用户名: 密码: 验证码:
LaCl_3缓解黄瓜硝酸盐胁迫生理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在设施生产中,由于自身的特殊环境及大量肥料施入,加之无雨水淋洗等原因,造成了设施土壤次生盐渍化,不仅严重影响了作物的生长,而且降低其产量及品质。黄瓜(Cucumis sativus L.)是我国设施栽培面积最大蔬菜作物之一,由于其根系较浅,具有喜肥不耐肥的特点,容易发生盐害。土壤次生盐渍化已成为设施黄瓜生产的主要障碍,其中主要的胁迫阴离子为NO3-。稀土镧在一定程度上可以提高植物的抗逆能力,缓解逆境胁迫。因此探讨LaCl3缓解黄瓜硝酸盐胁迫机理,对指导黄瓜可持续生产和提高我国园艺设施的利用率具有重要的理论和实践意义。
     本课题在已有研究的基础上,采用水培方法,设定不同浓度的LaCl3处理黄瓜种子及幼苗,探讨硝酸盐胁迫下,LaCl3对黄瓜种子萌发、幼苗碳氮代谢、保护酶活性、矿质元素吸收及亚细胞分布、内源激素变化等的影响,以期为减轻设施土壤次生盐渍化危害奠定理论基础及开辟新的途径。取得主要结果如下:
     1. LaCl3缓解硝酸盐胁迫下黄瓜种子萌发机理的研究
     采用两个黄瓜品种,100mmol·L -1硝酸盐胁迫,探讨不同浓度LaCl3对硝酸盐胁迫下黄瓜种子萌发生理特性的影响。研究结果表明,添加浓度为0.05mmol·L-1、0.1mmol·L-1、0.5mmol·L-1的LaCl3可以不同程度缓解盐胁迫对黄瓜种子萌发产生的影响,这主要表现在加入低浓度的LaCl3后提高了黄瓜幼芽中ɑ-淀粉酶、β-淀粉酶及脱氢酶活性,增加了可溶性蛋白的含量,进而促进侧根、胚根、胚轴的生长;而加高浓度LaCl3(1mmol·L-1)则抑制黄瓜种子的萌发。加低浓度LaCl3(小于0.5 mmol·L-1)降低膜脂过氧化产物MDA含量及相对电导率,增强了种子对盐渍环境的抵抗能力,缓解了盐害,但是浓度为1mmol·L-1的LaCl3不仅没有缓解硝酸盐对种子萌发产生的胁迫,反而抑制了种子的萌发,对其产生毒害作用。综合比较各项指标,加0.05mmol·L-1LaCl3缓解效果较好。
     2.硝酸盐胁迫下,LaCl3对黄瓜碳氮代谢的影响
     采用水培方法,研究不同浓度LaCl3对硝酸盐胁迫下黄瓜幼苗碳氮代谢的影响,硝酸盐胁迫浓度140mmol·L-1 NO3-, LaCl3浓度分别为0.05 mmol·L-1、0.5 mmol·L-1。结果发现,硝酸盐胁迫初期,黄瓜NR活性升高,但GS、GOGAT活性降低,硝酸盐含量增加;处理后期NR活性降低,引起黄瓜体内NH4+含量增加,因此抑制了黄瓜幼苗的生长,表现在抑制了黄瓜伸长生长、叶片面积的伸展,进而影响到生物量的积累,降低了植株鲜重。添加一定浓度的LaCl3可以提高黄瓜幼苗NR、GS、GOGAT活性,降低硝酸及铵态氮含量,有效缓解硝酸盐胁迫,氮代谢有所恢复,促进硝酸盐胁迫下黄瓜幼苗的生长。但是高浓度的LaCl3没有明显的缓解黄瓜硝酸盐胁迫的效果。
     硝酸盐胁迫下,黄瓜幼苗叶片及根系的蔗糖合成酶(SS)活性均降低,对黄瓜蔗糖磷酸合成酶(SPS)活性影响不大。与对照相比,在硝酸盐胁迫初期,黄瓜叶片及根系的可溶性糖、总糖的含量增加,但胁迫后期降低。加一定浓度的LaCl3可以提高黄瓜蔗糖合成酶的活性,提高胁迫下碳代谢水平。但是加高浓度的LaCl3效果不明显,反而与硝酸盐胁迫起到协同效应。
     3. LaCl3对硝酸盐胁迫下黄瓜光合特性的影响
     采用水培的方法,研究了LaCl3对硝酸盐胁迫下黄瓜幼苗光合特性的影响。结果表明硝酸盐胁迫明显抑制了黄瓜叶绿素及类胡萝卜素的含量,且随着处理时间的延长,其含量迅速降低;硝酸盐胁迫初期,光合速率的降低以气孔限制为主,叶片AQY与CE也下降,胁迫后期则以非气孔限制为主。外加LaCl3明显提高了硝酸盐胁迫下黄瓜叶绿素及类胡萝卜素的含量,而且LaCl3具有降低气孔的关闭,改善叶片的气体交换,提高叶片Fv/Fm、ФPSII、AQY、CE及qp等作用;提高了在胁迫下黄瓜幼苗对光能利用及CO2同化的能力。在胁迫处理初期,添加LaCl3均有提高盐胁迫下黄瓜幼苗光合作用的效果;但是在胁迫后期,高浓度(0.2mmol·L-1)LaCl3则降低了黄瓜的光合速率,而低浓度(0.02 mmol·L-1)LaCl3的恢复效果仍较明显。同时也发现,高温条件下LaCl3浓度越低,处理效果越明显,高温促进了黄瓜对LaCl3吸收。
     4. LaCl3对硝酸盐胁迫下黄瓜幼苗叶片抗氧化酶活性的影响
     采用水培方法,研究了LaCl3对硝酸盐胁迫黄瓜幼苗的生长及叶片抗氧化酶活性的影响。结果发现,硝酸盐胁迫显著抑制了黄瓜幼苗的生长,尤其是地上部生长。在处理7 d时,与对照相比,硝酸盐胁迫下的黄瓜单株地上部鲜重降低了12.77 g,叶片SOD、POD、CAT活性升高,而APX、DHAR和GR活性显著降低。外加低浓度(0.05 mmol·L-1)LaCl3不仅可以显著提高硝酸盐胁迫下黄瓜幼苗单株鲜重,叶片SOD、POD、CAT、APX、DHAR和GR活性及热稳定蛋白含量,而且还降低了黄瓜叶片电解质渗漏率及MDA含量,在一定程度上缓解了硝酸盐对黄瓜幼苗生长的抑制作用,比硝酸盐胁迫下黄瓜单株地上鲜重提高35%左右。但外加高浓度(0.5 mmol·L-1) LaCl3长期处理对黄瓜硝酸盐胁迫的缓解效果并不明显。
     5. LaCl3对硝酸盐胁迫下黄瓜幼苗矿质元素吸收、分布及膜蛋白酶活性的影响
     采用水培的方法,研究了LaCl3对硝酸盐胁迫下黄瓜幼苗矿质元素的亚细胞分布及膜蛋白酶活性的影响,探讨LaCl3在硝酸盐胁迫中的缓解作用。结果表明,硝酸盐胁迫下,黄瓜叶片及根系中Ca、K含量增加,Fe、Mg含量降低。加一定浓度的LaCl3处理明显降低了叶片及根系中Ca、K含量,提高了黄瓜叶片Fe、Mg含量。硝酸盐胁迫也影响了Ca、K等在黄瓜亚细胞分布,特别是细胞质中的Ca、K含量显著增加,叶绿体等细胞器中的Fe、Mg含量显著降低。低浓度的LaCl3处理明显改善了Ca、K在黄瓜亚细胞中的分布,降低了Ca、K在细胞质中的含量,提高Fe、Mg在叶绿体等细胞器中的含量。LaCl3影响黄瓜吸收的矿质元素在亚细胞中分布,主要是通过提高黄瓜叶片及根系质膜、液胞膜H+-ATP, H+- PPase (焦磷酸),Ca2+-ATPase活性,促进离子的运输,对P在体内进行了有效分配。但加高浓度的LaCl3处理,尽管也可以降低黄瓜对Ca、K吸收,但大量La3+本身也会对黄瓜幼苗产生毒害。
     6. LaCl3硝酸盐胁迫下对黄瓜内源激素变化的影响
     硝酸盐胁迫下黄瓜叶片中的内源激素含量低于根系。与对照相比,硝酸盐胁迫使黄瓜叶片及根系中生长素类和细胞分裂素类含量均降低,ABA含量升高。加一定浓度的LaCl3可以促进细胞分裂素的合成及向地上部运输,提高叶片细胞分裂素的含量,维持黄瓜幼苗较高的内源激素水平,有助于缓解黄瓜幼苗硝酸盐胁迫。但高浓度LaCl3处理的缓解效果并不明显。
Special environment, intensive fertilizer input, and no rainwater leaching and other cause during protected cultivation, often led to soil salinization. Soil salinization not only seriously influenced plant growth, but also decreased yield and quality. Cucumber (Cucumis sativus L.) is widely planted in greenhouse. Cucumber roots are shallowly distributed and show preference for fertilizer, but no tolerance to excess fertilizer, so cucumber can be easily affected by salinization. Soil salinization has been a main barrier of protected cucumber production. Lanthanum can to a certain degree improve the resistance of plants to envirvnmental stresses.Therefore, study on mechanism of LaCl3 nelieving nitrate stress has the important theoretical and practical meaning to guide sustainable production and increase utilization efficiency of protected cultivation.
