用户名: 密码: 验证码:
棉花衣分等产量性状的遗传、QTL定位及不同衣分材料纤维初始发育的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高棉花产量依然是目前棉花育种的主目标,研究棉花产量性状的遗传规律对指导棉花产量育种具有十分重要的意义。衣分是棉花重要的产量构成因素,大量资料表明,棉花产量的改进与衣分的提高有密切关系。同时,衣分又与其它产量性状、产量构成因素以及纤维品质性状间存在不同程度的相关关系。因此,对棉花衣分性状的遗传及相关研究尤为重要。本文以不同衣分的棉花品种(系)为材料,研究了棉花衣分及相关产量性状的遗传、QTL定位,以及不同衣分棉花材料在纤维初始发育过程中的异同。结果如下:
     1.双列杂交遗传分析
     利用6个不同衣分的陆地棉品种(系)半半棉、泗棉3号、苏棉12、关农1号、石短5号和黔农465,配制6×(6-1)个杂交组合,通过亲本和F_1的随机区组试验,利用加性-显性(AD)遗传模型分析表明,陆地棉各产量性状都有较高的遗传主效应方差,产量性状受加性效应和显性效应共同控制,其中,衣分、衣指以加性效应为主;籽棉产量、铃重和籽指以显性效应为主;皮棉产量和单株铃数以加性和显性效应为主。衣分和衣指的普通广义遗传率和普通狭义遗传率均最高,加性方差分量分别为61.8%和65.6%。相关和通径分析一致表明,产量构成因素中单株铃数对皮棉产量的贡献最大,衣分次之,铃重最小。对F_1、F_2杂种优势预测结果表明,籽棉产量、皮棉产量和铃重具有极显著的正向群体平均优势;衣分和衣指的群体平均优势为负优势,衣指达极显著;单株铃数和籽指的群体平均优势不显著。群体超亲优势衣分、衣指和籽指为极显著负优势;其他产量性状群体超亲优势不显著。
     2.主基因-多基因遗传分析
     通过构建泗棉3号×石短5号(组合Ⅰ)和泗棉3号×黔农465(组合Ⅱ)的P_1、P_2、F_1、F_2、B_1、B_2六世代群体,采用主基因-多基因混合遗传模型对衣分等产量性状进行了多世代联合分析。结果发现,尽管2个组合各产量性状的最适遗传模型并不完全一致,且主基因和多基因的遗传效应、遗传率存在差异,但所有性状至少在1个组合中检测到主基因的存在,表明棉花产量性状主基因存在的普遍性。对2个组合各产量性状的主基因、多基因遗传率比较得出,各性状的主基因遗传率比多基因遗传率在不同组合间趋势变化相对较稳定。各性状的主基因、多基因遗传率分量在2个组合中也不完全相同。籽棉产量和皮棉产量在2个组合中均以主基因遗传为主;衣指在组合Ⅰ中以多基因遗传为主,在组合Ⅱ中属于典型的多基因遗传;单株铃数和铃重在2个组合中分别以主基因遗传为主和以多基因遗传为主;籽指在2个组合中分别以多基因遗传为主和以主基因遗传为主;衣分在组合Ⅰ中以主基因和多基因遗传并重,在组合Ⅱ中属于典型的多基因遗传。
     3.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位
     利用泗棉3号×石短5号(组合Ⅰ)的F_2、F_(2:3)和泗棉3号×黔农465(组合Ⅱ)的F_2衣分差异群体,对产量及产量构成因素进行了QTL分子标记和定位。应用6111对SSR引物对亲本进行多态性检测,组合Ⅰ和组合Ⅱ分别获得了123个和107个多态性位点。组合Ⅰ共鉴定出了18个控制产量及产量构成因素变异的QTLs,包括2个衣分QTLs、4个籽棉产量QTLs、4个皮棉产量QTLs、2个衣指QTLs、3个单株铃数QTLs、2个铃重QTLs和1个籽指QTL,解释的表型变异分别为6.9%~16.9%、5.6%~16.2%、4.8%~15.6%、7.7%~13.3%、8.2~11.6%、6.1%~7%和6.6%。单标记分析还检测到8个分子标记分别与各产量性状连锁。组合Ⅱ共鉴定出了7个产量及产量构成因素的QTLs,包括1个衣分QTL、1个籽棉产量QTL、1个皮棉产量QTL、1个衣指QTL、2个籽指QTLs和1个单株铃数QTL,解释的表型变异分别10.0%、41.9%、36.5%、12.6%、6.8%~10.9%和15.9%。单标记分析还检测到11个分子标记分别与各产量性状连锁。2个组合中均发现不同性状QTLs在染色体相同或相邻区段上成簇分布,表明与产量性状相关的基因可能紧密连锁或一因多效。对所有检测到的QTL遗传效应分析发现,控制产量性状的QTLs可能主要以显性和超显性效应遗传为主。本研究所检测到的主效QTLs可以用于棉花产量性状的标记辅助选择。
     通过与前人不同群体不同组合产量性状QTL的定位结果比较得出,Chr3(A3)、Chr6(A6)、Chr9(A9)、Chr11(A11)以及Chr12(A12)/Chr26(D12)很可能包含产量性状QTLs的富集区。其中,在组合ⅠF_(2:3)群体中Chr3(A3)上检测到的1个衣分QTL(qLP03,解释的表型变异为16.9%)可能与Shen等(2007)在同一染色体上检测到的衣分QTL(同时在3个环境中检测到)是相同的或紧密连锁的,因为他们都与桥梁标记NAU1190连锁,对其稳定性需做进一步的试验验证。
     4.陆地棉不同衣分材料纤维初始发育的比较研究
     利用扫描电镜技术,对5个不同衣分(28.53%~43.10%)的陆地棉品种进行了纤维初始发育的超微结构观察。结果表明,在开花前1 d所有的陆地棉品种均出现纤维细胞突起,但突起分布因基因型不同存在差异,且与衣分高低无直接关系。在开花当天,所有材料的胚珠表面均出现大量纤维细胞突起。在开花后1 d这些突起已明显伸长。除泗棉3号(衣分最高为43.10%)外,所有材料在开花后1 d的纤维密度均明显低于开花当天,这说明随着棉胚珠体积的膨大,纤维“稀释”程度可能与衣分高低有关。不论开花当天和开花后一天,黔农465(衣分最低为28.53%)的纤维密度均最低,而且在开花当天,该材料的胚珠表面发现有许多非正常的凹陷形纤维突起,推测这些突起将最终不能发育成成熟的棉纤维。相关分析结果表明,开花后1 d的纤维伸长密度与开花当天的纤维突起密度均与衣分的相关性最高(分别为0.8642和0.8141),其次为衣指(分别为0.8055和0.7968),与铃重和籽指均为负相关。灰色关联分析结果表明,开花后1 d的纤维伸长密度与衣分的关联度最高(0.7029),其次是衣指(0.6820),与铃重和籽指关联度最低;开花当天的纤维突起密度与衣指的关联度最高(0.7111),其次是衣分(0.6571),与铃重和籽指关联度依然最低。综合两种分析结果可以得出,在纤维初始发育阶段,纤维密度与衣分和衣指关系最密切,为棉花的纤维产量育种提供了重要的信息。
     5.棉花四个栽培种纤维初始发育的比较研究
     棉花4个栽培种具有明显的衣分差异,对陆地棉(泗棉3号)、海岛棉(海7124)、亚洲棉(定远小花)以及非洲棉(A_(1-50))开花前后的胚珠进行了扫描电镜比较观察,并探讨了延迟授粉对各棉种纤维初始发育的影响。结果表明,除亚洲棉外其他3个棉种均在开花前1 d出现纤维细胞突起。在开花当天和开花后1 d,所有棉种的纤维突起(或伸长)密度均在珠柄顶部的脊突处最大,合点端和胚珠中部其次,珠孔附近最小。除陆地棉泗棉3号(衣分为43.10%)外,其他棉种在开花后1 d的纤维伸长密度均低于开花当天的纤维突起密度。说明随着棉胚珠体积的膨大,其他3棉种胚珠表面的纤维“稀释”程度大于高衣分的陆地棉。在棉纤维初始发育阶段,纤维密度不仅受气象因子如温度的影响,而且与授粉时柱头的生活力密切相关;延迟授粉对纤维初始发育的影响以非洲棉较大,海岛棉较小,亚洲棉和陆地棉最小。该研究为理解4个栽培棉种纤维分化和发育机理、通过人工授粉棉纤维的杂种优势利用提供了一定的理论依据;对探讨4个栽培棉种纤维发育的亲缘进化关系可能具有一定的参考价值。
Improving cotton yield is still the main goal of present cotton breeding;it is meaningful for studying the genetics of cotton yield traits for yield breeding.Lint percentage is one of the important yield components,and plenty of data show that the raising of cotton yield has close relation with lint percentage improvement.At the same time,the different level correlation is existed between lint percentage and other yield traits,yield components and fiber quality characters.Therefore,the inheritance and related research of lint percentage is more important than other traits.In the present paper,the inheritance and QTL tagging of lint percentage and its related yield traits,as well as fiber initiation development of cottons varied in lint percentage were studied.The results are given as follows:
     1.Diallel crossing genetic analysis
