植物抗旱、耐盐基因概述。植物遗传资源学报,2003, 4:270-273
    13.赵福庚,何龙飞,罗庆云。植物逆境生理生态学。北京:化学工业出版社,2004
    14. Allen RD. Dissection of oxidase stress tolerance using transgenic plants. Plant physiol, 1995, 107: 1049-1054
    15. Ali B, Hayat S, Ahmad A. Response of germination seeds of Cicer arietinum to 28-Homobrassinolide and/or potassium. Gen Appl Plant Physiol, 2005, 31:55-63
    16. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell, 2007, 19:1081-1095
    17. Ali R, Zielinski RE, Berkowitz GA. Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot, 2005, 57:125-138
    18. Anthony DD, Merrick WC. Eukaryotic initiation factor (eIF)-4F. Implications for a role in internal initiation of translation. J Biol Chem, 1991, 266:10218-10226
    19. Anon. Applied Cotton Production Notes, Dept. Agron and Soil Science. UNE, Armidale. 1998
    20. Apel K, et al. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55:373-399
    21. Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis thaliana. Science, 1999, 285: 1256-1258
    22. Ashraf M. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci, 2002, 21:1-32
    23. Arain AG, Baig MS, Rehman K. The performance of cotton strains under different fertility regimes. In: New Genetical Aproached to Crop Improvement II. 1998, 435-444
    24. Arazi T, Kaplan B, Fromm H. A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol, 2000, 42:591-601
    25. Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15:365-379
    26. Bhandal IS, Malik CP. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol, 1998, 110:205-254
    27. Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP. Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+. New Phytologist, 2001, 151:185-194
    28. Bolwell GP. A role of phosphorylation in the down-regulation of phenylalanine ammonia lyase in suspension-cultured cells of French bean. Phytochemistry, 1992, 31:4081-4086
    29. Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA. The cyclic nucleotide-gated calmodulin-binding channel ATCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta, 2007, 225:563-573
    30. Bridges D, Fraser ME, Moorhead GBG. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics, 2005, 11, 6:6
    31. Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Mol Biol, 1995, 46:95-122
    32. Cakmak I, Marschner H. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant and Soil, 1990, 129:261-268
    33. Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR. A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol, 2003, 132:728-731
    34. Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andeme-Ondzighi C, Andres MA,Kang BH, Staehelin LA. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol, 2007, 7:48-60
    35. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16:735-743
    36. Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RKJr, Bent AF. The Arabidopsis dnd1‘defense, no death’gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci, 2000, 97:9323-9328
    37. Cobley LS, Steele WM. Vegetables and fibers. In: An introduction to the botany of tropical crops, 2nd ed. 1976, Pp.252-257. Longman, London. New York
    38. Cocucci SM, Ranieri A, Zocchi G. Potassium-dependent increase in RNA and protein synthesis in the early phase of incubation of the thermodormant Phacelia tanacetifolia seeds. Plant Physiol, 1986, 80:891-894
    39. Cooke CJ, Smith CJ, Walton TJ, Newton RP. Evidence that cyclic AMP is involved in the hypersensitive response of Medicago sativa to a fungal elicitor. Phytochemistry, 1994, 35: 899-995
    40. Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol, 2002, 128:379-387
    41. Dhindsa RS, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot, 1981, 32:79-91
    42. Diego A. Meloni, Marco A. Oliva, Carlos A. Martinez, JoséCambraia. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Envir Experi Botany, 2003, 49:69-76
    43. DuPont FM. Salt-induced changes in ion transport: regulation of primary pumps and secondary transporters. In: Transport and Receptor Proteins of Plant Membranes Molecular Structure and Function. 1992, 97-100, Cooke DT and Clarkson DT. Eds. Plenum Press, New York
