用户名: 密码: 验证码:
玉米幼苗四个水份胁迫响应基因在不同耐旱自交系中的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了深入研究玉米耐旱的分子机理,本研究用一耐旱玉米自交系“81565”,构建了水份胁迫下玉米幼苗差异表达mRNA的cDNA文库,并筛选鉴定了其中5个EST序列。其中两个是玉米的类胰蛋白丝氨酸蛋白酶基因(tryspin-like serineproteases,Dege)和不依赖辅助因子的磷酸甘油酸变位酶基因(cofactor-independent phosphoglycerate mutase,PGAM-i),一个基因编码具有NADH脱氢酶活性的还原酶,两个功能未知,这里命名为E4和F4。类胰蛋白丝氨酸蛋白酶(DegP)广泛参与生物耐热激反应和高等植物中的光抑制修复反应。拟南芥物种的AtDegP1,AtDegP5,AtDegP8和AtDegP2蛋白通过降解氧化变性的D1蛋白,而恢复PSⅡ的光合作用。耐盐植物冰草(Mesembryanthemu crystallinum)中,磷酸甘油酸变位酶基因(PGAM-i)的表达响应多种非生物逆境胁迫。基因E4的编码蛋白是含有DUF6和TPT结构域的膜整合蛋白。为了研究DegP,PGAM-i,E4和F4这4个基因如何响应水份胁迫,本实验用实时定量PCR技术对4个基因在水份胁迫下(20%PEG处理)的6个玉米自交系中的表达进行了分析。6个玉米自交系“81565”,“87-1”,“丹340”,“R09”,“200B”,“ES40”具有不同的田间耐旱性。DegP基因在植物的抗热激和PSⅡ光合抑制修复中起到重要作用,为近一步研究此基因在玉米耐旱中的作用和对产量的影响,克隆了玉米的DegP基因,并作了初步的生物信息学分析。主要的研究结果如下:
     1.用耐旱自交系“81565”和抑制差减杂交,反式Northern技术分离鉴定了玉米幼苗水份胁迫条件下上调表达的5个EST序列,其中三个分别是编码DegP,PGAM-i,NADH还原酶的基因,两个功能未知。
     2.自交系“81565”中Dege,PGAM-i,E4和F4基因的表达响应水份胁迫。正常生长条件下,DegP,PGAM-i,E4和F4基因都有一定量的表达。在PEG处理的6h时,水份胁迫抑制了4个基因的表达,它们的表达量都低于胁迫处理前的表达量。随着胁迫处理时间的延长,4基因的表达量开始上升。在胁迫12 h时,PGAM-i基因的相对表达量达到了处理前的1.4倍。在胁迫24 h时,DegP基因的相对表达量是处理前的0.6倍;E4基因是处理前的1.2倍,F4基因是处理前的1.6倍。水份胁迫处理下,PGAM-i,E4和F4基因的表达都上调了。
     3.水份胁迫下,6玉米自交系中4基因的表达模式有相似和不同。耐旱自交系“87-1”和“R09”4基因的表达模式和“81565”自交系的相似。耐旱自交系“200B”中DegP基因的表达受到抑制,水份胁迫24 h时,PGAM-i基因的表达量被诱导到处理前的6倍,E4被诱导到2.6倍,F4基因被诱导到2倍。不耐旱自交系“丹340”中DegP和E4基因被下调表达,PGAM-i基因的表达在胁迫24 h时得到恢复,F4基因受胁迫诱导上调表达。不耐旱自交系“ES40”4基因的表达都受水份胁迫抑制,表达量一直降低。这从分子水平也反映出“ES40”自交系的弱耐旱性。
     4.克隆了玉米自交系“87-1”中的DegP基因,发现其存在缺失突变,并分析了DegP基因此位点的序列多样性。生物信息学分析发现玉米基因DegP和拟南芥的AtDegP8基因同源性非常高,二者间氨基酸序列的相似性是66%。分析同时发现玉米基因组中存在一个和AtDegP1基因同源性较高的DegP家族的另一成员,二者N端氨基酸序列比较,其一致性是53%。
     本文的研究结果表明,玉米中DegP,PGAM-i,E4,F4基因的表达响应水份胁迫,它们的表达对增加玉米的耐旱性有着重要作用。6个自交系间的比较分析显示了它们在干旱胁迫下对4个基因的不同调控模式。其中三个耐旱自交系“81565”,“R09”,“87-1”对4个基因的上调表达显示了其在水分胁迫时,它们更迅速的调控能力。自交系“ES40”在水份胁迫下4个基因的表达一直受到抑制,这和它的弱耐旱性一致。
     高等植物的DegP基因家族广泛参与了植物的耐热激反应和光抑制修复反应。由于玉米DegP基因和AtDegP8基因的蛋白序列相似性很高,推测玉米的此基因为AtDegP8的同源基因。拟南芥的AtDegP1,AtDegP5,AtDegP8蛋白位于叶绿体内囊体内腔中,它们和位于内囊体基质的AtDegP2蛋白,及FtsH蛋白一起修复光抑制反应,恢复光合反应正常进行。这些结果显示DegP基因家族对提高玉米物种的耐旱性有重要作用,它们对逆境胁迫下的产量也有重要影响。
     玉米DegP基因存在不同基因型,如自交系“87-1”中的缺失突变型,推测其不能合成有功能的完整DegP蛋白。这种基因型和自交系耐旱能力的关系,有待近一步研究。
To further understand how maize responds to drought stress,we constructed the cDNA library that maize seedling specially responds to water stress utilizing one drought-tolerant inbred "81565",and have identified 5 EST sequence.After the blast analysis,we identified the characters of three of them.One is the tryspin-like serine proteases gene(DegP),others are the cofactor-independent phosphoglycerate mutase (PGAM-i) and the gene encoding the G subunit of NADH dehydrogenase complex. Other two genes were designated as E4 and F4,without clear function.Tryspin-like serine proteases(DegP) widely involved in heat stress response of eukaryote and prokaryote,also take part in repair action against photoinhibition of higher plants.The AtDegP1,AtDegP5,AtDegP8 and AtDegP2 enzymes in Arabidopsis degrade the photodamaged D1 protein to rescue the PSⅡphotosynthesis.One facultative halophyte,its name is ice plant(Mesembryanthemu crystallinum).The PGAM-i gene of this plant,which transcriptional level is induced by several abiotic stress.The encoding protein of E4 gene is a membrane integration protein with DUF6 and TPT domain.To disclose how the 4 maize genes,DegP,PGAM-i,E4 and F4 response water stress,we employed real time quantitative PCR technology and analyzed 4 genes expression profile of 6 maize inbred lines under water stress(20%PEG treatment).The 6 maize inbred lines "81565","87-1","R09","200B","Dan340" and "ES40" have different drought-tolerant ability in field surrounding.DegP gene has been identified that takes part in heat shock response and repair action against PSⅡphotoinhibition of higher plants.For finding out the function of DegP gene in maize drought-tolerance,we cloned the maize DegP gene.Based on the DegP gene sequence,we analyzed the primary character of DegP gene using biological information method.Our results are mainly as follows:
