用户名: 密码: 验证码:
梅nSSR、cpSSR开发及基于序列分析的核果类果树系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核微卫星(nuclear microsatellite,nSSR)和叶绿体微卫星(chloroplastmicrosatellite,cpSSR)都是非常有效的分子标记工具,广泛应用于植物遗传结构、系统发育、亲缘关系等研究,但目前梅的nSSR还很少,核果类果树的cpSSR也较少。因此,本文应用双抑制PCR法和精确预测法进行了核nSSR的开发,为核果类果树及其近缘种遗传结构、亲缘关系等方面的研究提供有效工具。
     核果类果树间由于亲缘关系较近,相互间可通过自然或人工的方法进行杂交,从而导致其种质间的相互渗透,遗传背景复杂。前人已经采用传统的形态学、孢粉学、细胞学方法及RAPD、SSR、AFLP、SNP等分子标记方法进行了系统发育的研究,但仍存在一些争议。序列分析法是一种非常高效、准确的方法,广泛应用于多种植物的系统发育、遗传结构、基因渗透等方面的研究。因此为解决这些争议,本文采用核糖体ITS序列和叶绿体atpB-rbcL序列对核果类果树的系统发育进行了进一步研究。
     1.梅作为观赏树种和果树在东亚栽培历史悠久,特别是在中国南方。但关于其遗传多样性和栽培种的起源等许多方面仍然不清楚。微卫星(SSR)是目前比较流行、有效的分子标记。然而很少有人进行梅nSSR的分离和描述。为开发更多的SSR应用于梅的遗传分析,我们改进了双抑制PCR开发方法.一共成功分离出11个梅nSSR(5个(GA)n、6个(AC)n),其中8个SSR在供检测的11个梅品种中表现出多态性。等位基因数量2-8个,观察到的杂合性从0.33到1.00不等,平均为0.71,表明分离的位点具有较高的多态性。这些信息位点在将来梅及其近缘种的遗传结构、起源、进化方面的研究中非常有用。
     2.虽然目前已经研究出来许多SSR富集方法,以提高SSR分离的效率。但在克隆测序之前,插入片段中SSR的分布情况是完全不知道的,因此分离效率仍然很低,这大大限制了SSR的应用。我们构建了一个新的模型-精确预测(AFC)。这个模型可以在测序之前就去除那些无用的序列从而获得100%的效率,而且这个模型有较高的可行性和可转移性,适用于所有SSR富集的方法(只要添加到方法的后面)。为简化计算,将模型转化成一个数据库软件"Accurate Forecast Microsatellite 1.0”。利用改进的亲和捕捉法富集微卫星,再通过一个巢式PCR来检测阳性克隆。数据输入到软件中,由软件自动产生的推荐列表中前15个克隆被测序。结果所有的序列都是有用的,即包含SSR及其两侧相邻的、可以用来设计引物的足够长的序列。与亲和捕捉、双抑制PCR相比,AFC方法具有较高的SSR富集效率(65%)和高的测序效率(100%)、花费较少、便于操作。它是一种新的高效的SSR分离方法,特别对非模式生物来说。
     3.为进一步了解植物cpSSR分布规律,进而开发核果类果树通用cpSSR引物,对拟南芥叶绿体DNA全序列的cpSSR进行了统计分析。结果表明拟南芥cpSSR以单碱基重复为主,占总数的78.6%,二碱基重复占总数的19%,三碱基重复占2.4%,三碱基以上重复为零.在单碱基重复中又以A和T重复为主,占98.5%。二碱基重复全部为AT重复。单碱基的重复中纯粹重复41个,占总数的62.1%。间断重复个数为23,占总数的34.8%。复合重复个数仅为2个。
     4.采用2种方法来开发核果类果树通用的cpSSR.1)非编码区测序法:以甲州小梅的总DNA为模板,用一个巢式PCR来扩增和筛选16个叶绿体大单拷贝区基因间隔区和1个内含子。测序后共获得9个重复数人于8的梅cpSSR,设计相应的引物。2)生物信息学方法:从Genbank上下载桃、李、梅、杏和樱桃5大核果类果树相应叶绿体序列33个,共搜索到重复数人于8的单碱基重复(A)n或(T)n 38个,选择重复数大于10的cpSSR位点进行引物设计。可以设计引物的cpSSR共8个,另2个cpSSR位点因一侧序列太短或序列的特异性无法设计有效引物。取非编码区测序法开发的、有代表性的梅6对cpSSR引物在5种核果类果树24个基因型中进行了多态性验证。6对引物均具有多态性,扩增出18条多态性片段,组成14个单倍型,具有较高的分辨率,可以用来鉴别种甚至特异的基因型。单倍型的总杂合度(0.96)很高,说明核果类果树具有较丰富的单倍型类型。而杏和梅最低(0.32)。单倍型仅有2个,且分布不均衡,说明其起源单一,遗传背景狭窄。这些新开发的cpSSR引物为进一步研究核果类果树的起源、进化等问题提供一个新的有效工具。