     6×(6-1) crosses were made among 6 upland cotton varieties or lines varied in lint percentage including Banbanmian,Simian 3,Sumian 12,Guannong 1,Shiduan 5 and Qiannong 465.The parents and hybrids were planted in 3 replications with randomized plots.Genetic analysis for each of yield traits was conducted by Zhu's AD (additive-dominance) with MINQUE(Ⅰ) approach.The results indicated that each yield trait of Upland cotton had always higher variance of genetic major effects,and yield traits were controlled by additive effects and dominant effects altogether.In which,lint percentage,lint index was mainly controlled by additive effects;seed yield,boll size and seed index were mainly controlled by dominant effects;lint yield and bolls per plant were mainly controlled by additive effects and dominant effects.Both common broad heredity and common narrow heredity of lint percentage and lint index were always the highest,whose additive variance percentages were 61.8%and 65.6%,respectively.Correlation analysis and path analysis of yield traits always indicated that among yield components,bolls per plant had the most contribution to lint yield,secondly by lint percentage,and the least by boll size.Heterosis prediction of F_1 and F_2 showed population mean heterosis values for seed yield,lint yield and boll size were always more positively significant;lint percentage and lint index had negative population mean heterosis,that of lint index was more significant;bolls per plant and seed index had not significant population mean heterosis.Population over-parent heterosis values of lint percentage,lint index and seed index were always more negative significant,for other traits,however,were not significant.
     2.Major gene-polygene genetic analysis
     Joint analyses of multiple generations of P_1、P_2、F_1、F_2、B_1 and B_2 was used to analyze the genetics of lint percentage and its related yield traits in two crosses Simian 3×Shiduan 5(corssⅠ) and Simian3×Qiannong 465(crossⅡ),by using the method of major gene-polygene mixed inheritance model.It was found from the results that major genes controlling each of yield traits were always detected for at least in one cross although the optimum models for each trait were not completely consistent and the genetic effects,the heritability of major gene and polygene had also differences between two crosses, indicating that the major genes controlling yield traits were existed generally.The comparison of major gene and polygene heritability for all traits between two crosses showed,major gene heritability had comparatively stable tendency change than polygene heritability.Heritability proportion of each trait was also different between two crosses. seed yield and lint yield was mainly controlled by major gene in two crosses;lint index was mainly controlled by polygene in crossⅠand belonged to typical polygene inheritance in crossⅡ;bolls per plant and boll size were controlled by major gene and polygene in two crosses,respectively;seed index was controlled by polygene and major gene in two crosses, respectively;lint percentage was controlled by major gene and polygene altogether in crossⅠand belonged to typical polygene inheritance in crossⅡ.
     3.Tagging and mapping of QTLs for yield and its components in Upland cotton (Gossypium hirsutum L.) population with varied lint percentage
     QTLs for yield and its components were tagged and mapped in populations with varied lint percentage of Simian 3×Shiduan 5(CrossⅠ) F_2,F_(2:3) and Simian 3×Qiannong 465(CrossⅡ) F_2.123 and 107 polymorphism loci from 6111 pair SSR primers were obtained in crossⅠand crossⅡ,respectively.18 QTLs for yield and its components were identified in CrossⅠincluding 2 QTLs for lint percentage,4 QTLs for seed yield,4 QTLs for lint yield,2 QTLs for lint index,3 QTLs for bolls per plant,2 QTLs for boll size and 1 QTL for seed index,which separately explained 6.9%~16.9%、5.6%~16.2%、4.8%~15.6%、7.7%~13.3%、8.2~11.6%、6.1%~7.0%and 6.6%of the phenotypic variance.In addition,8 molecular markers were detected linked with yield traits using the single-marker analysis.7 QTLs for yield and its components were identified in CrossⅡincluding 1 QTL for lint percentage,1 QTL for seed yield,1 QTL for lint yield,1 QTL for lint index,1 QTL for bolls per plant,2 QTLs for seed index.They separately explained 10.0%、41.9%、36.5%、12.6%、15.9%和6.8%~10.9%of the phenotypic variance,QTLs for boll size were not identified.In addition,11 molecular markers were detected linked with yield traits using the single-marker analysis.Different QTLs affecting yield traits were always detected within the same or closer chromosome region in two crosses,suggesting that genes controlling yield traits may be linked closely or the result of pleiotropy.The QTLs controlling yield and its components might mainly be dominant and over-dominant.The molecular markers linked closely to the major QTLs may be used in MAS(marker-assisted selection) to improve cotton yield.