     1.Utilizing the drought-tolerant maize inbreed "81565",the techniques of Suppression subtractive hybridization(SSH) and reverse Northern hybridization,we isolated and identified 5 up-regulated EST sequence from the water stressed maize seedlings.Three of them are the genes encoding DegP,PGAM-i,and the G subunit protein of NADH dehydrogenase complex,respectively.The functions of others are not identified.
     2.The expression of DegP,PGAM-i,E4 and F4 genes respond to water deficit in drought-tolerant inbred "81565".DegP,PGAM-i,E4 and F4 genes express certain level under normal condition.After 6 h of PEG treatment,water stress repressed the expression of 4 genes.Their expressional level all decreased compared with the level of control treatment.But the expressional level up-regulated with the treatment time elongation.PGAM-i gene expressional level was 1.4 times compared with control level after stress treatment 12 h.DegP gene expression increased to 0.6 times after stress treatment 24 h.The expressional level of E4 and F4 genes were up-regulated and were 1.2 times and 1.6 times compared with control level after 24 hours, respectively.
     3.The 4 genes expression profiles of 6 maize inbred lines under water stress have similarity and difference.The 4 genes expression profiles of drought-tolerant lines "87-1" and "R09" were similar with "81565" line.The expression of DegP gene of drought-tolerant line "200B" was repressed by water stress,but after stress 24 h, the expressional level of PGAM-i was induced and was 6 times compared with the control level,the expression level of E4 and F4 genes were induced to 2.6 and 2 times compared with the control level,respectively.The DegP and E4 genes expression of Drought-sensitive "Dan340" were down-regulated.After 24 h treatment,the PGAM-i gene expression level recovered,F4 gene expression was induced to high level.The 4 genes expression in another drought-sensitive inbred line "ES40" were all repressed, the expression level decreased along the treatment time.The sign also indicated the drought-sensitive character of"ES40" line in molecular level.
     4.This research based on the EST sequence of DegP,cloned the DegP gene from the inbred 87-1.We have identified the deletion mutation occurred in the 87-1 DegP gene,and analyzed the sequence diversity at the mutation site.Alignment analysis identified the DegP gene is the homolog of Arabidopsis AtDegP8.the identity of amino acid sequence between them is 66%.Other member of DegP gene family was also found in maize genome,which amino acid sequence was more similar with Arabidopsis AtDegP1 gene,the N terminal amino acid sequences of them were aligned,the identity is 53%.
     The research demonstrated that DegP,PGAM-i,E4 and F4 gene play a role in maize drought response,and their expression level contribute to the plant tolerance to water stress.The comparative analysis between 6 inbred lines revealed the different regulation model for the 4 genes.The 4 genes up-regulation in 3 drought-tolerant lines "81565","R09","87-1" indicates the 3 inbred lines have rapid regulation ability.The 4 genes up-regulation in line "ES40" were repressed along the treatment time,this is accordant with the drought-sensitive trait of"ES40".
     The DegP family genes in higher plants contribute to the acquirement to adapting abiotic stress.The high identity of amino acid sequence between maize DegP and AtDegP8 suggest that the maize DegP is the ortholog of AtDegP8.The AtDegP1, AtDegP5,AtDegP8 proteins locate in the lumen of thylakoid,the AtDegP2 protein locates in stroma.The four proteins and the FtsH protein together eliminate the damage by photoinhibition,and recover to the normal photosynthesis activity.These experiments showed that DegP gene family play important role in maize drought tolerance,and in maize production under water stress.