     5.为构建核果类果树的系统发育,选择桃、李、梅、杏、樱桃各4-5个主要种或变种,共24个基因型,测定了其叶绿体体非编码区。atpB-rbcL序列。以桂樱为外种群,PAUP计算数据集的得分,Modeltest筛选最佳模型和参数,Mega计算遗传距离、变异,最大简约法构建系统发育树。结果表明:1.atpB-rbcL在核果类果树各组间分子进化速率不同,差异分布不均衡;2.樱桃较其它核果类果树原始;李、梅、杏亲缘关系较近,梅、杏关系最近。核果类果树是一个单系群,由着一个共同的祖先沿着两个方向进化,一枝进化为樱桃,另一枝沿不同的途径产生桃、李、梅、杏等核果类果树。
     6.为研究核果类果树的分子进化和系统发育,测定了桃、李、梅、杏、樱桃各2-4个主要种或变种,共16个基因型的ITS序列,并从Genbank下载了6个其它的核果类ITS序列,形成了较为全面的数据矩阵。扁核木为外种群,用Mega最大简约法构建系统发育树。以结果表明,樱桃较其它核果类果树原始。因扁核木与核果类果树差异较大,又采用二次置根法,以樱桃置根。用PAUP计算数据集的得分,Modeltest筛选最佳模型和参数,计算遗传距离、变异,用最大简约法构建了桃、李、梅、杏、樱桃的系统发育树.结果表明:1.核果类果树各树种ITS1和ITS2的分子进化速率不同,信息量也不同;2,核果类果树演化顺序为:共同的原始种分化成樱桃、李、杏,再由李进化产生桃,杏进化产生梅;3.辽杏较普通杏和西伯利亚杏原始,桃演化顺序是:巴旦杏-山桃-普通桃(新疆桃)。4.本文结果支持将核果类果树分成4个亚属。
Nuclear microsatellite (nSSR) and chloroplast microsatellite (cpSSR) are very useful molecular marker tools, widely used in the study of plant genetic structure, phylogeny and relationship. But there are few nSSRs and none cpSSRs of Prunus mume; this greatly limited the application of nSSR and cpSSR in P. mume. Dual-suppression-PCR and Accurate forecast methods were used to isolate nSSR in P. mume. These informational loci will be very useful in the study on the genetic structure, origin, evolution of P. mume and its closely related species
     It is very close among the relationship stone fruit trees. They can be propagated both asexually and sexually, and easily hybridized naturally and artificially with other stone fruit trees. These features made the genetic background of stone fruit trees rather complex. Previous studies on taxonomy and genetic polymorphism for P. mume were carried out using morphology, cytology, sporule, isoenzyme markers, RAPD, AFLP, SNP and SSR. However, there are still some puzzles. Sequence analysis is a new accurate method with higher efficiency and has been used in the research of phylogeny, genetic structure, introgression in kinds of plant. To settle those puzzles nuclear ITS and chloroplast atpB-rbcL were used to construct the phylogeny of stone fruit trees.