     The conclusion was drawn from the comparison of QTL tagging among different crosses or different populations that Chr3(A3),Chr6(A6),Chr9(A9),Chr11(A11) and Chr12(A12)/Chr26(D12) might respectively contain the cluster of QTL for yield traits,in which the QTL for lint percentage identified in F_(2:3) population of CrossⅠ(qLP03, explained 16.9%of the phenotypic variance) might be same as or closely linked to the QTL identified in three environments simultaneity reported by Shen(2007),because they were always linked to the bridge marker BNL1190.The stability of this QTL would be tested in next experiments.
     4.Fiber initiation development in Upland cotton(Gossypium hirsutum L.) varieties varied in lint percentage
     Fiber initiation was observed in five Upland cotton(Gossypium hirsutum L.) varieties that vary in lint percentage,from 28.53%to 43.10%,using scanning electron microscopy (SEM).The results indicated that at-1 days post-anthesis(dpa),fiber cell protrusions were found in all varieties,but these protrusions varied among the materials and the differences did not correlate with lint percentage.At 0 dpa,a large amount of fiber cell protrusions appeared on the ovular surface of all samples,and these protrusions had been elongated significantly by +1 dpa.Interestingly,fiber density at +1 dpa of almost all samples was always lower than that at 0 dpa except Simian 3,the variety with the highest lint percentage 43.10%.This observation suggested that with the expanding of the cotton ovular volume, fiber "diluting" degree on the ovular surfaces might be related to higher or lower lint percentage.The cultivar with the lowest lint percentage(28.53%),Quiannong 465,was found to exhibit the fewest fiber protrusions.Rather,many sunken,morphologically abnormal protrusions were observed on the ovular surface at 0 dpa,it was speculated that these protrusions might not yield mature cotton fibers ultimately.Correlation analysis suggested that either fiber protrusion density at 0 dpa or fiber elongation density at+1 dpa had a highest positive correlation with lint percentage(0.8642 and 0.8141,respectively), secondly with fiber index(0.8055 and 0.7968,respectively).The grey relational analysis suggested that fiber elongation density at+1 dpa correlated most with lint percentage (0.7029),secondly with fiber index(0.6820),and the least with seed index and boll weight;fiber protrusion density at 0 dpa correlated most with lint index was the highest (0.7111),followed by lint percentage(0.6571),and again the lowest were seed index and boll weight.A conclusion was drawn from two analyses that during fiber initiation stage, fiber density had closest relations with lint percentage and lint index,which could provide invaluable predictive information for cotton fiber yield breeding.
     5.Comparative studies on fiber initiation development of four cultivated cotton species
     There are 4 cultivated species involved in cotton varied significantly in lint percentage. Here we observed the ovules before and after anthesis of 4 cultivated cotton species including Gossypium hirsutum cv.Simian 3,Gossypium barbadense cv.Hai 7124, Gossypium arboreum cv.Dingyuan xiaohua,and Gossypium herbaceum cv.A1-50 by utilizing SEM(scanning electron microscope),and explored the influence of delay pollination on fiber initiation development of each cultivar.The results showed that under the climate conditions in the field at Nanjing,fiber cells protruded on the ovular surface in all cultivars except G.arboreum at -1 dpa.At 0 and +1 day post-anthesis(dpa),fiber protrusion(or elongation) density of all materials was the highest at the funicular crest, higher at the chalazal cap and the middle part of ovule,and the least near the micropyle; moreover except Upland cotton cultivar Simian 3(lint percentage 43.10%),fiber density of the other three cultivars was always lower at+1 dpa than that at 0 dpa,suggesting that with the expanding of the cotton ovular volume,the fiber "diluting" degree on the ovular surfaces was greater in G.barbadense,G.arboreum and G.herbaceum than in G.hirsutum with high lint percentage.During cotton fiber initial stage,fiber density not only was affected by weather factors such as temperature but also related to the viability of stigma. Delay pollination exerted relatively significant influence on fiber initiation development of G.herbaceum,relatively less influence on G.barbadense,and the least influence on G. hirsutum and G.arboreum.Our studies might provide some theoretical references on understanding the mechanism of fiber differentiation and growth of 4 cultivated cotton species,and exploring their phylogenetic relationships of fiber development,as well as utilizing the heterosis of cotton fiber through artificial pollination.
引文
1.包和平,王晓丽,李春成等.玉米抗螟性主基因-多基因混合遗传[J].吉林农业大学学报,2007,29(3):253-255
    2.陈立旭,俞敬忠,吉守亘等.泗棉3号品种的选育技术[J].棉花学报,1998,10(1):20-25