     The maize DegP gene have different genotype,one is the deletion mutation allele in inbred line "87-1",which presumed that it could not synthesis the intact structural and functional DegP protein.The relationship between this genotype and the ability of drought tolerance in different lines is still deciphered.
引文
梁建生,庞佳音等.1998.根系逆境信号ABA的产生和运输及其生理作用.植物生理学通讯,34(5):329-338.
    孙成韬,焦仁海,番兴明.2006.玉米抗旱育种的研究进展.玉米科学,14(6):71-74.
    徐春霞,孙成韬,谭静等.2006.玉米抗旱育种的研究进展.西南农业学报.19:462-467.
    许明丽,孙晓艳.2000.水杨酸对水份胁迫下小麦幼苗叶片膜损伤的保护作用。植物生理学通讯。36(1):35-36.
    杨洪强,贾文锁,张大棚。植物水份胁迫信号识别与转导.植物生理学通讯,2001,37(2):149-154.
    张劲松,谢灿,吴晓雷等.烟草两组分信号系统基因NTHK2。科学通报,2000,45(20):2190-2195.
    周树峰,李晚忱,付凤玲,荣廷昭.2002.57个常用玉米自交系的耐旱性鉴定.干旱地区农业研究,20:127-130.
    魏秀俭,杨婉身,潘光堂,付凤玲.2005.22个玉米自交系的耐旱性综合分析.干旱地区农业研究,23:134-137.
    Abe H,Yamaguchi-Shinozaki K,Urao T,et al.1997.Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression.The Plant Cell 9:1859-1868.
    Abe H,Urao T,Ito T,et al.2003.Arabidopsis AtMYC2 and AtMYB2 function as transcription activators in abscisic acid signaling.The Plant Cell 15:63-78.
    Adam Z,Adamska I,Nakabayashi K,et al.2001.Chloroplast and Mitochondrial Proteases in Arabidopsis.A Proposed Nomenclature.Plant Physiology,125:1912-1918.
    Ahn S G,Thiele D J.2003.Redox regulation of mammalianheat shock factorl is essential for Hsp gene activation and protection from stress.Genes and Development 17:516-528.
    Ahn J Y,Choi H,Kim Y H,et al.2005.Heterologous gene expression using self-assembled supra-molecules with high affinity for HSP70 chaperone.Nucleic Acids Research 33:3751-3762.
    Almoguera C,Rojas A,Martin J D,2002.A Seed-specific Heat-shock Transcription
    Factor Involved in Developmental Regulation during Embryogenesis in Sunflower. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 46, Issue of November 15: 43866-43872.
    Anat B Z, Paolo D L R, Giovanni D, et al. 2004. Active Solubilization and Refolding of Stable Protein Aggregates By Cooperative Unfolding Action of Individual Hsp70 Chaperones. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 36, Issue of September 3: 37298-37303.
    Andrews D L, MacAlpine D M, Johnson J R, et al. 1994. Differential induction of mRNAs for the Glycolytic and Ethanolic Fermentative pathways by Hypoxia and Anoxia in maize seedlings. Plant Physiology, 106: 1575-1582.
    Annamaria R, Rodolfo R B, Paola L, et al. 1989. Changes in free amino acid content and protein pattern of maize seedings under water stress. Environmental and Experimental Botany, 29(3): 351-357.
    Axel M, Christian S, Kenneth L, et al. 2003. Refolding of Substrates Bound to Small Hsps Relies on a Disaggregation Reaction Mediated Most Efficiently by ClpB/DnaK. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 278, No. 33, Issue of August 15: 31033-31042.
    Bailey S, Thompson E, Nixon P J, et al. 2002. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem. 277: 2006-2011.
    Baniwal S K, Bharti K, Chan KY, et al. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences 29: 471-487.
    Bardwell J C A, Craig E A. 1987. Eukaryotic Mr83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 5177-5181.
    Basha E, Leel G J., Demeler B , et al. 2004. Chaperone activity of cytosolic small heat shock proteins from wheat. Eur. J. Biochem. 271: 1426-1436.
    Bassani M, Neumann P M, Gepstein S. 2004. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Mol Biol 56(3): 367-380.
    Bernd B, Arthur L H. 1998. The Hsp70 and Hsp60 Chaperone Machines. Cell 92: 351-366.
    Bharti K, Schmidt E, Lyck R, et al. 2000. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant Journal 22: 355-365.
    Bharti K,VonKoskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L. 2004. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16: 1521-1535.
    Bray E A. 1997. Plant response to water deficit. Trends Plant Sci, 2: 48-54.
    Busch W, Wunderlich M, Schoffl F. 2005. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal 41: 1-14.
    Cashikar A G, Duennwald M, Lindquist S L. 2005. A Chaperone Pathway in Protein Disaggregation. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 25, Issue of June 24: 23869-23875.
    Cazale A C, Mayer M A R, Brygoo H B, et al. 1998. Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physial 116: 659-669.
    Chassin Y, Kapri-Pardes E, Sinvany G, et al. 2002. Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis thaliana. Plant Physiol. 130: 857-864.
    Cheng M Y, Hartl F U, Martin J, et al. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337: 620-625.
    Clausen T, Southan C, Ehrmann M. 2002. The HtrA family of proteases: Implications for protein composition and cell fate. Mol. Cell 10: 443-455.