    44. Flynn GE, Johnson JP, Zagotta WN. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci, 2001, 2:643-652
    45. Foyer CH, Descourvierres P, Kunert KJ. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17:507-523
    46. Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol, 2002, 350:87-96
    47. Gilmour SJ, Zarka DG, Stockinger EJ, Salazarmp, Houghton JM, Thomashow ME. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 1998, 16: 433-442
    48. Gilroy S. Calcium-dependent and -independent signal transduction in the barley aleurone. Plant Cell, 1996, 8:2193-2209
    49. Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot, 2006, 57:791-800
    50. Gong M, Li YJ, Dai X, Tian M, Li Z G. Involvement of calcium and calmodulin in the acquisition of heat shock induced thermotolerance in maize. Plant Physiol, 1997 150:615-621
    51. Gossett DR, Millhollon EP, Lucas MC. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci, 1994, 34:706-714
    52. Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13:1383-1400
    53. Guo, Y., Qiu, Q.S., Quintero, F.J., Pardo, J.M., Ohta, M., Zhang, C.Q., Schumaker, K.S., and Zhu, J.K. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 2004, 16:435-449
    54. Gutterman Y. Seed germination in desert plants. Berlin: Springer-Verlag, 1993
    55. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiology, 2002, 130:639-64
    56. Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci, 2000, 97:3735-3740
    57. Halliwell B, Gutteridge JMC. Free radicals in Biology and Medicine. Oxford University Press. NY 1985
    58. Harmon AC, Gribskov M, Gubrium E, Harper JF. The CDPK superfamily of protein kinase. New Phytol, 2001, 151:175-183
    59. Hasegawa M, Bressan R, Pardo JM. The dawn of plant salt tolerance genetics. Trends Plant Sci, 2000, 5:317-319
    60. He CX, Yan JQ, Shen GX, et al. Expression of an Arabidopsis vacuolar sodium/proton Antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology, 2005, 46:1848-1854
    61. Hong Z. Removal of feedback inhibition of I-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress. Plant physiology, 2000, 122: 1129-1136
    62. Hua BG, Mercier RW, Leng Q, Berkowitz GA. Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol, 2003, 132:1353-1361
    63. Hua BG, Mercier RW, Zielinski RE, Berkowitz GA. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2003, 41:945-954
    64. Hwang I, Aheen J. Two-component circuity in Arabidopsis cytokinin signal transduction. Nature, 2000, 413:383-389
    65. Ingram J, et al. The molecula rbasis of dehydration tolerance in plants. Plant Mol Biol, 1996, 47:377-403
    66. Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12:1667-1677
    67. Jacoby B. mechanism involved in salt tolerance of plants. In: Pessarakli M.(ed). Handbook of plant and crop stress. Second edition. Marcel Dekker, Inc., NY, USA. 1999, P.97-123
    68. Jiang J, Fan LW, Wu WH. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res, 2005, 15:585-592
    69. Joshi CP. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res, 1987, 15:9627-9640
    70. Kasuga M, Liu Q, Miura S, et al. Improving Plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol, 1999, 17:287-291.
    71. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12:2247-2258
    72. Kizak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res, 1981, 9:5233-5252
    73. K?hler C, Merkle T, Roby D, Neuhaus G. Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta, 2001, 213:327-332
    74. Kramer RH, Molokanova E. Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J Exp Biol, 2001, 204:2921-2931
    75. Kurosaki F, Kaburaki H,Nishi A. Synthesis and degradation of cyclic AMP incultured carrot cells treated with FK. Arch Biochem Biophys, 1993, 303:177-179
    76. Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA. Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol, 2002, 128:400-410
    77. Leng Q, Mercier RW, Yao WZ, Berkowitz GA. Cloning and first functional characterization of a plant cyclic nucleotide gated cation channel. Plant Physiol, 1999, 121:753-761
    78. Liu J, Huang S. Studies on high salt tolerance of transgenic tobacco. Chin J Biotechnol, 1995, 11(4): 275-280
    79. Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci, 2000, 97:3730-3734