    3.陈祖海,刘金兰,聂以春等.陆地棉族系种质系与陆地棉品种间的杂种优势利用研究[J].棉花学报,1994,6(3):151-154
    4.董合忠,徐楚年,余柄生.陆地棉与海岛棉纤维发育的比较研究Ⅰ.棉纤维的分化[J].北京农业大学学报,1989.15(4):377-381
    5.杜雄明.陆地棉纤维初始发育和纤维突变体遗传研究[A].南京农业大学博士学位论文1998,72-76
    6.杜雄明,潘家驹.影响棉纤维分化和发育的因素.生命科学,2000,12(4):177-180
    7..盖钧镒,管荣展,王建康,植物数量性状QTL体系检测的遗传试验方法.世界科技与发展,1999,21(1):34-40
    8.盖钧镒,王建康.大豆对豆秆黑潜蝇抗性的主基因-多基因遗传,全国作物育种学术讨论会论文集,中国农业科技山版社,1998,241-248
    9.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京,科学出版社,2003
    10.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    11.郭旺珍,张天真,丁业掌等.分子标记辅助聚合2个棉纤维高强主效QTLs的选择效果(英文)[J].遗传学报,2005,32(12):1275-1285
    12.郭旺珍,张天真,潘家驹等.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242-247
    13.郭旺珍,张天真,朱协飞等.分子标记辅助选择的修饰回交聚合育种方法及其在棉花上的应用[J].作物学报,2005,31(8):963-970
    14.海林,翁跃进.小麦耐盐种质遗传多样性的RAPD分析[J].西北植物学报,2000,20(6):942-948
    15.韩祥铭,刘英欣.陆地棉产量性状的遗传分析[J].作物学报,2002,28(4):533-536
    16.何慈信,朱军,严菊强等.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000,33:24-32
    17.胡中立.对QTL复合区间作图法的一点改进[J].武汉大学学报(自然科学版),2000,46(6):766-768
    18.季道藩,许馥华.棉花花器和棉铃性状的鉴定及其相关性的研究[J].浙江农业科学,1962,7:315-319
    19.姜长鉴,顾兴友.遗传标记与数最性状基因问连锁关系的分析[J].遗传,1996,18(2):21-24
    20.姜长鉴,刘学锋.纯系间数量性状L基因差异的遗传分析[J].遗传学报,1995,22(1):59-64
    21.姜长鉴,徐辰武,惠大丰等.家系间数量性状主基因效应的分析[J].作物学报,1995,21(1):632-636
    22.姜长鉴,莫惠栋.质量-数量性状的遗传分析,4极大似然法的应用[J].作物学报,1995,21(6):641-648
    23.李培金,曾大力,刘新仿等.水稻散生突变体的遗传和基因定位研究[J].科学通报,2003,48(21):2271-2274
    24.李卫华,胡新燕,申温文等.陆地棉主要经济性状的遗传分析.棉花学报,2000,12(2):81-84
    25.李永山,唐秉海,张凯等.不同年代棉花品种产量构成、纤维品质及其系谱分析.棉花学报,2001,13(1):16-19
    26.刘飞虎,梁雪妮等.杂交棉产量优势及其成因分析[J].中国棉花,1999,26(2):11-13
    27.刘峰,东方阳,邹继军等.应用微卫星标记进行大豆种质多样性和遗传变异性分析[J].遗传学报,2000,27(7):628-633
    28.刘万清,贺林.SNP-为人类基因组描绘新的蓝图[J].遗传,1998,20(6):38-40
    29.梅拥军,谢连红.海岛棉单铃产量性状的遗传分析.塔里木农垦大学学报,1997,9(1):20-23
    30.莫惠栋.质量-数量性状的遗传分析,1遗传组成和主基因型的鉴别[J].作物学报,1993,19(1):1-6
    31.莫惠栋.质量-数最性状的遗传分析,2世代平均数与遗传方差[J].作物学报,1993,19(3):193-200
    32.潘家驹.棉花育种学[M].北京:中国农业出版社,1998
    33.钱大顺,陈旭升,张香桂等.棉花杂种优势生理生化研究进展[J].棉花学报,2000,12(1):45-48
    34.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性[J].植物学报,2000,42(7):741-750
    35.沈新莲,袁有禄,郭旺珍等.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果[J].高技术通讯,2001,10:13-16
    36.孙济中,刘金兰,张金发.棉花杂种优势的研究与利用[J].棉花学报,1994,6(3):135-139
    37.孙君灵,杜雄明,周忠丽等.陆地棉不同群体主要性状的遗传力及杂种优势分析[J].华北农学报,2004,19(1):49-53
    38.汪保华.湘杂棉2号强优势组合杂种优势表现的遗传机理研究[A].南京农业大学博士论文,第4章:79-88
    39.王斌,肖晗,钱前等.水稻稀穗突变体的遗传分析及基因的精细定位[J].科学通报,2003,48(15):1666-1670
    40.王建波.ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613-616
    41.王建康.数量性状上基因-多基因混合遗传模型的鉴别和遗传参数估计研究[A].南京农业大学博十学位论文,1996
    42.王庆钰,朱立宏,盖钧镒等.水稻广亲和性遗传的主基因-多基因混合模型分析[J].遗传,2004,26(6):898-902
    43.吴吉样,朱军,许馥华.陆地棉F_2产量性状杂种优势的遗传分析及其预测[J].北京农业大学学报,1993,19(增):95-99
    44.吴吉样,朱军,许馥华.陆地棉F_2纤维品质性状杂种优势的遗传分析[J],棉花学报,1995,4:217-222
    45.吴纪中,颜伟,蔡士宾等.小麦纹枯病抗性的主基因+多基因遗传分析[J].江苏农业学报,2005,21(1):6-11
    46.吴建利,柴荣耀,樊叶杨等.抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布[J].中国水稻科学,2004,18(6):567-569
    47.吴茂清,张献龙,聂以春等.四倍体栽培棉种产量和纤维品质性状的QTL定位(英文)[J].遗传学报,2003,30(5):443-452
    48.邢朝柱,靖深蓉,郭立平等.转Bt基因棉杂种优势及性状配合力研究[J].棉花学报,2000,12(1):6-11
    49.徐楚年,柏长青,贾君镇等.棉花纤维发育进程与产量、品质形成.全国第5次作物栽培生理学术讨论会论文集,1995,76
    50.徐楚年,张仪,余柄生等.棉花四个栽培种纤维发育早期扫描电镜的比较研究[J].北京农业大学学报,1987,13(3):254-261
    51.李国峰,黄骏麒,李秀章等.转基因抗虫杂交棉102棉铃发育动态研究[J].棉花学报,2000,12(1):2-5
    52.薛庆中,张能义,熊兆飞.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江农业大学学报,1998,24(6):631-638
    53.杨佑明.棉花纤维细胞起始及温度、植物生长物质对其影响[J].中国农业大学学报,1999,4(3):15-22
    54.杨佑明,贾继增,徐楚年等.棉花纤维细胞起始及温度、植物生长物质对其影响[J].中国农业大学学报,1999,4(3):15-22
    55.易成新,郭旺珍,朱协飞等.陆地棉分子标记辅助轮回选择聚合育种—Ⅱ.抗棉铃虫的选择效果[J].中国农业科学,2004,37(6):801-807
    56.易成新,汪业春,郭旺珍等.陆地棉分子标记辅助轮回选择聚合育种研究—Ⅳ.纤维比强度选择效果及对其他品质性状的影响[J].作物学报,2004,30(7):680-685
    57.殷剑美,武耀廷,张天真等.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学报,2002,18(3):162-166
    58.殷剑美,武耀廷,朱协飞等.陆地棉产量与品质性状的主基因与多基因遗传分析[J].棉花学报,2003,15(2):67-72
    59.袁有禄,张天真,郭旺珍等.陆地棉优异纤维品系的铃重和衣分的遗传及杂种优势分析[J].作物学报,2002,28(2):196-202
    60.袁有禄,张天真,郭旺珍等.棉花高品质纤维性状QTLs的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151-1161
    61.袁有禄.棉花优质纤维特性的遗传及分了标记研究.南京农业大学博士论文,2000
    62.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用[J].生物技术通报,1998(5):915-912
    63.张培通,朱协飞,郭旺珍等.高产棉花品种泗棉3号产量及其产量构成因素的遗传分析[J].作物学报,2006,32(7):1011-1017
    64.张天真,潘家驹.一个陆地棉无絮突变体的遗传分析[J].江苏农业科学,1991,7(3):13-16
    65.张天真,孙敬,潘家驹.陆地棉无絮突变体纤维初始发育的体外诱导[J].棉花学报,1992,4(2):84
    66.张天真,靖深蓉,金林等.杂种棉选育的理论与实践.北京,科学出版社,1998
    67.张军,武耀廷,郭旺珍等.棉花微卫星标记的PAGE/银染快速检测,棉花学报,2000,12(5):267-269
    68.章元明.作物QTL定位方法研究进展.2006,51(19):2223-2231
    69.周有耀.陆地棉产量及纤维品质性状的遗传分析(综述)[J].北京农业大学学报,1988,14(2):135-141
    70.朱军.Mixed model approaches for estimating genetic variance and covariance.生物数学学报,1992.1:1-11
    71.朱军.遗传模型分析方法[M].北京:中国农业出版社,1997
    72.朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994,551-559
    73.朱玉贤,李毅.现代分子生物学[M].第二版.北京:高等教育出版社,2002:371-376
    74.Aiyangar GS.Origin and development of lint and fuzz in cotton[J].Indian JAgr Sci,1951,21:293-312.