     1. Prunus mume Sieb. et Zucc, as an ornamental and fruit tree, has been cultivated for centuries in the East Asian, especially in the southern part of China. But much remain unknown about genetic variation and origin of various cultivars. Microsatellite (simple sequence repeat, SSR) is a very prevalent, effective molecular marker. However, there have been few attempts to isolate and characterize SSRs in Prunus mume. To develop more SSRs for the genetic analysis of P. mume, we modified the protocol, called dual-suppression -PCR. A total of eleven SSRs, five (GA)n and six (AC)n, were successful isolated. Eight SSRs were found to be polymorphic in a test sample of 11 P. mume cultivars. The observed number of alleles per locus ranged from 2 to 8 and observed heterozygosity ranged from 0.33 to 1.00 with an average of 0.71, suggesting a high degree of variation in isolated loci. These informational loci will be very useful in the study on the genetic structure, origin, evolution of P. mume and its closely related species.
     2. At present, many microsatellite-enrichment methods were proposed to increase microsatellite (SSR) isolation efficiency, but it is a complete black-box about the SSR distribution in the insertion fragment in the clone before being sequenced, so the isolation efficiency is still low, which greatly limited the application of SSR. Here we constructed a new model, accurate forecast (AFC). The model can eliminate those useless sequences before being sequenced to gain 100% efficiency and has high feasibility, transferability and fits all the methods with SSRs enrichment (just add it to the end). To simplify the calculation procedure the model was transformed into database software 'Accurate Forecast Microsatellite 1.0'. After modified affinity capture to enrich microsatellite, positive clones were detected by a nested PCR and the data were inputted into the software. The first fifteen anterior clones in the recommendation list created automatically by software were sequenced and all of them sequences were usable for SSR isolation, containing SSR sequences and their corresponding flanking sequences, which were long enough to be used for primer design. Compared with Affinity Capture and Dual-Suppression-PCR, AFC pipeline has higher SSRs enrichment (65%), high sequence percentage (100%) and less cost per SSR locus. It is easy to be operated. It can be a new powerful SSR isolation approach, especially for non-model organisms.
     3. To comprehend the distribution rule of plant chloroplast microsatellites (cpSSRs) and develop the universal cpSSR primers for stone fruit trees, the complete genome of Arabidopsis thaliana Chloroplast was downloaded and analysed. The mononucleotide cpSSRs were preponderant (78.6%), the dinucleotide cpSSRs, the trinucleotide cpSSRs and the others cpSSR accounted for 19%, 2.4 % and 0%, correspondly. The (T)n and (A)n cpSSRs were the most type in the mononucleotide cpSSRs (98.5%) while all the dinucleotide cpSSRs were (AT)n. 41 pure SSRs (62.1%), 23 interrupted SSRs (34.8%) and 2 multiple cpSSRs (3.1%) existed in the the mononucleotide cpSSRs.
     4. Two methods were used to develop the universal cpSSR for stone fruit trees. 1) Non-coding region sequencing (NRS). Total Genomic DNA of Prunus mume 'Koshu Koume' was extracted. A nested PCR was performed to amplify and screened 16 chloroplast intergene sequences (IGSs) and 1 intron. 8 IGSs were successfully amplified in the secondary nested PCR. After sequencing 9 mononucleotide cpSSR loci, (A)n or (T)n with n≥8, were found. 2) Bio-informatics method. 33 chloroplast sequences of peach, plum, mume, apricot, cherry were downloaded form the Genbank. 38 mononucleotide cpSSRs, (A)n or (T)n with n≥8, were obtained by directly search, 8 of them with n≥10 were choosed to design universal primer. 6 pairs of cpSSR primer developed using NRS were tested in 24 Prunus genotypes and all of them were polymorphic. 18 fragments were yielded and formed 14 haplotypes. The high Heterozygosity (0.96) indicated there were rich haplotype types in stone fruit trees. But apricot and mume had lowest Heterozygosity (0.32) and only 2 haplotypes with disequilibrium distribution. This showed that apricot and mume had simplex origin and limited genetic background. These new developed cpSSRs provide a new alternative efficient tool to analyze the origin and evolution of stone fruit trees.