    80. Liu Q, Kasuga M, et al. Two transcription factors: DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10:1391-1406
    81. Li XL, Borsics T, Harrington HM, Christopher DA. Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol, 2005, 32:643-653
    82. Maas EV, Hoffman GJ. Crop salt tolerance-Current assessment. J Irrig Drain Div Am Soc Civ Eng, 1977, 103:115–134
    83. Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot, 1999, 84:123-133
    84. Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol, 2001, 127:1617-1625
    85. Ma W, Ali R, Berkowitz GA. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem, 2006, 44:494-505
    86. Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Bool Chem, 1994, 269:8792-8796
    87. Mercier RW, Rabinowitz NM, Ali R, Gaxiola RA, Berkowitz GA. Yeast hygromycin sensitivity as a functional assay of cyclic nucleotide gated cation channels. Plant Physiol Biochem, 2004, 42:529-536
    88. Nakamura T, Liu Y, Hirata D, Namba H, Harada SI, Hirokawa T, Miyakawa T. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J, 1993, 12:4063-4071
    89. Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen J, Jones RL. cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell, 1996, 8:2325-2333
    90. Perla, Perltreves R, et al. Enhanced oxidative-stress defense in transgenic potatoexpressingtomato Cu, Zn superoxide dismutases. Theor Appl Genet, 1993, 85: 568-576
    91. Petruzzelli L, Melillo MT, Zacheo TB, Taranto G. Physiological and ultrastructural changes in isolated wheat embryos during salt and osmotic shock. Ann Bot, 1992, 69:25-31
    92. Polidoros AN, Scandalios JG. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol Plant, 1999, 106:112-120
    93. Poljakoff-Mayber A, Somers GF, Werker E, Gallagher JL. Seeds of Kosteletzkya virginica (Malvacae): their structure, germination and salt tolerance. II. Germination and salt tolerance. Am J Bot, 1994, 81:54-59
    94. Qiu QS, Guo Y, Quintero FJ, et al. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive(SOS) Pathway. J Biol Chem, 2004, 279:207-215
    95. Quintero FJ, Ohta M, Shi H, et al. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ Homeostasis. Proc Natl Acad Sci, 2002, 99:9061-9066
    96. Rus A, Lee BH, Munoz-Mayor A, et al. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol, 2004, 136:2500-2511
    97. Samisk, Bowleys, et al. PyramidingMn-superoxide dismutase transgenes to improve persistence and biomass production in alafalfa. J Exp Bot, 2002, 53(372): 1343-1350
    98. Schuurink RC, Chan PV, Jones RL. Modulation of calmodulin mRNA and protein levels in barley aleurone. Plant Physiol, 1996, 111:371-380
    99. Schuurink RC, Shartzer SF, Fath A, Jones RL. Characterization of a calmodulin-binding transporter form plasma membrane of barley aleurone. Proc Natl Acad Sci, 1998, 95:1944-1949
    100. Shan DP, Huang JG, Yang YT, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol. 2007, 176:70-81
    101. Sheen J. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci, 1998, 95:975-980
    102. Shi HZ, Francisco J, Quintero FJ, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14: 465~477
    103. Spychalla JP, Desborough SL. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol, 1990, 94:1214–1218
    104. Stevenson MA, Calderwood SK. Members of the 70 Kilodation heat shock protein family contain a highly conserved calcium binding domain. Molecular and cellular biology, 1990, 10:1234-1238
    105. Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D,Bouchez D, Fromm H. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J, 2000, 24:533-542
    106. Sun XT, Li B, Zhou GM, Tang WG, Bai J, Sun DY, Zhou RG. Binding of the maize cytosolic Hsp to calmodulin, and indentification of calmodulin binding site in Hsp. Plant Cell Physiol, 41: 804-810
    107. T?htiharju S, Palva T. Antisense inhibition of protein phophatase 2C accelerates cold acclimtion in Arabidopsis thaliana. Plant J, 2001, 26:461-470
    108. Talke IN, Blaudez D, Maathuis FJM, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8:286-293
    109. Tester M, Davenport R. Na~+ tolerance and Na~+ transport in higher plants. Ann Bot, 2003, 91:503-527