    75.Andrawis A,Solomon M,Delmer DP.Cotton fiber annexins:a potential role in the regulation of callose synthase[J].Plant J,1993,3:763-772.
    76.Applequist WL,Cronn R,Wendel JF.Comparative development of fiber in wild and cultivated cotton[J].Evol Dev,2001,3(1):3-17
    77.Bao JS,Zheng XW,Xia YW,et al.QTL mapping for the paste viscosity characteristics in rice(Oryza sativa L.)[J].Theor Appl Genet,2000,100:280-284
    78.Barrett BA,Kidwhl KK.AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest[J].Crop Science,1998,38(5):1261-1271
    79.Basra AS,Malik CP.Dark metabolism of CO2 during fiber elongation of two cottons differing in fiber lengths[J].J Exp Bot.1983,24:1-9
    80.Basra AS,Malik CP.Development of the cotton fiber[J].Int Rev Cytol,1984,89:65-113
    81.Basten CJ,Weir BS,Zeng ZB.QTL Cartographer,Version 1.15.Department of Statistics,North Carolina State University,Raleigh,NC,2001.
    82.Beasley CA.Developmental morphology of cotton flowers and seed as seen with the scanning electron microscope [J].Amer J Bot,1975,62(6):584-592
    83.Beasley JO.The origin of the American tetraploid Gossypium species[J].Am Nat,1940,74:285-286
    84.Beasley CA.Culture of cotton ovules.In Vasil IK(Ed).Cell Culture and Somatic Cell Genetics of Plants(Vol.1),New York:Academic Press,1984:232.
    85.Beasley CA,The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules[J].Amer J Bot,1973,60(2):130-139.
    86.Beasley CA,Ting IP.Effects of plant growth substances on in vitro development from unfertilized cotton ovules[J].Amer J Bot,1974,61:188-194.
    87.Beasley CA.Ovule culture:Fundamental and pragmatic research for the cotton industry[M].In J Reinert and YPS Bajaj(Ed),Plant Pollen,Tissue,And Organ Culture.Springer-Verlag,New York,1977c,160-178.
    88.Beavis WD,Grant D,Albertsen M,et al.Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci[J].Theor Appl Genet,1991,83:141-145
    89.Benedict CR,Smith RH,Kohel RJ.Incorporation of 14C-photosynthate into developing cotton balls,Gossypium hirsutum L.[J].Crop Sci,1973,13:88-91
    90.Berlin JD.The outer epidermis of the cotton seed.In:Mauney JR,Stewart JM(Eds.),Cotton Physiology,Foundation,1986,pp.375-413
    91.Bostein D,White RL,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphism[J].Am J Hum Genet,1980,32:314-331
    92.Brookes AJ.The essence of SNPs[J].Gene,1999,234:177-186
    93.Buerstmayr H,Steiner B,Hartl L,et al.Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat.Ⅱ.Resistance to fungal penetration and spread[J].Theor Appl Genet,2003,107:503-508
    94.Cedronil,ML Cronn RC,Adams KL,et al.Evolution and expression of MYB genes in diploid and polyploid cotton [J].Plant Mol.Biol.2003,51:313-325
    95.Cockerham CC.Random and fixed effects in plant genetics[J].Theor Appl Genet,1980,56:119-131
    96.Conner PJ,Brown SK,Weeden NF.Molecular-markers analysis of quantitative trait for growth and development in juvenile apple trees[J].Theor Appl Genet,1998,96:1027-1035
    97. Cui X, Shin H, Song CA putative plant homolog of the yeast beat-1, 3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers [J]. Planta, 2001, 213:223-230.
    98. Culp TW, Harrell DC, Kerr T. Some genetic implications in the transfer of high fiber strength genes to Upland cotton [J]. Crop Sci. 1979,19: 481-484
    99. Dasani SH, Thaker VS. Role of abscisic acid in cotton fiber development[J]. Russ J Plant Physiol, 2006, 53 (1): 62-67
    100. Davasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics[J], 1995,141:1199-1207
    101. Delanghee AL. lint development. In Mauney JR and Stewart JM, ed, Cotton Physiology, Cotton Foundation, Memphis, TN, 1986,325-349
    102. Delmer DP, Pear JR, Andrawis A. Genes encoding small GTP-binding proteins analogous to mammalian Rac are preferentially expressed in developing cotton fibers[J]. Mol Gen Genet, 1995, 248: 43-51.
    103. Delmer DP, Amor Y. Cellulose biosynthesis [J]. Plant Cell. 1995, 7: 987-1000.
    104. Deng JL. Introduction to grey system theory [J]. J Grey Syst, 1989,1(1): 1-24
    105. Devicente MC, Tanksley SD. QTL analysis of transgressive segregation in an interspecific tomato cross [J]. Genetics, 1993,134: 585-596.
    106. Dixon DC, Seagull RW, Triplett BA. Changes in the accumulation of a- and β-tubulin isotypes during cotton fiber development [J]. Plant Physiol, 1994,105:1347-1353.
    107. Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosine [J]. Genetics, 1991, 129: 285-295
    108. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics, 1987, 27: 639-648
    109. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL [J]. Genetics, 1995,141:1147-1162
    110. Fedak G. Molecular aids for integration of alien chromatin through wide crosses [J]. Genome, 1999, 42: 584 -591
    111. Ferguson DL, Turley RB, Kloth RH. Identification of a delta-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species [J]. Plant Mol Biol, 1997, 34:111-118
    112. Fisher RA, Immer FR, Tedin O. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance [J]. Genetics, 1932,17:107 -124.
    113. Fisher RA. The correlations between relatives on the supposition of Mendelian inheritance [J]. Trans Roy Soc Edinb, 1918, 52: 399 - 433.