    Collada C, Gomez L, Casado R, et al. 1997. Purification and in Vitro Chaperone Activity of a Class I Small Heat-Shock Protein Abundant in Recalcitrant Chestnut Seeds. Plant Physiol 115: 71-77.
    Csermely P, Kajtar J, Hollosi M, et al. 1993. ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J. Biol. Chem. 268: 1901-1907.
    Czarnecka-Verner E, Pan S, Salem T, et al. 2004. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Molecular Biology 56: 57-75.
    Dane C C, Pascalis L D, Mutschler B, Haehnel W. 2006. Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. Journal of Plant Physiology 163: 800-808.
    Davletova S, Rizhsky L, Liang H, et al. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281.
    Dejong W W, Leunissen J A, Vooter C E. 1993. Evolution of the acrystallin/small heat-shock protein family. Molecular Biological Evolution 10: 103-26.
    Dewald D B, Torabinejad J, Jones C A, et al. 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5- triphosphate correlates with calcium mobilization in salt stressed Arabidopsis. Plant physiol 126:759-769.
    Diatchenko L, Chrislau Y F, Campbell A P, et al. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025-6030.
    Ding L, Peter E, Candido M. 2000. HSP25, a Small Heat Shock Protein Associated with Dense Bodies and M-lines of Body Wall Muscle in Caenorhabditis elegans. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 275, No. 13, Issue of March 31: 9510-9517.
    Dorota K W, Sabina K, Ewelina M, et al. 2002. The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology 148,1757-1765.
    Ehrnsperger M, Graber S, Gaestel M, et al. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. The EMBO Journal Vol.16 No.2: 221-229.
    Farrelly F W, Finkelstein D B. 1984. Complete sequence of the heat shock-inducible HSP90 gene of Saccharomyces cere6isiae. J. Biol. Chem. 259: 5745-5751.
    Forsthoefel N R, Vernon D M, Cushman J C. 1995. A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Molecular Biology 29: 213-226.
    Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant studies? Journal of Experimental Botany 55(402): 1445-1454.
    Gao P, Wang G Y, Zhao H J,et al. 2003. Isolation and identification of submergence-induced genes in maize (Zea mays) seedlings by suppression subtractive hybridization. Acta Botanica Sinica 45(4): 479-483.
    Garrett J L, Alan M R, Helen R S, et al. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. The EMBO Journal Vol.16 No.3: 659-671.
    Gong W J, Golic K G. 2006. Loss of Hsp70 in Drosophila Is Pleiotropic,With Effects on Thermotolerance, Recovery From Heat Shock and Neurodegeneration. Genetics 172:275-286.
    Gottesman S, Squires C, Pichersky E, et al. 1990. Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87: 3513-3517.
    Gu Y Q, Yang C, Thara V K, et al. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by Pto kinase. Plant Cell 12:771-786.
    Guisbert E, Herman C, Lu C Z, et al. 2004. A chaperone network controls the heat shock response in E. coli. Genes and Dev 18: 2812-2821.
    Guo Y, Halfter U, Ishitani M, Zhu J K. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13: 1383-1400.
    Haake V, Cook D, Riechmann J L, et al. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639-648.
    Hacket R W, Lis J T. 1983. Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of Drosophila melanogaster. Nucl. Acids. Res. 11: 7011-7030.
    Hahn J S, Thiele D J. 2004. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. Journal of Biological Chemistry 279: 5169-5176.
    Hahnen S, Joeris T, Kreuzaler F, et al. 2003. Quantification of photosynthetic gene expression in maize C_3 and C_4tissues by real-time PCR. Photosynthesis Research 75: 183-192.
    Hallberg E M, Sun Y, Hallberg R L. 1993. Loss of mitochondrial hsp60 function: nonequivalent effects on matrix. Mol. Cell. Biol. 13: 3050-3057.
    Haslbeck M, Miess A, Stromer T, et al. 2005. Disassembling Protein Aggregates in the Yeast Cytosol. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 25, Issue of June 24: 23861-23868.
    Hashikawa N, Sakurai H. 2004. Phosphorylation of the Yeast Heat Shock Transcription Factor Is Implicated in Gene-Specific Activation Dependent on the Architecture of the Heat Shock Element. Molecular And Cellular Biology 24: 3648-3659.
    Hauβuhl K, Andersson B, Adamska I. 2001. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J. 20: 713-722.
    Hemmingsen S M, Woolford C, der Vies S M van, et al. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330-335.
    Hendrick J P, Hartl F U. 1993. Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry 62: 349-84.
    Henry T, James A R. 1993. Freezing tolerance and solute changes in contrasting genotypes of lolium perenne L. acclimated to cold and drought. Annals of Botany. 72(3): 249-254.
    Hietakangas V, Ahlskog J K., Jakobsson A M, et al. 2003. Phosphorylation of Serine 303 Is a Prerequisite for the Stress-Inducible SUMO Modification of Heat Shock Factor 1. Molecular And Cellular Biology 23: 2953-2968.
    Hong J P, Kim W T. 2005. Isolation and functional characterization of the Ca-DREBLP1gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta 220:875-888.