     In this study, hydroponic culture experiments were conducted to investigate the effects of LaCl3 on seed germination, carbon and nitrogen metabolism, protective enzyme activity, mineral elements uptake and subcellular distribution and the changes of endogenous hormones. The objective of this paper is to lay theoretical formelation and propse new measures for alleviation of salinity injury. The main results were presented as follows:
     1. Research on effects of lanthanum alleviating nitrate stress on cucumber seeds germination
     Seeds of two cucumber varities were used to study the effects of different LaCl3 concentrations on seeds germinabality and the physiological and biochemical properties during the germination under nitrate stress.The results showed that 0.05 mmol·L-1, 0.1 mmol·L-1 and 0.5 mmol·L-1 LaCl3 could, to different degress alleviate salt stress, low concentration LaCl3 could enhanceα-amylase,β-amylase,dehydrogenase activity and increase the content of soluble protein, thereby promoting the growth of branch roots, radicel and axis; but high concentration(1mmol·L-1) LaCl3 inhibited the germination of seeds.Low concentration LaCl3 (less than 0.5 mmol·L-1) alleviated the nitrate injury and improved resistance of seeds to nitrate stress by reducing the content of MDA and relative electrolytic leakage. But high concentration (1mmol·L-1) LaCl3, which inhibited the germination of seeds, was deleterious to the seeds and thus failed to alleviate the cucumber seeds germination under nitrate stress. Compared all indexes comprehensively, we found that 0.05 mmol·L-1 LaCl3 was the best concentration in alleviating the cucumber seeds germination under nitrate stress.
     2. Effects LaCl3 on carbon and nitrogen metabolism under nitrate stress in cucumber seedlings
     In this experiment, cucumber seedlings were treated which high concentration nitrate (140mmol·L-1NO3-) and LaCl3. The results showed that NR activity in leaves increased at early stage of stress, but GS and GOGAT activties decreased;NR activty decreased at later stage of stress, compared to the control. Nitrate and NH4+ contents increased in cucumber seedlings under nitrate stress, which inhibited growth of cucumber seedlings. As a result, such as plant height, leaf area and biomass accumulation were reduced. Exogenous LaCl3 could improve NR、GS and GOGAT activtives in cucumber seedlings and reduceud nitrate and NH4+ contents, which could alleviate the reduce of nitrogen metabolism and promote cucumber seedling growth. Excess nitrate significantly reduced SS activity in cucumber seedlings, but had obvious effect on SPS. Souble sugar and total sugar contents of cucumber increased at eafly stage of stage, but reduced at later stage. Low LaCl3 could improve SS activity of ccucumber seedlings and promote carbon metabolism, but high LaCl3 brought combined effects to cucumber seedolings under nitrate stress.
     3. Effects of LaCl3 on photosynthetical characteristics in cucumber seedlings under nitrate stress
     The effects of LaCl3 on photosynthetical characteristics of hydroponically cultivated cucumber seedlings were investigated under nitrate stress, and we discussed the mechanism of LaCl3 alleviating nitrate stress. The results showed that chorophyll content and carotenoids contents of cucumber seedlings were significantly restrained by nitrate stress, and quickly decreased with prolength of treatment ; Decreased photosynthetic rate due to stomatal limitation during the early nitrate stress period, but was non-stomatal limitation at later stage of stress. Exogenous LaCl3 could enhance chorophyll content of cucumber seedlings under nitrate stress and improve the gas exchange. Fv/Fm,ФPSII, AQY, CE and qp in cucumber seedlings under nitrate stress increased by applying LaCl3 , resulting in increased cucumber light utilization efficiency and CO2 assimilation. When dealing with it ,in addition,it could accelerate the effect of photosynthesis , but the effect of 0.02 mmol·L-1 LaCl3 also significanted, 0.2 mmol·L-1 LaCl3 reduced the photosynthetic rate of cucumber at threatening anaphase. Addition of different concentration LaCl3 could improve photosynthesis at primary stage of nitrate stress; but high LaCl3 (0.2 mmol·L-1) decreased photosynthesis, while low LaCl3 (0.02 mmol·L-1) also could still maintain high photosynthesis at later stage of stress.
     4. Effects of LaCl3 on antioxidant enzymes activities in cucumber leaves under nitrate stress
     Effects of LaCl3 on plant growth and antioxidant enzymes in cucumber leaves under nitrate stress were studied by hydroponics. The results indicated that the growth of cucumber roots and shoots was significantly inhibited by nitrate stress, especially the shoot. The shoot fresh weight per plant reduced 12.77 g , activities of SOD, POD and CAT increased, but APX、DHAR and GR activities significantly reduced compared to control. Application of LaCl3 markedly increased fresh weight , thermally stable protein content of leaves, activities of SOD, POD, CAT, APX, DHAR and GR, and resulted in decreased MDA content and electrolytic leakage of cucumber leaves under nitrate stress. After 7 days of treatment, addition of 0.05 mmol·L-1LaCl3 alleviated inhibition of cucumber growth by nitrate stress to some extent, shoot fresh weight increased by 35%; Application of high concentration LaCl3 had no alleviated obvious effect. So, we concluded that addition of certain concentration LaCl3 could alleviate nitrate stress on cucumber by increasing activities of antioxidative enzymes and content of thermally stable protein.
     5. Effects of LaCl3 on absorption and subcelluar distribution of the mineral elements in cucumber leaves under nitrate stress
     Effects of LaCl3 on absorption and subcelluar distribution of the mineral elements in cucumber leaves under nitrate stress were studied by hydroponics. Ca and K content of cucumber seedlings increased Fe and Mg content reduced compared to control. Application of low LaCl3 treatment considerably reduced the Ca、K content and increased Fe、Mg conten.High nitrate had effectes on subcelluar distribution of Ca、K and Fe、Mg in cucumber seedlings, especially increased Ca、K content of cytoplasm and reduced Fe、Mg content of chloroplast. Low LaCl3 significantly improved cytoplasm distribution of Ca、K and increased Fe、Mg content of chloroplast. LaCl3 treatment could improve activity of H+-ATP, Ca2+-ATPase and H+- ppase in the plasma and vacuole membrane of cucumber seedlings, and promote ion transportation and P absorption, which were causes of the effects of LaCl3 on subcelluar distribution of the mineral elements. LaCl3 of high concentration could reduce absorption of Ca、K, but La3+ could enter cytoplasm, causing injury on cucumber seedlings.