    110. Thomashow ME. Plant cold acclimation: freezing tolerance genes and regulatory. Plant Molecular Biology. 1999, 50: 571-599
    111. Trudeau MC, Zagotta WN. Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels. Proc Natl Acad Sci, 2002, 99:8424-8429
    112. Tyeman SD, et al. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ, 2002, 25:173-194 113. Urquhart W,Na~+ and K~+ in salt-treated barley. Journal of Experimental Botany, 1991, 42:697–704
    120. Wu CA, Yang GD, Meng QW, Zheng CC. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant and Cell Physiology, 2004, 45:600-607
    121. Wu J and Seliskar D. Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics. Journal of Experimental Botany, 1998, 49: 1005-1013
    122. Yang KY, Liu Y, Zhang S. Acttivation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci, 2001, 98:741-746
    123. Yan JQ, He CX, Wang J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λin ctton leads to a "Stay-Green" phenotype and improves stress tolerance under moderate drought conditions. Plant and Cell Physiology, 2004 45:1007-1014
    124. Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz GA, Klessiga DF. The chemeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. Plant Cell, 2006, 18:747-763
    125. Young JC, DeWitt ND, and Sussman MR. A transgene encoding a plasma membrane H~+-ATPase that confers acid resistance in Arabidopsis thaliana Seedlings. Genetics, 1998, 149: 501-507
    126. Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR. The TIGR rice genome annotation resource: annotating the rice genome and creat ingresources for plant biologists. Nucleic Acids Res, 2003, 31:229-233
    127. Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci, 1996, 19:235-263
    128. Zhang HX and Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech, 2001, 19: 765-768
    129. Zhang JZ, Creelman RA, Zhu JK. From laboratory to field using information from Arabidopsis to engineer salt, cold, and drought tolerance in crop. Plant Physiology, 2004, 135:615-621
    130. Zhang WH, Ryan PR, Tyerman SD. Malate permeable channels and cation channels activated by aluminium in the apical cells of wheat roots. Plant Physiol, 2001, 125:1459-1472
    131. Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol, 2001, 4:401-406
    1. Amann RI, Ludwig W, and Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59:143-169
    2. Anderson IC, and Cairney JWG. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol, 2004, 6:769-779
    3. Anderson IC, Campbell CD, and Prosser JI. Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol, 2003, 5:1121-1132
    4. Arenz BE, Held BW, Jurgens JA, Farrell RL, and Blanchette RA. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem, 2006, 38:3057-3064
    5. Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E. et al. Parasitic diatoms inside Antarctic sponges. Biol Bull, 2000, 198:29-33
    6. Borchiellini C, Boury-Esnault N, Vacelet J, and Le Parco Y. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol, 1998, 15:647-655
    7. Borneman J, and Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol, 2000, 66:4356-4360.
    8. Bridge P, and Spooner B. Soil fungi: Diversity and detection. Plant Soil, 2001, 232:147-154
    9. Brodie E, Edwards S, and Clipson N. Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol Ecol, 2003, 45:105-114
    10. Bruns TD, White TJ, and Taylor JW. Fungal molecular systematics. Ann Rev Ecolog Syst, 1991, 22:525-564
    11. Carballo JL, and Avila E. Population dynamics of a mutualistic interaction between the sponge Haliclona caerulea and the red alga Jania adherens. Mar Ecol Prog Ser, 2004, 279:93-104
    12. Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A. et al. Diatom invasion in the Antarctic hexactinellid sponge Scolymastra joubini. Polar Biol, 2000, 23:441-444
    13. Chen DM, and Cairney JWG. Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res, 2002, 106:532-540
    14. Cheshire AC, Wilkinson CR, Seddon S and Westphalen G. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta onDavies Reef, Great Barrier Reef. Marine and Freshwater Research, 1997, 47:589-599
    15. Christensen M. A View of Fungal Ecology. Mycologia,1989, 81:1-19