     5. To reconstruct phylogeny of stone fruit trees, the atpB-rbcL noncoding spacer of chloroplast DNA from 24 genotypes of peach, plum, apricot, mume and cherry, 4-5 genotypes per specie, were sequenced and analyzed. With Zippeliana as outgroup, the data set was tested with 56 evolution models with PAUP and the score was used to screen the best model and parameter with Modeltest. Genetic distances, variances were calculated and the maximum parsimony tree was constructed with Mega. The result indicated: 1. Molecular evolution rates were different among stone fruit trees and the distribution of variance was unbalanced; 2. An initial split from the backbone of the Phylogenetic tree indicated that cherry was more original than other species. Mume had closest relationship with apricot and closer with plum. As a monophyletic group, stone fruit trees were come from an original plant with two clades, one evolved to cherry and the other to other stone fruit trees.
     6. To analyze the molecular evolution and phylogeny of stone fruit trees, the internal transcribed spacers (ITS) of nuclear ribosomal DNA from 16 genotypes of peach, plum, apricot, mume, and cherry, 2-4 genotypes per species, were sequenced and analyzed with 6 ITS sequences downloaded from the GenBank. Prinsepia sinensis as outgroup, the maximum parsimony tree was constructed with Mega. An initial split from the backbone of the phylogenetic tree indicated that cherry was more original than other species. Because Prinsepia sinensis was greatly different with others, the second way of rooting with cherry was performed. The broad data set was tested with 56 evolution models with PAUP and the score was used to screen the best model and parameter with Modeltest. Mega was used to calculate genetic distance, variance and construct maximum parsimony phylogenetic tree. The result indicated: 1. Molecular evolution rate and information were different between ITS1 and ITS2, and also among stone fruit trees; 2. The evolution order of 5 stone fruit trees was analyzed. Cherry, plum and apricot were come from an original plant, and then plum evolved to peach and apricot to mume; 3. Prunus mandshurica is more original than P. sibirica and P. armeniaca. The evolution order of peach is from P. andersonii to P. davidiana and then to P. persica (P. ferganensis); 4. It is reasonable that stone fruit trees are divided into 4 subgenera.
引文
1. Ainouche M L and Bayer R J. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome, 1997, 40: 730-743
    2. Alba M M, Guigo R. Comparative analysis of amino acid repeats in rodents and humans. Genome Res., 2004,14: 549-554
    3. Aranzana M J, Arus P, Carbo J, King G J. AFLP and SSR markers for genetic diversity analysis and cultivar identification in peach (Prunus persica (L.) Batsch). Acta Horticulture, 2001,546: 367-370
    4. Bachtrog D, Weiss S, Zangerl B, Brem G, Schlotterer C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol. Biol. Evol., 1999,16: 602-610
    5. Balloux F, Ecoffey E, Fumagalli L, Goudet J, Wyttenback A, Hausser J. Microsatellite conservation, polymorphism, and GC content in shrews of the genus Sorex (Insectivora, Mammalia). Mol. Biol. Evol., 1998,15: 473-475
    6. Begun D J, Aquadro C F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature, 1992, 356: 519-520
    7. Bell G I, Jurka J. The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single-step mutation process. J. Mol. Evol., 1997,44: 414-421
    8. Biss P, Freeland J, Silvertown J, Mcconway K, Lutman P. Successful amplification of rice chloroplast microsatellites from century-old grass samples from the park grass experiment. Plant Mol. Biol. Rep., 2003, 21: 249-257
    9. Blackburn E H. Structure and function of telomerses. Nature, 1991, 350: 569-573 .
    10. Borstnik B, Pumpernik D. Tandem repeats in protein coding regions of primate genes. Genome Res., 2002,12 (6): 909-915
    11. Bortiri E, Oh S H, Gao F Y, Potter D. The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (rosaceae). Am. J. Bot., 2002, 89 (11): 1697-1708.