    Hu L M, Bodwell J, Huo J M, et al. 1994. Glucocorticoid receptors in ATP- depleted cells: dephosphorylation, loss of hormone binding, Hsp90 dissociation, and ATP-dependent cycling. J. Biol. Chem. 269: 6571-6577.
    Huesgen P H, Schuhmann H, Adamska I. 2005. The family of Deg proteases in cyanobacteria and chloroplasts of higher plants. Physiol. Plant. 123: 413-420.
    Huesgen P, Schumann H, Adamska I. 2006. Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett. 580: 6929-6932.
    Hugo A P, Fabio M D, Agnaldo R M, et al. 2004. drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long term drought. Plant Science 167: 1307-1314.
    Hyun M D, Sung C L, Ho W J, et al. 2004. Differential expression and in situ localization of a pepper defensin gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Science 166(5): 1297-1305.
    Ichimura K, Mizoguchi T, Yoshida R, et al. 2000. Various abiotic stresss rapidly activate Arabidopsis MAP kinase AtMPK4 and AtMPK6. Plant J 24:655-665.
    Itzhaki H, Naveh L, Lindahl M, Cook M, et al. 1998. Identification and Characterization of DegP, a Serine Protease Associated with the Luminal Side of the Thylakoid Membrane. The Journal of Biological Chemistry, 273:7094-7098.
    Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. 1995. Identification of cis-reulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abescisic acid and requirs protein synthesis. Mol Gen Genet 247(4): 391-398.
    Jedlicka P, Mortin M A, Wu C. 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO Journal 16: 2452-2462.
    Jia W S, Zhang J H, Zhang D P. 1996. Metabilsm of xylem delivered ABA in relation to ABA flux and concentration in leaves of maize and commelina communis. J Exp Bot 47: 1085-1091.
    Kapri-Pardes E, Naveh L, Adam Z. 2007. The Thylakoid Lumen Protease Degl Is Involved in the Repair of Photosystem II from Photoinhibition in Arabidopsis. The Plant Cell 19: 1039-1047.
    Kiegerl S, Cardinale F, Siligan C, 2000, SIMKK, a mitogen activated protein kinase kinase, is a specific activator of the salt stress induced MAPK, SIMK. Plant Cell 12: 2247-2258.
    Knight H. 2000. Calcium signaling during abiotic stress in plants. Int Rev Cytol 195: 269-325.
    Kobayashi F, Takumi S, Kume S, et al. 2005. Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF- mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887-895.
    Kotak S, Port M, Ganguli A, et al. 2004. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant Journal 39: 98-112.
    Kovtun Y, Chiu W L, Tena G, et al. 2000. Functional analysis of oxidative stress activated mitogen activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97: 2940-2945.
    Krojer T, Garrido-Franco M, Huber R, et al. 2002. Crystal structure of DegP (HtrA) reveals a new proteasechaperone machine. Nature 416: 455-459
    Kulomaa M S, Weigel N L, Kleinsek O A, et al. 1986. Amino acid sequence of a chicken heat shock protein derived from the complementary DNA nucleotide sequence. Biochemistry 25: 6244-6252.
    Kume S, Kobayashi F, Ishibashi M, et al. 2005. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80:185-197.
    Lafayette P R, Nagao R T, Ogrady K, et al. 1996. Molecular characterization of cDNAs encoding lowmolecular-weight heat shock proteins of soybean organelles. Plant Molecular Biology 30: 159-169.
    Landry S J, Gierasch L M. 1994. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annual Review of Biophysics and Biomolecular Structure 23: 645-69.
    Langer T, Lu C, Echols H, et al. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683-689.
    Larkindale J, Knight M R. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128: 682-695.
    Le Q, Gutierrez-Marcos J F, Costa L M, et al. 2005. Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J 44(1): 167-178.
    Lea V, Sophia D, Johannes B, et al. 1998. The Small Heat-shock Protein IbpB from Escherichia coli Stabilizes Stress-denatured Proteins for Subsequent Refolding by a Multichaperone Network. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 273, No. 18, Issue of May 1: 11032-11037.
    Lee J H, Hubel A, Schoffl F. 1995. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis.The plant Journal 8(4): 603-612.
    Lee Y, Choi Y B, Suh J, et al. 1996. Abscisic acid induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant physiol 110: 987-996.
    Lee G J, Vierling E. 2000. A Small Heat Shock Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein. Plant Physiology 122: 189-197.
    Lenne C. 1995. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochemical Journal 311: 805-13.
    Li W, Srinivasula, S M, Chai J, et al. 2002. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat. Struct. Biol. 9: 436-441.
    Lindahl M, Spetea C, Hundal T, et al. 2000. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12: 419-431.
    Lipinska B, Fayet O, Baird L, et al. 1989. Identification, Characterization, and Mapping of the Escherichia coli htrA gene, Whose Product is essential for Bacterial Growth only at elevated temperatures. Journal of Bacteriology, Mar: 1574-1584.
    Lipinska b, Zylicz M, Georgopoulos C. 1990. The HtrA Protein, Essential for E. coli survival at high temperatures, is an endopeptidase. Journal of Bacteriology, Apr: 1791-1797.
    Liu J, Zhu J K. 1997. An Arabidopsis mutant that requires increased calcium for potassium mutrition and salt tolerance. Proc Natl Acad Sci USA 94: 14960-14964.
    Liu J, Ishitani M, Halfter U, et al. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97: 3730-3734.