     6. Effects of LaCl3 on changes of endogenous hormones in cucumber leaves under nitrate stress
     Endogenous hormones of root were higher than those of leaf in cucumber seedlings under nitrate stress, the content of auxin and cytokinin reduced, but ABA content increased in cucumber, compared to control. Application of LaCl3 could promote cytokinin synthesis and shoot transportation, so increased cytokinin content of shoot, thereby maintaining higher level of endogenous hormones, which was helpful in alleviating nitrate stress, however, LaCl3 of high concentration had no allevating effects.
引文
Abadla J. Leaf responses to Fe deficiency: A review .J Plant Nutr., 1992, 15: 1614-1639
    Akita S., Cabuslay G. S. Physiological basis of differential response to salinity in rice cultivars. Plant and Soil, 1990,123: 277-294
    Abdel Samad H.M. Counteraction of NaCl and CaCl2 and KCl on pigment, saccharide and mineral contents in wheat. Biol. Plant., 1993, 35: 555-560
    Apse M.P., Aharon G.S., Snedden W.A., et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285:1256-1258
    Arnon D. I. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris.Plant Physiol., 1949, 24:1-15
    Ashraf M., Leary J.W. Responses of newly developed salt tolerant genotype of spring wheat to salt stress: yield components and ion distribution. Agron. Crop Sci., 1996, 176: 91-101
    Baker N.R. A possible role for photosystemII in environmental perturbations of photosynthesis. Physiol. Plant. 1991, 81:563–570
    Beck E. H.Regulation of shoot/root ratio by eytokinins from roots in Urtica dioica:opinion. Plant Soil,1996, 185:3-12
    Belyavskaya N .A. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv. Space Res., 2001, 28 (4): 645- 650
    Belkhodja R., Morales F., Abadia A., et al. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a tripleline-source sprinkler system in the field. Photosynthetica, 1999, 36: 375-387
    Bolwer C., Montagu M. C. Superoxide Dismutase and stress tolerance. Plant Physiol., 1992, 98(1):83-85
    Bowler C., Neuhaus G., Yamagata H., et al. Cyclic– Gmpand calcium mediate phytochrome phototransduction . Cell, 1994, 77 (1): 73-81
    Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol., 1992, 98: 1222-1227
    Cheeseman J. M. Mechanism of salinity tolerance in plants. Plant physiol., 1988, 87: 547-550
    Chakrabarti N., Mukherji S. Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress.Biologia Plantarum, 2003, 46(1):63-66
    Chen W.J., Tao Y., Hu T.D., et al. Effect of La3+on Inhibition of Tobacco RuBPcase. Journal of Rare Earths., 2002, 20(1):71-74
    Chen W. J., Tao Y., Gu H. Y., et al. Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biological Trace Element Research, 2001, 79:169-176
    Cheeseman J. M. Mechanism of salinity tolerance in plants. Plant Physiol., 1988, 87:547-550
    Cuartero J., Fernández Muoz R. Tomato and salinity. Scientia Horticulturae, 1999, 78: 83 -125
    Clijsters H., Van Assche F. Inhibition of photosynthesis by heavy metals. Photosynth Res., 1985, 7:31-42
    Creelman R. A., Mason H. S., Bensen R. J., et al. Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation, and gene exp ression. Plant Physiol., 1990, 92: 205-214
    Chu Z. X., Mu M. H., Zhang H. M. et al. Effect of CeCl3 on the photosynthetic characteristic of Spirulina Platensis. Journal of Rare Earths., 1994, 12(3):212-219
    Delong T. M., Day K. R., Johnson R. S., et al. Partitioning of leaf nitrogen with respect to within canopy light exposure and nitrogen availability in peach. Trees, 1989, 3:89-95
    Demmig-Adams B., Adamm W.W. Photoprotection and other response of plant to high light stress. Arnual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 599-626
    Ding L., Wang X. C. The role of abscisic acid in stomatal responses to drought stress. Agricultural Research in the Arld Areas, 1993, 11 (2) : 502-506
    Dietz, K.J., Tavakoli, N., Kluge, C.,et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp.Bot., 2001, 52: 1969-1980
    El-Shintinawy F. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica, 2000, 38(4):615-620
    Feng J. and Barker A.V. Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stress. J. Plant Nutr., 1992, 15: 2471-2490
    Flowers T. J., Yeo A. R. Breeding for salt tolerance in crop plants: Where next? Aust. J. Plant Physiol., 1995, 22:875-884
    Friedman H., Meir S., Rosenberger I., et al. Inhibition of the gravitropic response of snapdragon spikes by the calcium-channel blocker lanthanum chloride. Plant Physiology, 1998, 118: 483–492
    Fryer, M.J., Andrews, J.R., Oxborough, K., et al. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol., 1998, 116: 571-580
    Foyer C. H. , Noctor G. Oxygen processing in photosynthesis : Regulation and signaling. New Phytol., 2000, 146 (3): 359-367
    Furie B. C. Substitution of lanthanum ions for calcium ions in the activation of bovineprothrombin by activated factor X. Journal Biological Chemistry, 1976, 25: 3235-3241
    Garg B. K., Gupta I. C. Saline Wastelands Envirnment and Plant Growth. Scientific Publishers, Jodhpur, India, 1997, 287-304
    Gao Y. P.,Motosugi H.,Sugiura A., et al. Rootstock efects on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen.Journal of American Society of Horticultural Science,1992, l17: 446-452
    GaoY., Zeng F., Yi A, et al. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell. Biol Trace Elem Res., 2003, 91 (3): 253-265
    Grattan S. R. , Grieve C. M. Mineral element acquisition and growth response of plant grown in saline environment . Agric Ecosyst Environ., 1992, 38: 275-300
    Graschopf A., Stadler J. A., Hoellerer M. K., et al. The Yeast Plasma Membrane Protein Alr1 controls Mg2+ Homeostasis and is Subject to Mg2+ dependent Control of Its Synthesis and degradation. J Biol Chem., 2001, 276:16216-16222
    Greenway H., Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 1980, 31: 149 -160
    Greenway H., Munns R. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol., 1980, 31: 149-190
    Guo S., Sattelmacher B.B.Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant and Soil, 2002, 239: 267–275
    Guo T. C., Wang C. Y., Zhu Y. J. Effects of high temperature on the senescence of root and top-partial of wheat plant in the later stage. Acta Agronomica Sinica,1998, 24(6): 957-962
    Guglielminetti L., Yamaguchi J., Perata P., Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol., 1995, 109:1069–1076
    He Y.W. & Loh C.S. Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Science, 2000, 159:117–124
    Hen L., Wang Y. Z., Xu Z. R. Effect of Dietary Rare Earth Elements on Growth Performance and B lood Parameters of Rats . Journal of Animal Physiology and Animal Nutrition, 2003, 87 (5): 229-235
    Herralde F. D., Biel C., Morales M.A, et al.Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 1998, 139: 9–17
    Hepler P. K., Wayne R. O. Calcium and plant development. Ann.Rev. Plant Physiol., 1985,14: 397- 439
    He Z.Y., Li J.C., Zhang H.Y, et al. Different effects of calcium and lanthanum on the expressionof phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science, 2005, 168: 309-318
    Hong F.H., Wei Z.G. & Zhao G.W. Effect of lanthanum on aged seed germination of rice. Biology Trace Element Research, 2000, 75: 205–213
    Hu X., Ding Z., Wang X., et al. Effects of Lanthanum and Cerium on the vegetable Growth of Wheat (Triticum aestivum L.) Seedlings. Bull. Environ. Contam Toxicol., 2002, 69:727-733
    Downton, Loveys. Abscisic acid content and ocmotic relations of salt stressed grapevine leanes. J Plant Physiol., 1981, 8: 443-453
    Hou Z. A., Li P. F., Long Y. S. The research status and prospect on the effect of phytohormone on plant salt tolerance. Journal of Shihezi University (Natural Science), 2000, 4 (3): 239-244
    Inan G., Zhang Q., Li P., Wang Z., et al. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol., 2004; 135:1718-1737
    Iqbal M., Ashraf M., Jamil A., et al. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? Journal of Integrative Plant Biology, 2006, 48:181-189
    Jiang G M., Hao N.B., et al. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars. Photosynthetica, 2000, 38 (2): 227-234
    Jiang G. M., Sun J. Z., Qu C.M. et al. Changes in the rate of photosynthesis accompanies the substantial yield increases in wheat cultivars released in the past 50 years. Journal of Plant Research, 2003, 116(5): 347-354
    Kaplan B., Davydov O., Knight H.et al. Rapid Transcriptome Changes Induced by Cytosolic Ca2+ Transients Reveal ABRE-Related Sequences as Ca2+-Responsive cis Elements in Arabidopsis. Plant Cell, 2006, 18: 2733-2748
    Katembe W. J.,Ungar I. A., Mitchell J. P. Effect of salinity on germination and seedling growth of two Atriplexspecies (Chenopodiaceae). Annals of Botany, 1998, 82:167-175.