    12. Bortiri E, Oh S H, Jiang J G, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt D. Phylogeny and Systematics of Prunus (Rosaceae) as Determined by Sequence Analysis of ITS and the Chloroplast trnL-trnF Spacer DNA. Syst. Bot., 2001,26 (4): 797-807
    13. Bortiri E, Vanden Heuvel B, Potter D. Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Pl. Syst. Evol., 2006,259: 53-71
    14. Bousquet J, Strauss S H, Doerksen A H. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc. Natl. Acad. Sci.USA., 1992, 89: 7844- 848
    15. Bryan G J, McNicoll J, Ramsay G, Meyer R C, De Jong W S. Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor. Appl. Genet., 1999,99: 859-867
    16. Bucci G, Anzidei M, Madaghiele A, Vendramin G G. Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol. Ecol., 1998, 7:1633-1643
    17. Calabrese P, Dunett R. Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. Mol. Biol. Evol., 2003, 20:715-725
    18. Caskey CT, Pizzuti A, Fu Y H, Fenwick R G, Nelson DL. Triplet repeat mutations in human diseases. Science, 1992, 256: 784-789
    19.Chakraborty R,Kimmel M,Stivers D N,Davison L J,Deka R.Relative mutation rates at di-,tri-,and tetranucleotide microsatellite loci.Proc.Natl.Acad.Sci.USA,1997,94:1041-1046
    20.Charlesworth B,Morgan M T,Charlesworth D.The effect of deleterious mutations on neutral molecular variation.Genetics,1993,134:1289-1303
    21.Cheng H L,Meng X P,Ji H J,Dong Z G;Chen S Y.Sequence analysis of the ribosomal DNA internal transcribed spacers and 5.8S ribosomal RNA gene in representatives of the clam family veneridae.J.Shellfish.Res.,2006,25(3):833-839
    22.Cheng Y J,De Vicente M C,Meng H,Guo W W,Tao N,Deng X X,A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera.Tree physiol,2005,25(6):661-672
    23.Cheng Y J,Guo W W,Deng X X.cpSSR:anew tool to analyze chloroplast genome of Citrus somatic hybrids.Acta Botanica Sinica,2003,45(8):906-909
    24.Chiang T Y,Schaal B A,Peng C I.Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA.Bot.Bull.Acad.Sin.,1998,39:245-250
    25.Chiang T Y,Schaal B A.Molecular evolution and phylogeny of the atpB-rbcL spacer of chloroplast DNA in the true mosses.Genome,2000a,43:417-426
    26.Chiang T Y,Schaal B A.Molecular evolution of the atpB-rbcL noncoding spacer of chloroplast DNA in the moss family Hylocomiaceae.Bot.Bull.Acad.Sin.,2000b,41:85-92
    27.Chung S M,Jack E.Staub.The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa.Theor.Appl.Genet.,2003,107:757-767
    28.Cifarelli R A,Gallitelli M,Cellini F.Random amplified hybridization microsatellites(RAHM):isolation of a new class of microsatellite-containing DNA clones.Nucleic Acids Res.,1995,23:3802-3803
    29.Claire A,Maurizio R,Jody M,Robert J H.The application of SSRs characterized forgrape(Vitis vinifera) to conservation studied in Vitaceae.Am.J.Bot.,2002,89(1):22-28
    30.Clark M S.Plant molecular biology- a laboratory manual(植物分子生物学-实验手册).高等教育出版社(北京),1998,3-7
    31.Cloutier D,Rioux D,Beaulieu J,Schoen J.Somatic stability of microsatellite loci in Eastern white pine.Pinus strobes L..Heredity,2003,90,247-252
    32.Collevatti R G.Brondani R V,Grattapaglia D.Development and characterization of microsatellite markers for genetic analysis of a Brazilian endangered tree species Caryocar brasiliense.Heredity,1999,83(6):748-756
    33.Correns.Vererbungsversuche mit blass(gelb) grunen and buntblattrigen sippen bei mirabilis,urtica,and lunaria,Z.vererbungsl,1909,1:291-329
    34.Cox R,Mirkin SM.Characteristic enrichment of DNA repeats in different genomes.Proc.Natl.Acad.Sci.(USA),1997,94:5237-5242
    35.David B G.Gary W R,Deborah A S,David E R,Aviv B,Robert K W,The use of microsatellite variation to infer population structure and demographic history in a natural model system.Genetics,1999,151:797-801
    36.Deguilloux M F,Dumolin-Lapegue S,Gielly L,Grivet D,Petit R J.A set of primers for the amplification of chloroplast microsatellites in Quercus.Mol.Ecol.notes,2003,3:24-27