    Liu Q, Kasuga M, Sakuma Y, et al. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406.
    Liu X D, Thiele D J. 1996. Oxidative stress induced heat shock factor phosphorylation and Hsf- dependent activation of yeast metallothionein gene transcription. Genes and Development 10: 592 -603.
    Magnard J L, Vergne P, Dumas C. 1996. Complexity and Genetic Variability of Heat-Shock Protein Expression in lsolated Maize Microspores. Plant Physiol 111: 1085-1 096.
    Manjunath S, Lee C-H K, Van Winkle P, Bailey-Serres J. 1998. Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize, Expression during development and in response to oxygen deprivation. Plant Physiology, 117: 997-1006.
    Manuela C, Agnete K K, Giulio M, et al. 2004. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogont species. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology. 139(4): 527-532.
    Marlena M, Dorota K W, Ewa L, et al. 2005. The Small Heat Shock Protein IbpA of Escherichia coli Cooperates with IbpB in Stabilization of Thermally Aggregated Proteins in a Disaggregation Competent State. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 13, Issue of April 1: 12292-12298.
    Markus P, Joanna T, Dirk Z, et al. 2004. Role of Hsp17.4-CII as Coregulator and Cytoplasmic Retention Factor of Tomato Heat Stress Transcription Factor HsfA2. Plant Physiol 135:1457-1470.
    Martin M L, Busconi L. 2001. A rice membrane-bound calcium dependent protein kinase is activated in response to low temperature. Plant Physiol 125: 1442-1449.
    Masanobu K, Mizuho M, Yoshinobu M, et al. 2002. Escherichia colismall heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidant. Eur. J. Biochem. 269: 2907-2917.
    Mayhew M, Dasilva A C R, Martin J, et al. 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426.
    Mcmullin T W, Hallberg R L. 1988. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the E. coli groEL gene. Mol.Cell. Biol. 8: 371-380.
    Medina J, Bargues M, Terol J, et al. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463-469.380.
    Michel B E, Kaufmann M R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol, 51: 914-916.
    Mikami K, Katagiri T, Luchi S, et al. 1998. A gene encoding phophatidylinositel 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant Journal 15:563-568.
    Mikolajczky M, Olubunmi S A, Muszynaka G, et al. 2000. Osmotic stress induces rapid activation of a salicylic acid induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165-178.
    Miller A K, Galiba G, Dubcovsky J. 2006. A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Genet Genomics 275:193-203.
    Miller G, Mittler R. 2006. Could Heat Shock Transcription Factors Function as Hydrogen Peroxide Sensors in Plants? Annals of Botany 98: 279-288.
    Mittler R, Zilinskas B A. 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. Journal of Biological Chemistry 267: 21802-21807.
    Moller I M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561-591.
    Morimoto R I, Sargeg K D, Abravaya K. 1992. Transcriptional Regulation of Heat Shock Genes.The Journal of Biological Chemistry 267: 21987-2199.
    Morimoto R I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes and Development 12: 3788-3796.
    Mukesh K M, Janet P S, Cheol H H, et al. 1999. Modified expression of a carrot small heat shock protein gene Hsp 17.7, results in increased or decreased thermotolerance. The Plant Journal. 20: 89-99.
    Munnik T, Irvine R F, Musgrave A. 1998. Phospholipid signaling in plants. Biochim Biophy Acta 1399: 222-272.
    Munnik T, Meijier H J. 2001. Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS letters, 498:172-178.
    Nakashima K, Shinwari Z K, Sakuma Y, et al. 2000. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657-665.
    Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, et al. 1997. A nuclear gene, erd. Encoding a chloroplast-trgeted Clp protease regulatory submit homolog is not only induced by water stress but aslo developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12(4): 851-861.
    Rasmusson AG, Soole KL, Elthon TE. 2004. Alternative NAD(P)H dehydiogenases of plant mitochondria. Annual Reviewof Plant Biology 55:23-39.
    Nathalie B, Christiane R, Yves D, et al. 1998. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. The Plant Journal 13: 519-527.
    Netting A G. 2000. PH, abscisic acid and the integration of metabolism in plants under stressed and non stressed condition: cellular response to stress and their implication for plant water relations. Exp Bot. 51(343): 147-158.
    Niedzwiedz-Siegien I, Bogatek R, Come D, et al. 2004. effects of drying rate on dehydration sensitivity of excised wheat seeding shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Science. 67:879-888.
    Nover L, Scharf K D, Gagliardi D. 1996. The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress and Chaperones 1: 215-223.
    Nover L, Scharf K D. 1997. Heat stress proteins and transcription factors. CMLS, Cell. mol. life sci. 53:80-103.
    Nover L, Bharti K, Doring P, et al. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6: 177-189.
    Panchuk I I, Volkov R A, Schoffl F. 2002. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838-853.
    Panikulangara T J, Schumacher G E, Wunderlich M, et al. 2004.Galactinol synthasel. A Novel Heat Shock Factor Target Gene Responsible for Heat-Induced Synthesis of Raffinose Family Oligosaccharides in Arabidopsis. Plant Physiol, 136: 3148-3158.
    Park H O, Craig E A. 1989. Positive and negative regulation of basal expression of a yeast HSP70 gene. Molecular and Cellular Biology 9: 2025-2033.