    Khan M. A., Ungar I. A., ShowalterA. M. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum.Commun. Soil Sci. Plant Anal., 2000, 31: 2763-2774
    Kherrira H. Influence of canopy orientation on fruiting of Anjou’pears and postharvest urea spray on ovule longevity and fruit set of Comice’pears. Corvaallis: Oregon State University, 1991
    Koyro H.W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 2006, 56: 136-146
    Lazcano-Ferrat I. and Lovatt C.J. Salt stress results in ammonia detoxification of Phaseolus spp. HortScience, 1998, 23: 720-728
    Labidi N., Lachaal M., Chibani F., Grignon C., Hajji M.Variability of the response to NaCl of eight ecotypes of Arabidopsis thaliana. J Plant Nutr., 2002; 25:2627-38.
    Lehmann H., Stelzer R., Holzamer S., et al. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. Planta, 2000, 211:816-822
    Liu C., Hong F. S., Wang L., et al. Effect of Nd3+ on photosynthesis of spinach. Journal of Rare Earths., 2004, 22(2): 306-310
    Liu M., Hasenstein K.H. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta, 2005, 220: 658–666
    Liu M., Aruna K., Karl H. Hasenstein. Abscisic Acid Response of Corn (Zea mays L.) Roots and Protoplasts to Lanthanum.J Plant Growth Regul., 2007, 15:126-138
    Mansour M.M., Van Hasselt P.R., Kuiper P.J., et al. NaCl effects on root plasma membrane ATPase of salt tolerant wheat. Biologia Plantarum, 2000, 43: 61-66
    Maike C., Rentel and Marc R. K. Oxidative Stress-Induced Calcium Signaling in Arabidopsis. Plant Physiology, 2004, 135: 1471–1479
    Ma C. I., Liu X. H., Wang X. P., et al . Study on the growth and characteristics of minerak nutrition and ion absorption of pomelo seedlings under salt stress. Plant Nutrition and Ferrilizer Science, 2004, 10(3): 319-323
    Magalhaes J. R., Wilox G. E. Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. J Plant Nutr., 1984, 7: 1477-1496
    Maike C., Rentel and Marc R. K . Oxidative Stress-Induced Calcium Signaling in Arabidopsis. Plant Physiology., 2004, 5(135): 1471–1479
    McDonald L. J., Mamrack M. D. Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La3+, Al3+, neomycin, polyamines, and melittin. J. Lipid Mediators and Cell Signalling, 1995, 11:81-92
    Meloni D.A., Oliva M.A., Martinez C.A., Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot., 2003, 49:69-76
    Mer R. K., Prajith P. K., Pandya D. H., et al. Effects of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J.Agron. Crop Sci., 2000, 185: 209-217
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 2002, 7: 405-410
    Misra, U.N, Dwivedi, U.N. Genotypic difference in salinity tolerance of greengram cultivars. Plant Science, 2004,166:1135-1142.
    Michelet B., Boutry M. The plasma membrane H+-ATPase: a highly regulated enzyme with mutiple physiological function. Plant Physiol., 1995, 108: 1-6.
    Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25: 239-250
    Morsomme P., Bout ry M. The plant plasma membrane H+-ATPase: st ructure, function and regulation.Biochem Biophys Acta, 2000, 1465: 1-16
    Munns, Sharp. Involvenent of abscisic acid in controlling p lant growth in soils of low water potential. Aust J Plant Physiol., 1993, 20: 425-437.
    Nublat A., Desplans J., Casse F, Berthomieu P. Sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell, 2001, 13:125-137.
    Ott J. C., Birks K., Johson G. Regulation of the photosynthetic electron transport chain. Planta, 1999, 209: 250-258
    Paulm, Hasegawa, Raya. Plant cellar and molecular responses to high saltinity. Plant Mol.Biol., 2000, 51: 463-499
    Palmgren M G. Regulation of plant plasma membraneH+-ATPasee activity. Plant Physiol., 1991, 83: 314-323
    Parida A.K., Das A.B. Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J. Plant Physiol., 2004. 161: 921–928
    Peter D. Signals and Mechanisms in the Control of Plant Growth. Plant Cell Monographs, 2007, 142:1007-1018
    Plia Cachorro, et al. Abscisic acid and oismotic relations in phaselous vulgaris shoots under salt stress. Plant Growth Regul, 1995, 14: 99-104
    Poovaiah B W, Leopold C. Effects of inorganic salts on tissue permeability. Plant Physiol., 1976, 58:182-186
    Rawahy S. A., Stroehlein J. L., Pessarakli M. Effect of salt stress on dry matter production and nitrogen uptake by tomatoes. Journal of Plant Nutrition, 1990, 13 (5):573-577.
    Ranjbarfordoei A., Samson R., Lemeur, R., et al . Effects of osmotic stress induced by a combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistacia khinjuk and P. mutica . Photosynthetica, 2002, 40: 165-169
    Ranjbarfordoei A., Samson R., Vandamme P., et al. Chlorophyll fluorescence performance of sweet almond in response to salinity stress induced by NaCl . Photosynthetica, 2006, 44 (4): 513-522
    Ren Z. H., Gao J. P., Li L. G.., et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37:1141-1146
    Robards A. W., RossM. E. The entry of ions anal molecules into roots an investigation using electron-opaque tracers. Planta, 1974, 120:1-12
    Ruiz D., Martinez V., Cerda A., et al. Citrus response to salinity: growth and nutrient uptake. Tree Physiol., 1997, 17: 141-150
    Sabah M. H., Zeineb O., Catherine B. et al. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. Journal of Plant Physiology, 2006, 163:1022-1031
    Sahrawat K L. Control of urea hydrolysis and nitrification in soil by chemicals prospect and problems . Plant and Soil , 1980 , 147 : 283-291
    Savvas D., Lenz F. Effects of NaCl or nutrient induced salinity on growth, yield and composition of eggplants grown in rockwool .Scientia Horticulturae, 2000, 84: 37- 47
    Serraz R., VasquezDiaz H., Hernandez G., et al.Genotypic difference in the short-term response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in the common bean. Agronomie, 2001,21: 645–65
    Skaggs T. H.,Wu L., Shouse P. J., et al. State Space analysis of soil water and salinity regimes in a loam soil underlain by shallow groundwater. Soil Sci Am J., 2001, 65: 1074-1080
    Singletary G.W., Doehlert D. C., Wilson C.M., Muhitch M.J., Below F. E. Response of enzymes and storage proteinsof maize endospermto nitrogen supply. Plant Physiol., 1990, 94: 858-864
    Singaram P., Kamalakumari K. Effect of continuous manuring and fertilisation on maize grain quality and nutrient soil enzyme relationship.Madras Agric ., 2000 , 86: 51-54
    Sibole J.V., Montero E., Cabot C., et al. Role of sodium in the ABA-mediated long growth Iesponse of bean to salt stress. Physiol Plant, 1998, 104:299-305
    Sonder C. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 2004, 103: 93-99