    114. Fisher DD, Cyr RJ. Extending the microtubule/microfibril paradigm [J], Plant Physiol, 1998,116:1043-1051.
    115. Frary A, Nesbitt TC, Frary Amy, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000, 289: 85-88
    116. Fridman E, Carrari F, Liu YS, et al. Zooming in on a quantitative trait for tomato yield using interspecific introgressions [J]. Science, 2004, 305:1786-1789
    117. Fulton TM, Grandillo S, Beck-Bunn T, et al. Advanced backcross QTL analysis of a Lycopersicon esculentumx and Lycopersicon parviflorum cross [J]. Theor Appl Genet, 2000,100:1025-1042
    118. Funatsuki H, Kawaguchi K, Matsuba S, et al. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean [J]. The Appl Genet, 2005,111(5): 851-861
    119. Giddings TH, Staehelin LA. Microtubule-mediated control of micro fibril deposition: a re-examination of the hypothesis. In CW Lloyd, ed, The Cytoskeletal Basis of Plant Growth and From. Academic Press, London, 1991, pp85-99
    120. Godoy AS, Palomo GA. Genetic analysis of earliness in upland cotton (Gossypium hirsutum L.).II. Yield and lint percentage [J]. Euphytica, 1999,105:161-166
    121. Gokani SJ, Kumar R, Thaker VS. Potential role of abscisic acid in cotton fiber and ovule development [J]. J Plant Growth Regul, 1998,17:1-5
    122. Graves DA, Stewart JM. Analysis of the protein constituency of developing cotton fibers [J]. Journal of Experimental Botany, 1988b, 39:59-69.
    123. Gu WK, Weeden NF, Yu J et al, Large-scale, cost-effective screening of PCR products in marker-assisted selection applications[J].Theor Appl Genet,1995,91:465-470Graves DA,Stewart JM.Chronology of the differentiation of cotton(Gossypium hirsutum L.) fiber cells[J].Planta,1988,175:254-258
    124.Guo WZ,Cai CP,Wang CB,et al.A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossypium[J].Genetics,2007,176:527-541
    125.Gupta PK,Varshney RK,Sharma PC.Molecular markers and their application in wheat breeding[J].Plant Breed,1999,112:369-390
    126.Haigler CH,Ivanova-Datcheva M,Hogan PS.Carbon partitioning to cellulose synthesis[J].Plant Mol Biol,2901,47:29-51.
    127.Haldane JBS.The causes of evolution[M].NYand London:Harper,1932.
    128.Hallauer AR,Miranda JB.Quantitative genetics in Maize breeding[M],Iowa State University Press,Ames,Iowa.1981
    129.Harmer SE,Orford SJ,Timmis JN.Characterisation of six alpha-expansin genes in Gossypium hirsutum(Upland cotton)[J].Mol Genet Genomics,2002,268:1-9.
    130.Hartley HD,Rao JNK.Maximum-likelihood estimation for the mixed analysis of variance model[J].Biometrika,1967,54:93-108
    131.Hasenfratz MP,Tsou CL,Wilkins TA.Expression of two related vacuolar H~+-ATPase 16-kilodation proteolipid genes is differentially regulated in a tissue-specific manner[J].Plant Physiol,1995,108:1395-1404.
    132.Hill WG.Selection with recurrent backcrossing to develop cogenic lines for quantitative trait loci analysis[J].Genetics,1998,148:1341-1352
    133.Hittalmani S,Parco A,Mew TV,et al.Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J].Theor Appl Genet,2000,100:1125-1128.
    134.Humphrles JA,Walker AR,Tlmmls JN,et al.Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliaha TRANSPARENT TESTA GLABRAI(TTG1) gene[J].Plant Mol Biol,2005,57:67-81
    135.lqbal MJ,Reddy OUK,El-Zik KM.A genetic bottleneck in the 'evolution under domestication' of Upland cotton Gossypiura hirsutum L.examined using DNA fingerprinting[J].Theor Appl Genet,2001,103:547-554
    136.Itoh T.Fine structure and formation of cell wall of developing cotton fiber[J].Wood Research,1974,56:49-61
    137.Ji S,Lu Y,Li J.A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast[J].Biochem Biophys Res Commun,2002,296:1245-1250
    138.Jiang CJ,Zeng ZB.Multiple trait analysis of genetic mapping for quantitative trait loci[J].Genetics,1995,140:1111-1127
    139.Jiang CX,Wright RJ,EI-Zlk KM.Polyploid formation created unique avenues for response to selection in Gossypium(cotton)[J].Proc Natl Acad Sci USA,1998,95:4419-4424
    140.John ME.Characterization of a cotton(Gossypium hirsutum L.) fiber RNA Fb-E6[J].Plant Physiol,1995,107:1477-1478
    141.John ME,Keller G.Characterization of mRNA for a proline-rich protein of cotton fiber.Plant Physiol,1995,108:669-676
    142.Joshi PC,Wadhwani AM,Johri BM.Morphological and embryological studies of Gossypiura L.[J].Proc Nat Inst Sci India,1967,33:37-93
    143.Joshi PI,Stewart JMcD,Graham,ET.Ultrastructural localization of ATPase activity in cotton fiber development during elongation[J].Protoplasma,1988,143:1-10
    144.Joshi PC,Wadhwani AM,Johri BM.Morphological and embryological studies of Gossypium L[C].Proc Nat Inst Sci India,1967,33:37-93
    145.Kao CH,Zeng ZB,Teasdale RD.Multiple interval mapping for quantitative trait loci[J].Genetics,1999,152:1203-1216
    146.Kawai M,Aotsuka S,Uchimiya H.Isolation of a cotton CAP gene:a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation[J].Plant Cell Physiol,1998,39:1380-1383
    147.Kearsey MJ,Farquhar AG.QTL analysis in plants:where are we now?[J].Heredity,1998,80:137-142
    148.Kobayashi S,Araki E,Osaki M,et al.Localization,validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice(Oryza sativa L.)[J].Field Crops Research,2006,96:106-112
    149.Lander ES,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989,121:185-199
    150. Lander ES, Kruglyak L. Genetic dissection of complex traits guidelines for interpreting and reporting linkage results [J]. Nat Genet, 1995,11: 241-247
    151. Landi P, Sanguineti MC, Salvi S, et al. Validation and characterization of a major QTL affecting leaf ABA concentration in maize [J]. Molecular Breed, 2005,15: 291-303
    152. Laosinchai W, Cui X, Brown RMJr. A full length cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSWI gene and cotton CelA1 (Accession No.AF200453) (PGR 00-002) [J]. Plant Physiol, 2000,122: 291
    153. Li XB, Cai L, Cheng NH. Molecular characterization of the cotton GhTUbl gene that is preferentially expressed in fiber [J]. Plant Physiol, 2002,130: 666-674
    154. Lin YR, Schertz KF, Paterson AH. Comparative analysis of QTLs affecting plants height and maturity across the Poaceae, in regerence to an interspecific sorghum population [J]. Genetics, 1995,141: 391-411
    155. Loguercio LL, Zhang JQ, Wilkins TA. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol Gen Genet, 1999, 261: 660-671
    156. Luo LJ, Li ZK, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components [J]. Genetics, 2001,158:1755-1771
    157. Luo ZW, Ma L. An improved formulation of marker heterozygosity in recurrent selection and backcross schemes. Genet Res[J], 2004a, Genet Res, 83(1): 49-53