    16. Coles SL, Bolick H. Assessment of invasiveness of the orange keyhole sponge Mycale armata in Kaneohe Bay, Oahu, Hawaii. Report 2006, No. 2006-02, Bishop Museum, Honolulu
    17. Dickie IA, Xu B, and Koide RT. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol, 2002, 156:527-535
    18. Doare-Lebrun E, El Arbi A, Charlet M, Guerin L, Pernelle JJ, Ogier JC, and Bouix M. Analysis of fungal diversity of grapes by application of temporal temperature gradient gel electrophoresis - potentialities and limits of the method. J Appl Microbiol, 2006, 101:1340-1350
    19. Eriksson OE, Baral HO, Currah RS, Hansen K, Kurtzan CP, Rambold G, and Laessoe, T. Outline of Ascomycota 2001. Myconet, 2001, 7:1-88
    20. Fafandel M, Mueller WEG, Batel R. Molecular response to TBT stress in marine sponge Suberites domuncula: Proteolytical cleavage and phosphorylation of KRS- SD protein kinase. J. Exp. Mar. Biol. Ecol. 2003, 297:239-252
    21. Fries N. Basidiospore germination in species of Boletaceae. Mycotaxon, 1983, 18:345-354
    22. Gardes M, and Bruns TD. ITS primers with enhanced specificity for bacidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol, 1993, 2:113-118
    23. Geraats BPJ. The role of ethylene perception in plant disease resistance. In Section of Plant Pathology. Utrcht, The Netherlands: Utrecht University, p.127, 2003
    24. Grunig CR, Patrick BC, Duo A, and Sieber TN. Suitability of methods for species recognition in the Phialocephala fortinii-Acephala applanata species complex using DNA analysis. Fungal Genet Biol, 2007, 44:773-788
    25. Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res, 1991, 95:641-655
    26. Hawksworth DL. The magnitude of fungal diversity: the 1.5 million species estimate revised. Mycol Res, 2001, 105:1422-1432
    27. Hawksworth DL, and Rossman AY. Where are all the undescribed fungi? Phytopathology, 1997, 87:888-891
    28. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, and Moore BS. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol, 2002, 68:4431-4440
    29. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol, 2006, 55:167-177
    30. Herndl GL, and Weinbauer MG. Marine microbial food web structure and function. In Marine science frontiers for Europe. Wefer, G., Lamy, F., and Mantoura, F. (eds). Berlin: Springer-Verlag, pp. 265-277, 2003
    31. Hill RT. Microbes from marine sponges: A treasure trove of biodiversity for natural products discovery. In Microbial diversity and bioprospecting. Bull, A.T. (ed). Washington, D. C.: ASM press, pp. 177-190, 2004
    32. Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, and Reitner J. An anaerobic world in sponges. Geomicrobiol J, 2005, 22:1-10
    33. H?ller U, Wright AD, Matthee GF, K?nig GM, Draeger S, Aust HJ, and Schulz B. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res, 2000, 104:1354-1365
    34. Hooper JNA, van Soest RWM. Systema porifera. A guide to the classification of sponges, Vol 1. Plenum Publishers, New York, N. Y. 2002
    35. Hyde KD and Aptroot A. Tropical freshwater species of the genera Massarina and Lophiostoma(aseomyeetes). Nova Hedwigia, 1998, 66:489-502
    36. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, and Vrijmoed LLP. Role of fungi in marine ecosystems. Biodivers Conserv, 1998, 7:1147-1161
    37. Hyde KD, Sarma VV, and Jones EBG. Morphology and taxonomy of higher marine fungi. 2n : Marine.Mycology2A Practical Approach. Hyde K D, Pointing S B. Hong Kong: Fungal Diversity Press, 2000,1722204
    38. Jensen PR, and Fenical W. Secondary metabolites from marine fungi. In Fungi In Marine Environemnts. Hyde, K.D. (ed). Hong Kong: Fungal Diversity Press, pp. 293-315, 2002
    39. K?nig GM, Kehraus S, Seiber SF, Abdel-Lateff A, and Muller D. Natural products from mairne organims and their associated microbes. ChemBioChem, 2006, 7:229-238
    40. Kowalchuk GA, Gerards S, and Woldendorp JW. Detection and characterization of fungal infections of Ammophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl Environ Microbiol, 1997, 63:3858-3865
    41. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, and Welling GW. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol, 1995, 61:3069-3075