    Shi P., Chen G. C., Huang Z. W., et al. Effects of La3+ on the Active Oxygen-Scavenging Enzyme Activities in Cucumber Seedling Leaves .Russian Journal of Plant Physiology, 2005, 3(52): 1021-1042
    Shi P., Zeng F., Song W., et al. Effects of calcium and lanthanum on ABA biosynthesis in cucumber leaves. Rus J Plant Physiol., 2002, 49:696–699
    Shi Q. H., Zhu Z. J., KhalidA1-aghabary et al. Effects of Iso-osmotic salt stress on the activities of antioxidative Enzymes, H+-ATPase and H+-PPase in tomato plants. Acta Photophysiologica Sinica, 2004, 30(3): 311-316
    Sharon A., Robinson, Annette P., et al. Stewart.The Role of Glutamate Dehydrogenase in Plant Nitrogen Metabolism. Plant Physiol., 1991, 95: 509-516
    Sonder Gaard T. E ., Schul Z. A. , Palmgreb M. G., et al. Energization of t ransport processes in plants :roles of the plasma membrane H+-ATPase . Plant Physiol., 2004, 136: 2475-2482
    Smith J. C., Mikiten T. M. Speciation of yurium and lanthanide in natural by inductively coupled plasma mass spectrometry after preconcentration by ultrafiltration and with a chlating resin. Analysts,1998,l23 (5):773-783
    Stassen P. L. C., Terblanche J. H., Strydom D. K., et al. The effect of time and rate of nitrogen application on development and composition of peach trees. Agoplantae, 1981, 13: 55-61
    Szegedy M. A., Maguire M. E. The Cora Mg2+ transport protein of Salmonella yphimurium. Mutagenesi of conserved residues in the second membrane domai. J Biol Chem., 1999, 274: 36973-36979
    Takei K.,Sakakibaca H.,Taniguehi M.,Sugiyama T. Nitrogen-dependent accumulation of eytokinins in root and the translocation to leaf:Implieation of eytokinin species that induces gene expression of maize response regulator.Plant Cell Physiol.,2001, 42 (1):85-93
    Taka-aki O. Effects of lanthanide substitution at Ca2+ site on the properties of the oxygen evolving center of Photosystem II. J.Inorg. Biochem., 2000, 14:82-85
    Tao Tao, Marshall D., Snavely, Susan G. F., et al. Magnesium Transporte in Salmonella typhimurium: mgtA encodes a P TypeATPase and is regulated by Mg2+ in Manner Similar to that of the mgt B P Type ATPase. J Bacteriol., 1995, 177:2654-2662
    Tischner R. Nitrate uptake and reduction in higher and lower plants.Plant Cell Environ., 2000, 23:1015-1024
    Tong Y A, Fan F, Korcak R F, et al. Effect of micronutrients, phosphorous and chelator to Iron Ratio on growth chlorosis and nutrion of apple seedings.J Plant Nutr., 1999, 9( 23) : 1115-1132
    van der Wed A.,Nagel O. W. et al. Carbon allocation to shots and roots in relation to nitrogen supply is med iated by eytokinins and sucrose. Plant Soil,1996, 5:18-32.
    Varshney K. A., Sanwal N.Salinity induced changes in ion uptake and chemical composition in chickpea. Indian J. Plant Physiol.1998, 3:140-142
    Wang S. P., Guo S. R., Hu X. H. Effects of NaCl Stress on the Content of Photosynthetic Pigments in the Leaves of Cucumber Seedlings . Acta Agricultural Universitis Jiangxiensis,2006, 2(28): 32-38
    Wang W. X., Vinocur B., Altman A. A plant response to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218: 1-14
    Wang X., Below F. E. Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen salt. Crop Science, 1996, 36: 121-l26
    Wang W., Li D. Q., et al. Effects of water stress on level changes of IAA and ABA in root and shoot of different drought resistance wheat. Acta Agronomica Sinica, 2000, 26 (6) : 737-742
    Wang L. Q., Shao M. A.The salt influx, transport and accumulation in higher plant.Agricultural Research in Arid Areas, 2005, 23(5): 244-249
    Wiles M. C., Huebner H. J., Afriyie G E. Toxicological Evaluation and Metal Bioavailability in Pregnant Rats Following Exposure to Clay Minerals in the Diet. Journal of Toxicology and Environmental Health, 2004, 67 (11): 863-874.
    Wolf D.J. Effect of NaCl salinity on flows and partitioning of C.N.and mineral ions in whole plants of white lupin,lupinus albus L. J Exp Bot.,1992, 43(251): 777-788
    Wu J.Y., Wang C.G. & Mei X.G. Stimulation of taxol production and excretion in Taxus spp cell by rare earth chemical lanthanum. Biotechnology, 2001, 85:67–73.
    Xu C. M., Zhao B., Wang X. D., Wang Y. C. Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrata. Biologia Plantarum, 2007, 3(51):567-570
    Xu, X.K. Application of the rare-earth fertilizers for agricultural sustainable development. Research Development for Resource, Environment and Ecology Network, 1997, 8: 23±26
    Xiong L.M., Zhu J.K. Regulation of abscisic acid biosynthesis.Plant Physiol., 2003, 133: 29-36
    Yu B. J., Luo Q. Y., Liu Y. L. Retransportation of ions in glycine max seedlings under NaCl stress. Journal of Plant Physiology and Molecular Biology, 2003, 29(1):39-44
    Zhao K., Munns, King. Abscisic acid synthesis in NaCl treated barely, cotton and slats bush. Aust J Plant Physiol., 1998, 18: 17-24.
    Zhai Z. X, et al. Plant ecophysiology. Beijing: China Agricultural University Press, 1997. 301.
    Zeng F. L., Shi P., Zhang M. F, et al. Effect of lanthanum on ionAbsorption in cucumber seedling leaves.Biol Trace Elem Res., 2000, 78 (1-3):265-270
    Zeng F. L., An Y., Zhang H. T. et al. The effects of La3+ on the peroxidation of membrane lipids in wheat seedling leaves under drought stress. Biology Trace Element Research, 1999. 69(2): 141-146
    Zheng W J, Lin P. The physiological characteristics of salt tolerance for kandelia candel. Aust J Plant Physiol., 1993, 32(4):113-118
    Zhou S. G.., Liu M. Energy dispersive X-Ray microanalysis and ultrastructural location of Lanthanum in intact plant. Acts Botanica Sinica, 1998, 40(2):180-183
    Zhou S.G. X-ray energy spectrum analysis on organ distribution of lanthanum and other elements in wheat seedling. Acta Botanica Sinica, 1995, 37(3), 889-894
    Zhou J., Wang L. F., Wang J Y, et al .Synthesis , characterization , antioxidative and ant tumor activities of solid quercetin rare earth (Ⅲ) complexes . Inorganic Biochemistry, 2001, 83:41-46
    Zhou X., Wu X. F., Li Y., et al. Accumulations and correlations of ABA and GABA in maize seedling under salt stress. Chin J. Appl Environ Biol., 2005, 11 (4): 412-415
    Zouhaier B., Wahbi D.E., Wided C., et al.Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis . J Plant Res., 2007, 120:529-537
    艾绍英,柯玉诗,姚建武等.氮磷钾营养对大青菜产量、品质和生理指标的影响.华南农业大学学报, 2001, 22( 2) :11-14
    安建平,陈靠山,周燮.镧对渗透胁迫引起的膜损伤和含量的影响.中国稀土学报, 1994, 12(4):348-351
    白宝璋,杨玉昌.稀土元素对甜菜光合产物分配的影响.核农学报, 1995,9(3):189-192
    白松,邓先明.稀土对植物抗病增产的动态.国外农学—植物保护, 1994,7(1):4.
    白松,邓先明.稀土对棉花枯萎病的诱抗增产作用研究.西南农业大学学报,1995,17(1):28-29
    比尤利J D,布莱克M著.种子萌发的生理生化.南京:江苏科学技术出版社, 1992, 92-93.