    37.Di Rienzo A,Peterson A C,Garza J C,Valdes A M,Slatkin M,Freimer N B.Mutational processes of simple-sequence repeat loci in human populations.Proc.Natl.Acad.Sci.USA,1994,91: 3166-3170
    38. Dieringer D, Schlotterer C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res., 2003,13: 2242-2251
    39. Downie S R, Katz-Downie D S, Watson M F. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpll6 and rpoC1 intron sequences: towards a supragenetic classification of subfamily Apioideae. Amer. J. Bot., 2000,87:273-292
    40. Doyle J J. Gene trees and specie strees: Molecular systematic as one-character taxonomy. Syst. Bot., 1992,17: 144-163
    41. Edwards A, Civitello A, Hammond H A, Caskey C T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. Hum. Genet., 1991,49: 746-756
    42. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet., 2004. 5: 435-445
    43. Fang J, Devanand P S, Chao C T. Practical strategy of single-nucleotide-polymorphism discovery in fruiting-mei (Prunus mume Sieb. et Zucc.) from amplified-fragment-length-polymorphism fragments. Plant Mol. Biol. Rep., 2005a,23 (3): 227-239
    44. Fang J, Qiao Y, Zhang Z, Chao C T. Genotyping fruiting-mei (Prunus mume Sieb. Et Zucc) cultivars using AFLP. HortScience, 2005b, 40 (2): 325-328
    45. Fang J, Tao J, Chao C T. Genetic diversity infruiting- mei, apricot, plum, and peach revealed by AFLP. J. Hort. Sci. Biot., 2006, 81: 898-902.
    46. Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using anchored PCR. Nucleic Acids Res., 1996, 24 (21): 4369-4371
    47. Forest F, Nanni I, Chase M W, Crane P R, Hawkins J A. Diversification of a large genus in a continental biodiversity hotspot: Temporal and spatial origin of Muraltia (Polygalaceae) in the Cape of South Africa. Mol. Phylogenet Evol., 2007,43 (1): 60-74
    48. Gadek P A, Alpers D L, Heslewood M M, Quinn C J. Relation ships within Cupressacea sensu lato: a combined morphological and molecular approach. Amer. J. Bot., 2000, 87: 1044 -1057
    49. Galley C, Linder H P. The phylogeny of the pentaschistis clade (danthonioideae, poaceae) based on chloroplast DNA, and the evolution and loss of complex characters. Evolution Int. J. Org. Evolution. 2007,61 (4): 864-884
    50. Gao Z H, Shen Z J, Han Z H, Fang J G, Zhang Y M, Zhang Z. Microsatellite markers and genetic diversity in Japanese apricot (Prunus mume). HortScience, 2004,39: 1571-1574
    51. Garza J C, Slatkin M, Freimer N B. Microsatellite allele frequencies in humans and chimpanzees with implications for constraints on allele size. Mol. Biol. Evol., 1995, 12: 594-603
    52. Glenn T C, Stephan W, Dessauer H C, Braun M J. Allelic diversity in alligator microsatellite loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Mol. Biol. Evol., 1996,13:1151-1154
    53. Goff S A, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002,296:92-100
    54.Grady D L,Ratliff R L,Robinsom D L,McCanlies E C,Meyne J,Moyzis R K.Highly conserved repetitive DNA sequence are present at human centromeres.Proc.Natl.Acad.Sci.USA.,1992.89:1695-1699
    55.Grivet D,Heinze B,Vendramin G G,Petit J.Genome walking with consensus primers application to the large single copy region of chloroplast DNA.Mol.Ecol.notes,2001,1:345-349
    56.Gruissem W,Zurawski G.Analysis of promoter regions for the spinach chloroplast rbcL,atpB and psbA genes.EMBO J.,1985,4:3375-3383
    57.Gugerli F,Senn J,Anzidei M,Madaghiele A,Buchler U,Sperisen C,Vendramin G G.Chloroplast microsatellites and mitochondrial nadl intron2 sequences indicate congruent phylogenetic relationships among Swiss stone pine(Pinus cembra),Siberian stone pine(Pinus sibirica),and Siberian dwarf pine(Pinus pumila).Mol.Ecol.,2001,10:1489-1497
    58.Guilford P,Prakash S,Zhu J M,Rikkerink E,Guardiner S,Bassett H,Forster R.Microsatellites in Malus X domestica(apple):abundance,polymorphism and cultivar identification,Theor.Appl.Genet.,1997,94:249-254
    59.Gur-Arie R,Cohen C J,Eitan Y,Shelef L,Hallerman E M,Kashi Y.Simple sequence repeats in Escherichia coli:abundance,distribution,composition,and polymorphlsm.Genome Res.,2000,10(1):62-71