    Parsell D A, Sanchez Y, Stitzel J D, et al. 1991. Hsp104 is a highly conserved protein with 2 essential nucleotide binding sites. Nature 353: 270-273.
    Peltier J B, Emanuelsson O, Kalume D E, et al. 2002. Central functions of the luminal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14: 211-236.
    Patharkar O R, Cushman J C. 2000. A stress induced calcium dependent protein kinase from mesmbryanthemum crystallium phosphorylates a two component pseudo response regulator. Plant J 24: 679-691.
    Peterander R, Rabenstein M, Shin Y, et al. 1999. Biochemical and biophysical characterization of the trimerization domain from the heat stress transcriptionfactor. Biochemistry 38: 3559-3569.
    
    Philippar K, Buchsenschutz K, Abshagen M, et al. 2003. The K~+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C_4 grass zea mays. The Journal of Biological Chemistry 278(19): 16973-16981.
    Plesofsky Vig N, Vig J, Brambl R. 1992. Phylogeny of the acrystallin-related heat-shock proteins. Journal of MolecularEvolution 35: 537-45.
    Pnueli L, Liang H, Berg M, et al. 2003. Growth suppression, altered stomatal response, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase-deficient Arabidopsis plants. The Plant Journal 34: 187-203.
    Qin F, Kakimoto M, Sakuma Y, et al. 2007. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal 50(1): 54-69.
    Reindl A, Schoffl F, Schel J, et al. 1997. Phosphorylation by a Cyclin-Dependent Kinase Modulates DNA Binding of the Arabidopsis Heat-Shock Transcription Factor HSF1 in Vitro. Plant Physiol 11: 93-100.
    Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18: 571-573.
    Rizhsky L, Davletova S, Liang H, et al. 2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biological Chemistry 279: 11736-11743.
    Rospert S, Glick B S, Jeno P, et al. 1993. Identification and functional analysis of chaperonin, the GroES homolog from yeast mitochondria. Proc. Natl. Acad. Sci. USA 90: 10967-10971.
    Sadis S, Hightower L E. 1992. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange. Biochemistry 31: 9406-9412.
    Sakamoto W, Tamura T, Hanba-Tomita, Y, et al. 2002. The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7: 769-780.
    Saijo Y, Hata S, Kyozuka J, et al. 2000. Over expression of a single Ca~(2+) dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319-327.
    Scharf K D, Heider H, Hohfeld I, et al. 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18: 2240-2251.
    Schoffl F, Prandl R, Reindl A. 1998. Regulation of the Heat-Shock Response Plant Physiol 117: 1135-1141.
    Schubert M, Petersson U A, Haas B J, et al. 2002. Proteome map of the chloroplast lumen of Arabidopsis thaliana. J. Biol. Chem. 277: 8354-8365.
    Shao H B, Liang Z S, Shao M A, et al. 2005. Changes of anti oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seeding stage. Colloids and Surfaces B: Biointerfaces 42: 107-113.
    Shearstone J R., Baneyx F. 1999. Biochemical Characterization of the Small Heat Shock Protein IbpB from Escherichia coli THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 274, No. 15, Issue of April 9: 9937-9945.
    Sheen J. 1996. Ca~(2+) dependent protein kinases and stress signal transduction in plants. Science 274: 1900-1902.
    Shen Y G, Zhang W K, He S J, et al. 2003a. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923-930.
    Shen Y G, Zhang W K, Yan D Q, et al. 2003b. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155-161.
    Shi C, Ingvardsen C, Thummler F, et al. 2005. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Genet Genomics 273(6): 450-461.
    Shi H, Ishitani M, Kim C, et al. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA 97:6896-6901.
    Shi H, Xiong L, Stevenson B. 2002. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for Vitamin B6 in plant salt tolerance. Plant cell 14:575-588.
    Shi H, Kin Y S, Guo Y. 2003. The Arabidopsis SOS5 locus encodes a puptive cell surface adhesion protein and is required for normal cell expansion. Plant cell 15: 19-32.
    Shinwari Z K, Nakashima K, Miura S, et al. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161-170.
    Shinozaki K, Yamaguchi-Shinozaki K. 1996. Molecular response to drought and cold stress. Curr Opin Biotechol 7: 161-167.
    Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327-334.
    Shinozaki K, Yamaguchi-Shinozaki K. 1998. Molecular responses to drought stress. In: Sato K, Murata N, eds. Stress Responses of Photosynthetic Organism. Amsterdam: Elsevier, 141-163.
    Sinvany-Villalobo G, Davydov O, Ben-Ari G, et al. 2004. Expression in multigene families. Analysis of chloroplast and mitochondrial proteases. Plant Physiol. 135: 1336-1345.
    Skinner J S, Zitzewitz J, Szucs P, et al. 2005. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533-551.
    Sorger P K, Pelham H R B. 1987. The glucose-regulated protein grp94 is related to heat shock protein hsp90. J. Mol. Biol. 194: 341-344.
    Sorger P K, Pelham H R. 1988. Yeast heat shock factor is an essential DNA binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855-864.
    Soto A, Allona I, Collada C. 1999. Heterologous Expression of a Plant Small Heat-Shock Protein Enhances Escherichia coli Viability under Heat and Cold Stress. Plant Physiol 120: 521-528.