    蔡继宝,王平,黄碧霞等.镧在细胞膜上键合形态研究.中国稀土学报,2001,19(2): 190-192
    陈靠山,张举仁,彭正华等. NdCl3对油菜离体子叶生长和iPA水平的影响.中国稀土学报, 1994, 12(4):379-381
    陈为钧,陶冶,胡天斗等.稀土离子对烟草RuBPcase的抑制作用.中国稀土学报, 2001,19(4):362-365
    陈为钧,魏正贵,陶冶.镧对烟草叶绿体光化学反应的影响.作物学报,2001, 27(4): 506-510
    陈民生,赵京岚,李军祥等.稀土对小红萝卜产量和品质的影响.安徽农业科学, 2007, 35(20):6196-6204
    陈月艳,孙国荣等. Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响.草业科学, 1997, 14(2):27-30
    陈坚,周木虎.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响.湘潭师范学院学报(自然科学版), 2002, 47(24): 44-48
    陈同斌,阎秀兰,廖晓勇等.蜈蚣草中砷的亚细胞分布与区隔化作用.科学通报, 2006 , 50(24) : 2739- 2744
    陈见晖,周卫.苹果缺钙对果实钙组分亚细胞分布与超微结构的影响.中国农业科学,2004,37(4):572-576
    陈贵林,高洪波,乜兰春.钙对茄子嫁接苗生长及抗冷性的影响.植物营养与肥料学报, 2002, 8(4): 478-48
    成升魁,张秀刚.我国保护地农业及其若干问题的研究.自然资源.1994,(2):27-32
    程美廷.温室土壤盐分积累盐害及其防治.土壤肥料,1990,51(11):1-4
    常江,章干力.镧钙对水稻磷、钾吸收速率的影响.安徽农业大学学报,1994,21(4):494-497
    常江.镧对稻麦根组织细胞膜透性和营养元素吸收积累的影响.植物生理学通讯,1991,27(1):17-22
    褚海燕,李振高,谢祖彬等.稀土元素镧对对红壤微生物区系的影响.环境科学,2000, 21(6): 28-31
    褚海燕,朱建国,谢祖彬等.镧对红壤转化酶、过氧化氢酶和脱氢酶活性的影响.中国环境科学, 2001,21(1): 77-80
    崔世茂,陈源闽,新居直祜等. NaCl胁迫对胡萝卜种子萌发、幼苗生长及叶细胞结构的影响.华北农学报, 2005, 20(4):21-24
    储钟稀,牟梦华等.铈对黄瓜叶绿体叶绿素蛋白质复合物形成的影响.植物学报, 1994, 36(10):785-789
    戴伟民,蔡润,潘俊松等.盐胁迫对番茄幼苗生长发育的影响.上海农业学报, 2002, 18(1):58-62
    段立珍,汪建飞,邢素芝.喷施稀土肥对辣椒产量和氮磷钾含量的影响.土壤通报, 2007, 3(38):613-615
    董倍,吴兆明,汤锡珂.氯化镧对缺钙黄瓜根系生理的影响.中国稀土学报, 1993, 11(1):65-68
    杜兰芳,王立新,许俊. Hg胁迫下La对豌豆生长发育的影响.科技通报, 2007, 23(5): 670-675
    刁丰秋,章文华,刘友良等.盐胁迫对大麦叶片类囊体膜组成和功能的影响.植物生理学报, 1997, 23(2):105-110
    傅家瑞.种子生理.北京科学出版社, 1985, 81-86
    冯永军,陈为峰,张蕾娜等.设施园艺土壤的盐化与治理对策.农业工程学报,2001,17(2): 111-114
    冯巾帼.稀土在苗木和果树上应用效果的研究.河北农业大学学报, 1991,13(4): 24-27
    高青海,魏珉,杨凤娟等.黄瓜幼苗干物质积累、膨压及光合速率对铵态氮和硝态氮的响应.植物营养与肥料学报, 2008,14(1):120-125
    高青海,王秀峰,史庆华等.镧对硝酸盐胁迫下黄瓜幼苗生长及叶片抗氧化酶活性的影响.应用生态学报, 2008, 19(5): 976-980
    高永生,陈集双.盐胁迫下La3 +对小麦幼苗抗氧化系统的影响.中国稀土学报, 2005, 23(4): 490-495
    高岩,张汝民,郭旭宏.盐胁迫下稀土浸种对薏苡幼苗膜脂质过氧化作用影响的研究.稀土, 1995, 16(6):35-36
    葛祥书.对发展设施农业的几点看法(由北京中心示范农场想到的).农村机械化,1998(10):21-22
    顾月华,陈为钧,陶冶等.稀土离子对烟草RuBPcase的激活作用及EXFAS研究.生物物理学报, 1999,15(3):451-455
    郭春绒,史瑞雪.铈对小麦幼苗叶绿体的保护作用.中国稀土学报, 2000,18(4): 367-370
    郭伯生,熊炳昆,刘铮等.农业中的稀土.北京:中国农业科技出版社,1988,45-71
    郭春绒,潘登魁. PrCl3对油松种子萌发及幼苗生长的生理生化效应.稀土,1997,18(1):58-60
    郭亚芬,米国华,陈范骏等.硝酸盐供应对玉米侧根生长的影响.植物生理与分子生物学学报,植物生理与分子生物学报, 2005, 31 (1): 90-96
    郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报, 2001, 27(6):461-46
    郭世荣.无土栽培.北京:中国农业出版社:2004, 98-114
    黄文华,刘友良.盐胁迫下钙对大麦和小麦离子吸收及H+-ATP酶活性的影响.植物学报, 1993, 35(6):435-440
    黄若玲,贺爱国.生物活性稀土微肥对玉米植株性状及产量的影响.湖南农业科学, 2006, 16(3) :54-55
    赫超兴,王怀松,张志斌等.稀土植宝处理对大棚小白菜产量及农药残留量的影响.中国蔬菜, 2001, 24(6):13-18
    洪法水,刘超,郑蕾等. La3+、Ce3+处理诱导菠菜RuBPcase及RuBPcase活化酶复合体的形成.中国科学(B辑), 2004,34(4):36-40
    洪法水,魏正贵,赵文贵.镧元素与菠菜体内叶绿素的作用关系.中国科学(C辑), 2001, 5(31): 392-400
    郜红建,常江,张自立等.稀土在植物抗逆中的生理作用.中国稀土学报,2003,21(5):487-490
    何龙飞,沈振国,刘友良等.铝胁迫对小麦根系液胞膜ATP酶、焦磷酸酶和膜质组成的效应.植物生理学报,1999, 25(4):350-356
    何跃君,薛立.稀土元素对植物的生物效应及其作用机理.应用生态学报, 2005, 16(10): 1983-1989
    江玲,王章荣,周燮.镧对马尾松苗的根系生长和含量的影响.植物学报, 1998,40(3):251-255
    江玲,王章荣,周燮. La(NO3)3对马尾松幼苗根系生长及IAA含量的影响.植物学报, 1998, 40(3): 251-255
    纪艳青,王秀峰,魏珉等.黄瓜设施栽培土壤中无机阴离子的运移和分布规律研究.安徽农业科学, 2007,35(2):405-407
    柯玉琴,潘廷国. NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA含量的影响.植物营养与肥料学报,2001, 7(3);337-343
    邝炎华,刘琼英,徐声杰等.稀土元素在甘蔗体内的分配、残留积累及其对甘蔗抗逆性能的影响.华南农业大学学报, 1992 , 13(2) : 47-48
    蓝海.微量元素镧与龋病的关系大理学院学报. 2006, 5(5): 77-78
    梁成华.保护地蔬菜生理病害诊断及防治.北京:中国农业出版社. 1999, 1-10
    李红双,催德才,汪军.稀土元素镧对樱桃试管苗生长过程影响的研究.植物营养与肥料学报,2005,11(1):140-142
    李文庆,骆洪义,刘加芬.大棚生态系统物流能流分析及效益评价.生态农业研究,1996,(3):3-5.