    158. Luo ZW, Wu CI, Kearsey MJ. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes [J]. Genetics, 2002,161: 915-929
    159. Ma DP, Liu HC, Tan H. Cloning and characterization of cotton lipid transfer gene specifically expressed in fiber cells [J]. Biochim Biophys Acta, 1997,1344:111-114
    160. Ma DP, Tan H, Si Y. Differential expression of a lipid transfer protein gene in cotton fiber [J]. Biochim Biophys Acta, 1995,1257: 81-84
    161. Martin GB, Brmmonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science, 1993, 262:1432-1436
    162. Mather K. Biometrical genetics [M]. Methuen London, 1971
    163. Maughan PJ, Saghai Maroof MA, Buss GR. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max) [J]. Mol Breed, 2000, 6:105-111
    164. May OL, Green CC, Roach SH, et al. Registration of PD93001, PD93002, PD93003, and PD93004 Germplasm lines of Upland cotton with brown lint and high fiber quality [J]. Crop Sci, 1994, 34: 542
    165. Meinert MC,and Delmer DP. Changes in biochemical composition of the cell wall in cotton fiber during development [J]. Plant Physiol, 1977, 59:1088-1097
    166. Meredith WR. Cotton breeding for fiber strength. In proceedings from cotton fiber cellulose: structure, function, and utilization conference. Memphis, TN. National cotton council of American, 1992, pp 289-302
    167. Meredith WR. Quantitative Genetics. In R.J. Kohel, and C.F. Lewis (ed) Cotton: Agronomy 1984, 24:131-150
    168. Naithani SC, Rao N, Krishnan PN, et al. Changes in o-diphenol oxidase during fiber development in cotton [J]. Ann Bot,1981,48: 379-385
    169. Narasimhamoorthy B, Gill BS, Fritz AK, et al. Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population[J] Theor Appl Genet, 2006, DOI 10.1007/s00122-005-0159-0
    170. Orford SJ, Timmis JN. Abundant mRNAs specific to the developing cotton fiber [J]. Theor Appl Genet, 1997, 94: 909-918
    171. Orford SJ, Timmis JN. Specific expression of an expansin gene during elongation of cotton fiber development [J]. Biocham Biophys Acta, 1998,1398: 342-346
    172. Paivi H, Mikko JS, Elja A, et al. Genetics basis of climatic adaptation in scots pine by Bayesian quantitative trait locus analysis [J]. Genetics, 2000,156:1309-1322
    173. Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis [J]. Plant Mol Biol Rep, 1993,11:122-127
    174. Paterson AH, Saranga Y, Menz M, et al. QTL analysis of genotype x environment interactions affecting cotton fiber quality [J]. Theor Appl Genet, 2003,106: 384-396
    175. Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal [J]. Biometrika, 1971,58: 545-554
    176. Pear JR, Kawagoe Y, Schreckengost WE. Higher plants contain homologs of the bacterial cellA genes encoding the catalytic subunit of cellulose synthase [J]. Proc Natl Acad Sci USA, 1996,93:12637-12642
    177. Peleman JD, Wye C, Zethof J, et al. Quantitative trait loci (QTL) isogenic recombinant analysis: A method for high-resolution mapping of QTL within a single population [J]. Genetics, 2005,171:1341-1352
    178. Pilet ML , Delourme R , Foisset N , et al. Identification of QTL involved in field resistance to light leaf spot ( Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed ( Brassica napus L) [J]. Theor Appl Genet, 1998,97:398-406
    179. Rafalski JA, Ching A, Bhattramakki D, et al. Single nucleotide polymorphisms (SNPs) in the 3' untranslated flanks of maize genes reveal conserved ancestral haplotypes. In: Cold Spring Harbor Meeting on Genome Sequencing and Biology, Cold Spring Harbor, New York. 1999
    180. Ragot M, Hoisington DA, Molecular markers for plant breeding: comparison of RFLP and RAPD genotyping costs. Theor Appl Genet, 1993, 86:975-984
    181. Ramsey JC, Berlin JD. Ultrastructure of early stages in cotton fiber differentiation [J]. Bot Gaz, 1976,137(1): 11-19
    
    182. Ramsey JC, Berlin JD. Ultrastructural spects of early stages in cotton fiber elongation [J]. Amer J Bot, 1976a, 63(6): 868-876
    183. Ramsey JC, Berlin JD. infrastructure of early stages of cotton fiber differentiation [J]. Bot Gaz, 1976b, 137(1): 11-19
    184. Rao CK. Estimation of variance and covariance components: MINQUE theory [J]. J Multivar Anal, 1971,1: 257-275
    185. Redona ED, Mackill DJ. Mapping quantitative traits loci for seedling vigor in rice using RFLPs [J]. Theor Appl Genet, 1996, 92: 395-402
    186. Reif J C, Xia X C, Melchnger A E. Genetic diversity determined within and among CMM YT maize populations of tropical, sub-tropical, and temperate germplasm by SSR markers[J]. Crop Science, 2004,44: 326- 334
    187. Richmond TR. Procedures and methods of cotton breeding with special reference to American cultivated species [J]. Advanced in Genetics, 1951,4: 213-245
    188. Rinehart JA, Petersen MW, John ME. Tissue-specific and developmental regulation of cotton gene FbL2A [J]. Plant Physiol, 1996,112:1131-1141
    189. Ruan YL, Llewellyn DJ, Furbank RT. Pathway and control of sucrose import into initiating cotton fibers [J]. Aust J Plant Physiol, 2000, 27: 795-800
    190. Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol, 1998,118,399-406
    191. Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton [J]. J Exp Bot, 2005,56: 977-984
    192. Ruan YL, Xu SM, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiol, 2004,136:4104-4113
    193. Ruan YL, Llewellyn DJ, Furbank RT. Pathway and control of sucrose import into initiating cotton fibers [J]. Aust J Plant Physiol, 2000, 27: 795-800
    194. Saranga Y, Menz M, Jiang CX, et al. Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions [J]. Genome Research, 2001,11:1988-1995
    195. SAS institute. SAS/STAT user's guide version 6,4th edn. SAS Institute, Cary, North Carrolina, 1989
    196. Schneider KA, Brothers ME, Kelly JD, Marker-assisted selection to improve drought resistance in common bean [J], Crop Sci, 1997,37: 51 - 60
    197. Schubert AM, Benedict CR, Berlin JD, et al. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Sci, 1973,13: 704-709
    198. Seagull RW. Changes in microtubule organization and wall microfibril orientation during in vitro cotton. fiber development: an immunofluorescent study [J]. Can J Bot, 1986,64:1373-1381
    199.Seagull RW.A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development[J].J Cell Sci 1992,101:561-577
    200.Shappley ZW,Jenkins JN,Zhu J,et al.Quantitative trait loci associated with agronomic and fiber traits of upland cotton[J].Cotton Sci,1998,2:153-163
    201.Shen L,Courtois B,Mcnally KL,et al.Evolution of near isogenic lines of rice introgressed with QTLs for root depth through marked-aided selection[J].Thero Appl Genet,2001,103:75-83