    60.Hahn W J.A molecular phylogenetic study of the Palmae(Arecaceae) based on atpB,rbcL,and 18S nrDNA sequences.Syst.Biol.,2002,51(1):92-112
    61.Hayden M J,Sharp P J.Sequence tagged microsatellite profiling(STMP) a rapid technique for developing SSR markers.Nucleic Acids Research,2001a,29(8):e43
    62.Hayden M J,Sharp P J.Targeted develop went of infor mative microsatellite(SSR) markers.Nucleic Acids Research,2001b,29(8):e44
    63.He M X;Huang L M,Shi J H,Jiang Y P.Variability of ribosomal DNA ITS-2 and its utility in detecting genetic relatedness of Pearl Oyster.Mar.Biotechnol,2005,7(1):40-45
    64.Heidenfelder B L,Topal M D.Effects of sequence on repeat expansion during DNA replication.Nucleic Acids Res.,2003,31(24):7159-7164
    65.Hentschel C C.Homocopolymer sequences in the spacer of a sea urchin historic gene repeat are sensitive to S1 nuclease.Nature,1982,295:714-716
    66.Heuertz M,Fineschi S,Anzidei M,Pastorelli R,Salvini D,Paule L,Frascaria-laeoste N,Hardy O J,Vekemans X,Vendramin G G.Chloroplast DNA variation and postglacial recolonization of common ash(Fraxinus excelsior L.) in Europe.Mol.Ecol.,2004,13:3437-3452
    67.Hokanson S C.Microsatelite(SSR) markers reveal genetic identies genetic diversity and relationship in Malus×domestie Borkh.Core subetcollection.Theor.Appl.Genet.,1998,97:671-683
    68.Huang J C,Wang W K,Peng C I,Chiang T Y.Phylogeography and conservation genetics of Hygrophila pogonocalyx(Acanthaceae) based on atpB-rbcL noncoding spacer cpDNA.J.Plant Res.,2005,118(1):1-11
    69.Huijser P,Hennig W,Dijkhof R.Poly(dC-dA/dG-dT) repeats in the Drosophila genome:a key function for dosage compensation and position effects.Chromosoma,1987,95:209-215
    70.Ishii T,McCouch S R,Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other gramineae species,Theor.Appl.Genet.,2000,100:1257-1266
    71.Joey S,Randall L S.Addressing the "hardest puzzle in American pomology" phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am. J. Bot., 2004, 91 (6): 985-996
    72. Kaneko T, Terachi T, Tsunewaki K. Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. II: Restriction analysis of ctDNA of 11 Primus species. Japan J. Genet., 1986, 61 (2): 157-168
    73. Karvonen P. Genetic variation and structure of ribosomal DNA (rDNA) in Scotspine and Norway spruce. ActaUniversity Ovluensis Series A Scientiae Rerum Naturalium, 1995,10:1-68
    74. Katti M V, Ranjekar P K, Gupta V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol., 2001,18:1161-1167
    75. Kaundun S S, Matsumoto S. Heterologous nuclear and chloroplast microsatellite amplitication and variation in tea Camellia sinensis, Genome, 2002, 45 (6): 1041-1048
    76. Kellogg E A, Juliano N D. The structure and function of RuBisCO and their implication for systematic studies. Amer. J. Bot., 1997, 84: 413-428
    77. Kimmel M, Chakraborty R, Stivers D N, Deka R. Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci. Genetics, 1996,143:549-555
    78. Klevytska A M, Price L B, Schupp J M, Worsham P L, Wong J, Keim P. Identification and characterization of variable-number tandem repeats in the Yersinia pestis Genome. J. Clin. Microbiol., 2001, 39 (9): 3179-3185
    79. Korzun. Abstract of international triteceae mapping initiative. Clermont Ferrand, 1997, 6:25-27
    80. Kruglyak S, Durrett R T, Schug M D, Aquadro C. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. USA.1998,95: 10774-10778
    81. Lee J S, Hanford M G, Genova J L, Farber R A. Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. Hum. Mol. Genet., 1999, 8: 2567-2572
    82. Levinson G, Gutman G A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acid Res, 1987a,15: 5323-5338
    83. Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol., 1987b, 4: 203-221
    84. Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B Y, Zhou Z H, Hogetsu T. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol. Ecol., 2003,12: 609-618