    李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995,26(2):165-169
    李先珍,王耀林,张志斌等.保护地蔬菜大棚土壤盐离子积累状况研究初报.中国蔬菜,1993, 15(4):15-17
    李齐,沈应柏. Ce在I-69杨根中的吸收、分布及其对其它元素吸收的影响.中国稀土学报, 1995, 13(4):355-360
    李海云,王秀峰,魏珉等.不同阴离子化肥对黄瓜生长及土壤EC、pH的影响.山东农业科学, 2002,2(6):16-18
    李海云,王秀峰,邢禹贤.设施土壤盐分积累及防治措施研究进展.山东农业大学学报, 2001, 32(4): 535-538
    李海云,王秀峰,魏珉等.不同阴离子对黄瓜生理生化特性的影响.上海农业学报2003,19(1):33-63
    李赛君,张完白等.1996.变温磁园二色谱研究叶绿素和镧的复合物.北京大学学报(自然科学版),32(2):182-187
    李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制.西北植物学报, 2003, 23 (10) : 1810-1817
    李元沅,胡瑞芝.离子稀土对水稻根际生物磁性及生长发育的影响.湖南农业大学学报, 1996, 18(1):1-6
    李焕秀, Batley N. TIBA、LaCl3、Verapmil和TFP对菜豆下胚轴生长素诱导的导管分化和形成的效应.植物生理学报, 1996, 22(1): 33-39
    李晓滨,周爱儒,俞文华等.稀土化合物氯化亚铈对人肺癌细胞PG、人胃癌细胞
    BGC2823的作用.中国生物化学与分子生物学报, 1999, 15(4): 651-656
    李远新,李进辉,何莉莉等.氮磷钾配施对保护地番茄产量及品质的影响.中国蔬菜, 1997, 15(4):10-13
    李平华,张慧,王宝山.盐胁迫下植物离子区化分布.西北植物学报,2003, 23 (10) : 1810-1817
    李美如,刘鸿先,王以柔等.钙影响水稻幼苗冷胁迫过程的研究.植物学报,1996, 38(9): 735-742
    刘正鲁,朱月林,胡春梅等. NaCl对嫁接茄子生长、抗氧化物酶活性及活性氧代谢的影响.应用生态学报, 2007, 18(3): 537-541
    刘恩侠.稀土对向日葵种子萌发与根系生长的影响.稀土, 1996, 17(3):64-66
    刘洪章,李亚东等.稀土对黑穗板栗若干生理效应的影响.中国稀土学报, 1995, 13(3):283-285
    刘恩侠.稀土对向日葵种子萌发根系生长的影响.中国稀土学报, 1996, 17(3): 64-66
    龙利群,李新荣.土壤微生物结皮对两种一年生植物幼苗存活和生长的影响.中国沙漠, 2003, 23(6): 656-660
    吕杰,王秀峰,魏珉等.不同盐处理对黄瓜幼苗生长及生理特性的影响.植物营养与肥料学报, 2007, 13(6) :1123-1128
    吕慧颖,李银心,孔凡江.植物Na+/H+逆向转运蛋白的研究进展.植物学通报, 2003, 20 (3) : 363-369
    罗连光,黄若玲,万强等.氨基酸稀土螯合微肥在西部地区的应用研究初报.湖南农业科学, 2007 ,10 (1) : 54-56
    罗连光,黄若玲,贺爱国等.生物活性稀土微肥对红地球葡萄植株形状及产量的影响. 中国稀土学报, 2006 , 24 (13):33-35
    慕康国,赵秀琴,刘亚佳.镧的植物防病效果及其生物学效应.中国稀土学报, 2006, 4(24): 489-495
    廖铁军,苏彬彦.稀土对作物的生物效应研究.稀土, 1994, 15(5):26-29
    倪嘉绷.稀土元素在农业及医疗上的应用.稀土元素生物无机化学.北京科技出版社,1995, 13-15
    聂呈荣,黎振兴.稀土对花生光合作用和氮素代谢的影响.广东农业科学, 1996, 5:25-27
    宁加贲.稀土对作物增效因子的研究.稀土.1994, 15(1):66-70
    宁加贲,肖苏林.稀土元素应用于黄花菜的效果.稀土, 1989, 9(5):52-53
    庞欣,王东红,彭安.铅胁迫下La3+对小麦幼苗抗氧化物酶活性的影响.环境化学, 2002, 21(4): 318-323
    潘登奎,王玉国,张金桐.LaCl3和PrCl3对菠菜离体叶绿体光合磷酸化作用的影响.中国稀土学报, 2003, 21(1):77-80
    潘登魁,郭春绒.氯化稀土对油松幼苗生长及生化生理活性物质的影响.山西农业大学学报, 1995, 15(3):316-318
    邱德运,胡立勇.氮素水平对油菜功能叶内源激素含量的影响.华中农业大学学报, 2002, 3(21):213-216
    史萍,曾福礼,邓汝温.镧对黄瓜幼苗叶片细胞透性及膜脂的影响.中国稀土学报,2004,22(2):271-274
    史庆华,朱祝军, Khalid A. A.等.渗透胁迫对番茄抗氧化物酶活性、H+-ATPase及H+-PPase活性的影响.植物生理与分子生物学学报, 2004, 30(3): 311-316
    沈博礼,金家伟.稀土对小麦光合电子传递链影响机理初探.农业工程学报,1994,10:170-174
    沈博礼,张丽静.稀土元素镧对小麦幼苗体内内源激素含量的影响.植物生理学通讯,1994,30(5):351-354
    沈博礼.稀土对小麦体内光合和呼吸速率及磷酸化功能的影响.新疆大学学报,1995,12(2):92-95
    沈博礼,阎卫东,燕文忠等.稀土对植物脂肪代谢、磷代谢和营养代谢的影响.中国稀土学报, 1997, 15(9):418-423
    宋卫平,顾福根,王纪军等. LaCl3对欧洲李(Prunus domestica)GF43试管苗根系生长及衰老作用的影响.中国稀土学报,2004, 10(2):667-690
    宋圃菊.饮食与胃癌的病因.北京医学院学报, 1978, 19(1):52-55
    孙小芳,刘友良. NaCl胁迫下棉花体内Na+、K+分布与耐盐.西北植物学报, 2000, 20 (6) :1027-1033
    孙小芳,郑青松. NaCl胁迫对棉花种子萌发和幼苗生长的伤害.植物资源与环境学报, 2000, 9(3):22-25
    孙立平,吴学友,刘丽霞.渗透胁迫下,水杨酸调控玉米幼苗根系的63.5 kD热稳定蛋白研究.西北植物学报,2007,27(7): 1389-1393
    邰继承,杨荣华,苏雅乐其其等.钾素水平对水稻幼苗生长发育的影响.内蒙古民族大学学报(自然科学版) , 2007,1(22):48-52
    汤章城,魏家绵,陈因等.现代植物生理学实验指南.科学出版社, 1999
    童贯和.不同供钾水平对小麦旗叶光合速率日变化的影响.植物生态学报,2004, 28(4):547-555
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报, 1991 , 18 (2) : 159 -162
    王忠,王三根,李合生.植物生理学,中国农业出版社, 2000, 457-459
    吴风芝,刘德.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜, 1998, (4):5-8
    吴志行,石海仙.大棚蔬菜连作障碍及土壤次生盐渍原因及防止.长江蔬菜, 1994,(5):21-23
    吴兆明,汤锡珂,贾志旺等.稀土元素对农业增产作用的研究.中国稀土学报, 1984, 2(2): 14-18
    吴兆明.镧和吲哚乙酸对月季扦插生根的影响.园艺学报, 1988, 15(1): 69-72
    吴凤芝,刘德等.大棚蔬菜连作年限对土壤理化性状的影响.中国蔬菜, 1998, 3 (4):5-8
    王晓佳,宋明.蔬菜的污染与无污染蔬菜生产.中国蔬菜, 1998 ,15 (4):5-8
    王学军.日光温室土壤次生盐渍化分析.北方园艺, 1998, 4(3): 12-13
    王存兴,刘宗亮.稀土微肥、安索菌毒清防治小麦全蚀病试验.山东农业科学, 1993, 5: 18-21
    王兰仙,徐仲,吴相钰等.稀土元素对固氮鱼腥藻光合作用和固氮作用的影响.中国稀土学报, 1985, 3(4):72-75
    王辉,黄文常等.植物激素配合物的合成及对小麦胚芽鞘生长影响的研究.稀土,1996,17(3):67-69
    王则民.稀土生长素类固体配合物的研究进展.稀土,1995,16(5):50-58
    王小平,王晓冬,李鸣宇等.氯化镧对口腔内八种致病细菌的抑制作用.现代口腔医学杂志,2006, 20(1): 66-68
    王立克,洪发水.镧对苜蓿种子萌发的影响.南京农业大学学报, 2004, 27(2):136-138
    王立克,洪法水.镧离子对苜蓿种子萌发活力、吸水量和膜透性的影响.草业科学, 2003, 26(6): 27-31
    王月福,于振文,李尚霞.氮素对冬小麦氮代谢关键酶及核蛋白含量的影响.作物学报, 2002, 28(6):743-748
    王宪泽.稀土农用的效果、影响因素、及其作用的生理基础.稀土, 1994 , 15(1) : 47-50
    王春林,张玉鑫. NaCI胁迫对甜瓜种子萌发的影响.中国蔬菜, 2006, 6(5): 7-10
    王立丰,李良璧,白克智等.高浓度LaCl3抑制黄瓜(Cucumis sativus L.)光系统II(PSII)活性. 中国稀土学报, 2005, 23(23):770-774
    王素平,郭世荣,胡晓辉等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报, 2006, 2(28):32-38
    王素平,贾永霞,郭世荣等.多胺对盐胁迫下黄瓜幼苗体内K+、Na+和Cl-含量及器官间分布的影响.生态学报,2007, 3(27): 1122-1129
    王可玢,许春辉,赵福洪等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物生理学报,1997, 13(2):273-278
    王风茹.水分胁迫及复水过程中小麦叶片内钙的定位.植物生理学报, 2000, 26(4):280-282
    汪东风,王常红.稀土在茶树上应用研究进展.稀土, 1996, 17(4):46-49.