    Squires C L, Pedersen S T, Ross B M, et al. 1991. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173: 4254-4262.
    Squires C, Squires C L. 1992. The Clp proteins: proteolysis regulators or molecular chaperones. J. Bacteriol. 174: 1081-1085.
    Spiess C, Beil A, Ehrmann M. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97: 339-347.
    Stockinger E J, Thomashow M F. 1997. Arabidopsis thaliana CBF1 encodes AP2 domain-containing transcription activator that binds to the c-repeat/DRE. a cis-acting DNA regulatory element that stimulates transcription inresponse to low temperature and water deficit. Proc Natl Acad Sci USA 94(3): 1035-1040.
    Storozhenko S, Pauw P D, Montagu M V, et al. 1998. The Heat-Shock Element Is a Functional Component of the Arabidopsis APX1 Gene Promoter. Plant Physiol 118: 1005-1014.
    Strauch K L, Johnson K, Beckwith J. 1989. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. Journal of Bacteriology, May: 2689-2696.
    Sun W, Bernard C, Brigitte vande C, et al. 2001. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal 27: 407-415.
    Sun X W, Peng L W, Guo J K, et al. 2007a. Formation of DEG5 and DEG8 complexes and their involvement in the Degradation of photodamaged photosystem II reaction center D1 protein in arabidopsis. The plant cell 19: 1347-1361.
    Sun X W, Wang L Y, Zhang L X. 2007b. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana. Chinese Science Bulletin 52(13): 1742-1745.
    Tang H, Zheng Y L, He LY,et al. 2005. Isolation of maize genes related to aluminum tolerance. Journal of Plant Physiology and Molecular Biology 31(5): 507-514.
    Tang X D, Marten I, Dietrich P, et al. 2000. Histidine 118 in the S2 S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophysics Journal 78: 1255-1296.
    Tang W, Zhang Z, Zou X et al. 2005. Functional genomics of maize submergence tolerance and cloning of the related gene Sicyp51. Sci China C Life Sci 48(4): 337-345
    Tissieres A, Mitchell H K, Tracy U M. 1974. Protein synthesis in salivary glands of D. melanogaster. Relation to chromosome puffs. J. Mol. Biol. 84: 389-398.
    Toshiharu S, Toru T, Haruko Y, et al. 1998. Inhibition of ascorbate peroxidase under oxidative stress in tobacco habing bacterial catalase in chloroplasts. FEBS Letters 428:47-51.
    Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2000. Two component systems in plant signal transduction. Trends in plant science 5:67-74.
    V'ag'ujfalvi A, Aprile A, Miller A, et al. 2005. The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506-514.
    Viitanen P V, Schmidt M, Buchner J, et al. 1995. Functional characterization of the higher plant chloroplast chaperonins. J. Biol. Chem. 270: 18158-18164.
    Vonstein O D, Thies W G, Hofmann M. 1997. A high through put screening for rarely transcribed differentially espressed genes. Nucleic Acids Research 25(13):2598-2602.
    Vuister G W, Kim S J, Orosz A, et al. 1994. Solution structure of the DNA-binding domain of Drosophila heat stress transcription factor. Nat Struct Biol 1: 605-614.
    Wang S, Wan C G, Wang Y R, et al. 2004. The characteristics of Na~+, K~+ and free praline distribution in several drought resistant plants of the Alxa Desert, China Journal of Arid Environments. 56(3): 525-539.
    Waters E R, Lee G J, Vierling E. 1996. Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany 47: 325-338.
    West C P, Osterhuis D M, Wullschleger S D, et al. 1990. Osmotic adjustment in tissues of tall fescue in response to water deficit. Environmental and Experimental Botany. 30(2): 149-156.
    Xiong L S. Schumaker K, Zhu J K. 2002. Cell signaling during cold, drought and salt stress. The Plant Cell, Sup: 165-183.
    
    Yamamoto Y. 2001. Quality control of photosystem II. Plant Cell Physiol. 42: 121-128.
    Yeh C H, Chang Pi F L, Yeh K W, et al. 1997. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA. 94: 10967-10972.
    Yeh C H, Chen Y M, Lin C Y. 2002. Functional Regions of Rice Heat Shock Protein, Oshsp16.9, Required for Conferring Thermotolerance in Escherichia coli. Plant Physiology 128:661-668.
    Yukako U, Naoki T, Masataka M. 2006. Heat Shock Protein 40/DjB1 is required for Thermotolerance in Early Phase. Journal of Biochemistry 140 :805-812.
    Zhang S, Klessing D F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520-527.
    Zheng J, Zhao J, Tao Y, et al. 2004. Isolation and analysis of water stress induce genes in maize seedling by subtractive PCR and cDNA macroarray. Plant Mol Biol 55(6):807-823.
    Zhong M, Orosz A, Wu C. 1998. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Molecular Cell 2: 101-108.
    Zhu C F, Schraut D, Hartung W, et al. 2005. Differential response of maize MIP genes to salt stress and ABA. Journal of Experimental Botany 56(421): 2971-2981.
    Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621-2632.
    Zsolt T, Pierre G, Ibolya H. 2001. Synechocystis HSP17 is an amphitropic protein that stabilizes heat stressed membranes and binds denatured proteins for subsequent chaperone mediated refolding. PNAS 98: 3098-3103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700