    202.Shen XL,Guo WZ,Lu QX,et al.Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J].Euphytica,2007,155:371-380
    203.Shin H,Brown JrRM.GTPase activity and biochemical characterization of a recombinant cotton fiber annexin[J].Plant Physiol,1999,119:925-934
    200.Shull GH.The composition of a field of maize Ann[J].Breed Assn,1908,4:296-301
    205.Sisco PH.Marer-facilitated transfer of OTL alleles between elite inbred lines and responses in hybrids.Proc 46th Annual Cornand Sorghum Industry Research Conf,American Seed Trade Association,1991,46:104-113
    206.Song P,Allen RD.Identification of a cotton fiber-specific acy1 carrier protein cDNA by differential display[J].Biochim Biophys Acta,1997,1351:305-312
    207.Song WY,Wang GL,Chen LL,et al.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21[J].Science,1995,270:1804-1806
    208.Stewart JMcD.Fiber initiation on the cotton ovule(Gossypium hirsutura)[J].Am J Bot,1975,62(7):723-730
    209.Stuber CM.Mapping and manipulating quantitative traits in maize[J].Trends Genet,1995,11:477-481
    210.Stuber CW,Sisco PH.Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrids.Proc 46th Annual Corn and Sorghum Industry Research Conf,American Seed Trade Assoc,1991,46:104-113
    211.Stuber CW,Lincoln SE,Wolff DW,et al.Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J].Genetics,1992,132:823-829
    212.Sun Y,Fokar M,Asaml T,et al.Characterization of the brassinosteroid insensitive 1 genes of cotton[J].Plast Mol Biol,2004,54:221-232
    213.Suo JF,Liang XE,Xue YB.Expressional profiling of genes related to cotton fiber initiation and isolation of GhIAA26 homologus to Arabidopsis IAA16.The third ICGI Workshop,2002,pp.39(abstract)
    214.Tanksely SD,Mcouch SR.Seed banks and molecular maps:Unlocking genetic potential from the wild[J].Science,1997,277(22):1063-1066
    215.Tanksely SD.Mapping polygenes[J].Annu Rev Genet,1993,27:205-233
    216.Tanksley SD,Nelson JC.Advanced backcross QTL analysis:A method for the simultaneous discovery and transfer of valuable OTLs from unadapted germplasm into elite breeding lines[J].Theor Appl Genet,1996,92:191-203
    217.Thaker SV,Saroop S,Vaishnav PP,Singh YD.Genotypic variations and influence of diurnal temperature on cotton fiber development[J].Field Crops Res,1989,22:129-141
    218.The Complex trait consortium.The nature and identification of quantitative trait loci:A community's view[J].Nat Rev Genet,2003,4:911-916
    219.Tiwari SC,Wllkins TA.Cotton(Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism[J].Can J Bot,1995,3:746-757
    220.Ulloa M,Meredith WR.Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population[J].Cotton Sci,2000,4:161-171
    221.Venancio SA,Georage LG,James ES,et al.Identification of OTLs for resistance to Sclerotinia sclerotiorum in soybean[J].Crop Sci,2001 41:180-188
    222.Wan CY,Wilkins TA.Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton(Gossypium hirsutum L.)[J].Plant Physiol,1994,106:393-394
    223.Wang BH,Guo WZ,Wu YT,et al.Dominance and epistasis are the primary genetic basis of heterosis in an elite cotton hybrid grown in second generation[J].Theor Appl Genet,2007,(in press)
    224.Wang HY,Yu Y,Chen ZL.Functional characteriza lion of Gossypium hirsutum profilin 1 gene(GhPFN1) in tobacco suspension cells.Characterization of in vivo functions of a cotton profilin gene[J].Planta,2005,222:594-603
    225.Wang S,Wang JW,Yu N,et al.Control of plant trichome development by a cotton fiber MYB gene[J].Plant Cell,2000,16:2323-2334
    226. Wendel JF, Brubaker CL, Percival E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton[J]. Am J Bot, 1992, 79:1291-1310
    227. Westafer JM, Brown RM. Electron microscopy of the cotton fiber. New observayions on cell wall formation. Cytobios, 1976,15:111-138
    228. Wilkins TA. Vacuolar H~+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum L.)ovules [J].Plant Physiol, 1993,102: 679-680
    229. Wilkins TA, Jernstedt JA. Molecular genetics of developing cotton fibers. In: Basra AM Eds. Cotton Fibers. New York: Hawthorne Press, 1999, pp 231-267
    230. Williamson RE. Orientation of cortical microtubules in interphase plant cells [J]. Int Rev Cytol 1991: 129:135-206
    231. Willison JHM, Brown RM. An examination of the developing cotton fiber: wall and plasmalemma [J]. Protoplasma, 1977,92: 21-41
    232. Wright S. Evolution in Mendelian populations [J]. Genetics, 1931,16:97-159
    233. Wright S. The analysis of variance and the correlations between relatives with respect to deviation from an optimum [J]. J Genetics, 1935,30: 243- 256
    234. Wright S. The genetics of quantitative variability. In: Reeve ECR, Waddington CH, eds. Quantitative Inheritance. London: Her Majesty's Stationery Office, 1952, 5-14
    235. Xiao J, Grandillo S, Ann SN, et al. Genes from wild rice improve yield [J]. Nature. 1996, 384: 223-224
    236. Xiong MM, Guo SW. Fine-scale mapping of quantitative trait loci using historical recombinations [J]. Genetics, 1997,145:1201-1218
    237. Yamamoto T, Kuboki Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as a single Mendelian factors [J]. Theor Appl Genet, 1998, 97: 37-44
    238. Yatsu LY, Jacks TJ. An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) Cell wall reversals [J]. Am J Bot, 1981, 68: 771-777
    239. Yousef GG, Juvik JA. Comparison of phenotypic and marker-assisted selection for quantitative traits in Sweet [J]. Corn. Crop Sci, 2001,41: 645-655
    240. Zabean M, Vos P. Selective restriction fragment amplication: a general method for DNA fingerprinting. European Patent Application no. 92402629, Publication No. E p0534858Al 1993
    241. Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics, 1994,136:1457-1468
    242. Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci, USA, 1993, 90:10972-10976
    243. Zhang YM, Mao YC, Xie CQ, et al. Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L) [J]. Genetics, 2005,169(4): 2267-2275
    244. Zhang YS, Luo LJ, Xu CQ et al. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait performance derived near-isogenic lines of rices (Oryza ativa) [J]. Theor Appl Genet, 2006,113: 361-368
    245. Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-ralated traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica, 2005,144: 91-99
    246. Zhao GR, Liu JY. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development [J]. Biochim Biophys Acta, 2002,1574: 370-374
    247. Zhu H, Briceno G, Dovel R, et al. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross [J]. Theor Appl Genet, 1999, 98: 772-779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700