    万强,田际榕,彭海华等.稀土提高农产品产量、改善品质和降低农药残留量效果的研究.稀土, 1998, 19(5):49-55
    谢祖彬,朱建国,褚海燕等.镧对水稻磷吸收及其形态的影响.中国稀土学报, 2004, 22(1):667-690
    许兴,李树华,惠红霞等. NaCl胁迫对小麦幼苗生长、叶绿素含量及Na、K吸收的影响.西北植物学报, 2002, 22(2): 278-284
    薛继澄,毕德义,李家金等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料, 1994, 16(1): 4-9
    薛继澄,李家金.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报, 1995, 18 (1) :53-57
    徐坤,郑国生,王秀峰.施氮量对生姜群体光合特性及产量和品质的影响.植物营养与肥料学报, 2001, 7 (2) :189-193
    许大全,徐宝基,沈允钢. C3植物光合效率的日变化.植物生理学报, 1990, 16:1-5
    许能琨,肖召民.从粤西植胶区三种土壤看矿质肥料对胶苗组分缺乏症状和生长的影响.热带作物学报, 1985,7(2):47-55
    余叔文.植物生理与分子生物学.科学出版社,1992
    於丙军,李名旺等.葡聚糖和蔗糖密度梯度离心制备膜微囊方法的比较.南京农业大学学报,1997,20(4):14-18
    於丙军,罗庆云,刘友良. NaCl胁迫下野生和栽培大豆幼苗体内离子的再运转.植物生理与分子生物学报, 2003, 29(1):39-44
    肖振华,B.Prendergast C.L.Noble.灌溉水质对土壤水盐运动的影响.土壤学报,1994,31(1): 8-16
    熊炳昆,陈蓬.稀土农林研究与应用.北京:冶金工业出版社, 2000 ,152.
    闫生荣,张岚,周青. UV-B辐射下镧对大豆幼苗膜质氧化的影响.大豆科学, 2006, 25(2):145-148
    杨素平.稀土在蔬菜上的应用.河北农业科技, 1990, 4(10) : 13
    杨世海,刘晓峰,果德安.稀土元素镧对掌叶大黄毛状根和非转化根生长及葸醌产量的影响.中草药,2004,35(10):1171-1174
    杨燕生,刘德龙,白娟等.镧对小麦幼苗素质、蛋白质及钙调素水平的影响.稀土, 1997, 18(2):61-63
    杨汉民,杜琳.稀土元素对枸杞体细胞胚诱导频率的影响.中国稀土学报, 1994, 12(2):186-188
    杨凤娟,王秀峰,魏珉等. NO3-胁迫及恢复对黄瓜幼苗荧光参数及ATPase活性的影响.应用生态学报, 2006, 17(3): 403-407
    晏文武,杨利民,王秋泉.镧在菠菜叶绿体中的分布及其对光合作用的影响.科学通报2005, 50(12): 1195-1200
    于继洲,古润泽.稀土元素促进果树增产.山西农业科学, 1989,16 (12): 41-42
    张树清,张夫道,刘秀梅等. NaC1对大白菜种子萌发和幼苗生长的影响.植物营养与肥料学报, 2006, 12(1):138-141
    张艳,何中虎等.基因型和环境对我国冬播麦区小麦品质性状的影响.中国粮油学报, 1999, 14(5): 1-4
    张治安,陈展宇,徐克章.镧对镉胁迫下大豆幼苗光合作用和活性氧代谢的影响.中国油料作物学报, 2006, 28(2):166-171
    张锐,严慧峻,魏由庆等.有机肥在改良盐渍土中的作用.土壤肥料,1997,(4):11-14
    张勇,薛林贵,高天鹏等.荒漠植物种子萌发研究进展.中国沙漠, 2005, 25(1): 106-112
    张景光,王新平.荒漠植物生活史对策研究进展与展望.中国沙漠, 2005, 25(3): 306-314
    张杰,刘登义,黄永杰等.镧浸种对水稻种子萌发及幼苗生长的影响.生态学杂报, 2005, 24(8): 896-896
    张万萍,杨民等.稀土浸种对黄瓜种子萌发及幼苗生长的影响.种子学报, 2003, 1(12): 28-29
    张瑞珍,张恩和,孙长占等.不同基因型玉米品种氮素营养效率差异的研究.吉林农业大学学报, 2003, 25(2) : 183-186
    张帆,罗承德,张健.外源钙、磷、氮对铝胁迫下杉木幼苗生长影响的调控研究.应用生态学报, 2005, 16(2): 213-217
    张春兰,张耀东,朱建春等.施用稻草对防治保护地土壤盐渍化的作用.土壤肥料, 1994, 15:146-148
    张晓春,李郎,陆天虹等. La3+植物体过氧化物酶活性的影响.无机化学学报, 2002, 21(4): 318-323
    赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报, 1999, 41(12):1287-1292
    赵可夫,李法曾.中国盐生植物.北京:科学出版社.1999
    赵旭,王林权,周春菊等.盐胁迫对四种基因型冬小麦幼苗Na+, K+吸收和累积的影响.生态学报, 2007, 27(1): 205-213
    赵世杰,刘华山,董新纯等编.植物生理学实验指导.北京:中国农业科技出版社,1998, 54-56
    朱新广,王强,张其德等.冬小麦光合功能对盐胁迫响应.植物营养与肥料学报,2002, 8(2):177-180
    朱进,别之龙.盐胁迫对3种黄瓜砧木幼苗光合特性的影响.园艺学报,2007,34(6):1418-1424
    朱新广,张其德. NaCl影响植物光合作用的研究进展.植物学通报, 1999, 16(4): 332-338
    朱祝军,喻景权, JoskaGerendas等.氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响.植物营养与肥料学报, 1998,4(4): 379-385
    周世恭.镧在植物体中能谱分析和超微结构定位.电子显微学报, 1993, 12(5): 100-103
    周世恭.小麦不同部位组织中镧和其它元素分布的x射线能谱分析.植物学报, 1995, 37(1): 889-894
    蛋白酶测定方法,北京师范大学生物系生化教研室编,基础生物化学实验.北京,高等教育出版社,1987,162,142.
    邹琦主编.植物生理生化试验指导.北京:中国农业出版社,1995:30-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700