    42. Lee YK, Lee JH, and Lee HK. Microbial symbiosis in marine sponges. J Microbiol, 2001, 39:254-264
    43. Li Q, and Wang G. Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res: doi:10.1016/j.micres.2007.1007.1002.
    44. Lord NS, Kaplan CW, Shank P, Kitts CL, and Elrod SL. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: Comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol, 2002, 42: 327-337
    45. Martin KJ, and Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol, 2005, 5:28
    46. May LA, Smiley B, and Schmidt MG. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol, 2001, 47:829-841
    47. Morrison-Gardiner S. Dominant fungi from Australian coral reefs. Fungal Divers, 2002, 9:105-121
    48. Mueller WEG. Sponges (Porifera). In Sponges (Porifera), pp. i-258, 2003
    49. Nagai K, Kamigiri K, Arao N, Suzumura K, Kawano Y, Yamaoka M, Zhang H, Watanabe M, Suzuki K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J Antibiot (Tokyo), 2003, 56:123-128
    50. Pang KL, and Mitchell JI. Molecular approaches for assessing fungal diversity in marine substrata. Bot Mar, 2005, 48:332-347
    51. Perovic-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V. et al. A (1→3)-beta-D-glucan recognition protein from the sponge Suberites domuncula - Mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J of Biochem, 2004, 271:1924-1937
    52. Pile AJ, Patterson MR., and Witman JD. In situ grazing on plankton less than 10μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser, 1996, 141:95-102
    53. Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Ocean, 1997, 42:178-184
    54. Pivkin MV, Aleshko SA, Krasokhin VB, and Khudyakova YV. Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Rss J Mar Biol, 2006, 32:249-254
    55. Polz MF, and Cavanaugh CM. Bias in template-to-product rations in multitemplate PCR. Appl Environ Microbiol, 1998, 64:3724-3730
    56. Proksch P, Ebel R, Edrada RA, Wray V, and Steube K. Bioactive natural products from marine invertebrates and associated fungi. In Sponges. Müller, W.E.G. (ed). Heidelberg, Berlin, Germany: Springer-Verlag, pp. 117-142, 2003
    57. Reiswig HM. Particle feeding in natural populations of 3 marine Demosponges. Biol Bull, 1971, 141:568-591
    58. Rheinheimer G. Aquatic microbiology, 4th edition. In Rheinheimer, G. [Author]. Aquatic microbiology, 4th edition. 1992. ix+363p.: John Wiley and Sons, Inc., 605 Third Avenue, New York, New York 10158-0012 ; John Wiley and Sons Ltd., Baffin Lane, Chichester PO 19 1UD, England.
    59. Ribes M, Coma R, Gili JM. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser, 1999, 176:179-190
    60. Rosell D, and Uriz MJ. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar Biol, 1992, 114:503-507
    61. Rot C, Goldfarb I, Ilan M, and Huchon D. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol, 2006, 6:71
    62. Saller U. Microscopical aspects on symbiosis of Spongilla lacustris (Porifera Spongillidae) and green algae. Zoomorphology, 1989, 108:291-296
    63. Smit E, Leeflang P, Glandorf B, van Elsas JD, and Wernars K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol, 1999, 65: 2614-2621
    64. Smit E, Veenman C, and Baar J. Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol, 2003, 45:49-57
    65. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, and Dore J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999, 65:4799-4807
    66. Swofford DL. PAUP: phylogenetic analysis using parsimony and other programs, 4.0b10 ed. In. Sinauer Associates, Sunderland, Mass. 2002
    67. Taylor MW, Radax R, Steger D, and Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 2007, 71:295-347
    68. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25:4876-4882
    69. Vacelet J. Electron microscope study of the association between bacteria and sponges of the genus Verongia Dictyoceratida. J Exp Mar Biol. Ecol, 1975, 23:271-288
    70. Vainio EJ, and Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res, 2000, 104:927-936
    71. Vogel S. Current induced flow through living sponges in nature. Proc Natl Acad Sci USA,1977, 74:2069-2071
    72. Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol, 2006, 33:545-551
    73. Wang G, Li Q, and Zhu P. Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie van Leeuwenhoek, 2008, 93:163-174
    74. Webster NS, and Hill RT. The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-Proteobacterium. Mar Biol, 2001, 138:843-851
    75. Webster NS, Negri AP, Munro M, and Battershill CN. Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol, 2004, 6:288-300
    76. White TJ, Bruns T, Lee S, and Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A Guide To Methods and Application. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds). San Diego: Academic Press Inc., pp. 315-322, 1990
    77. Wilkinson CR. Net Primary Productivity in Coral Reef Sponges. Science, 1983, 219:410-412
    78. Yu Y, Breitbart M, McNairnie P, Rohwer F. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinf. 2006, 7:281-289
    79. Zak JC, and Visser S. An appraisal of soil fungal biodiversity: The crossroads between taxonomic and functional biodiversity. Biodivers Conserv, 1996, 5:169-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700