    85. Lian C, Zhou Z, Hogetsu T. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat, J Plant Res, 2001, 114: 381-385.
    86. Lian, C., Hogetsu, T. Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-supression-PCR technique, Mol. Ecol. notes, 2002,2: 211-213
    87. Liao P C, Havanond S, Huang S. Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conservation Genetics, 2006, 8: 89-98
    88. Litt M, Luty J A. A hypervarible microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet., 1989, 44: 397-401
    89. Lunt D, Hutchinson W, Carvalho G An efficient method for PCR-based isolation of microsatellite arrays (PIMA), Mol. Ecol., 1999, 8 : 891-894
    90. Martin W, Stobe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik K V. Gene transfer to the nucleus and the evolution of chloroplasts,Nature,1998,393:162-165
    91.Martins L,Oberprieler C,Hellwig F H.A phylogenetic analysis of Primulaceae s.l.based on internal transcribed spacer(ITS) DNA sequence data.Plant Syst.Evol.,2003,237:75-85
    92.Maynard Smith J,Haigh J.The hitch-hiking effect of a favorable gene.Genet.Res.,1974,23:23-35
    93.Messier W,Li S H,Stewart C B.The birth of microsatellites.Nature,1996,381:483
    94.Miller-sims V,Atema J,Kingsford M J,Gerlach G.Characterization and isolation of DNA microsatellite primers in the cardinalfish(Apogon oederleini),Mol.Ecol.notes,2004,4:336-338
    95.Morand-Prieur ME,Vedel F,Raquin C,Brachet S,Sihachakr D,Frascaria-lacoste N.Maternal inheritance of a chloroplast microsatellite marker in controlled hybrids between Fraxinus excelsior and Fraxinus angustifolia.Mol.Ecol.,2002,11:613-617
    96.Morgante M,Hanafey M,Powell W.Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes.Nat.Genet.,2002,30:194-200
    97.Morton C M,Mori S A,Prance G T,Karol K G.Chase M W.Phylogenetic relationships of lecythidaceae:a cladistic analysis using rbcL sequence and morphological data.Amer.J.Bot.,1997,84:530-540
    98.Mowrey B D,Werner D J.Phylogenetic relationships among species of Prunus as inferred by isozyme markers.Theor.Appl.Genet.,1990,80:129-133
    99.Nadir E,Margalit H,Gallily T,Ben-Sasson S A.Microsatellie spreading in the human genome:evolutionary mechanisms and structural implications.Proc.Natl.Acad.Sci USA,1996,93:6470-6475
    100.Nei M,and Kumar S.Molecular evolution and phylogenetics.Oxford University Press.Oxford,New York,USA,2000
    101.Ng C C,Lin C Y,Tzeng W S,Chang C C,Shyu Y T.Establishment of an internal transcribed spacer (ITS) sequence-based differentiation identification procedure for mei(Prunus mume) and plum (Prunus salicina) and its use to detect adulteration in preserved fruits.Food Research International,2005,38:95-101
    102.Nielsen R,Palsboll P J.Single-locus tests of microsatellite evolution:multi-step mutations and constraints on allele size.Mol.Phylogenet Evol.,1999,11:477-484
    103.Ohta S,Nishitani C,Yamamoto T.Chloroplast microsatellites in Prunus,Rosaceae.Mol.Ecol.notes,2005,5:837-840
    104.Olmstead R G,Palmer J D.Chloroplast DNA systematics:Are view of methods and data analysis.Amer.J.Bot.,1994,81:1205-1224
    105.Ostrander E A,Jong P M,Rine J,Duyk G.Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences.Proc.Natl.Acad.Sci(USA),1992,89(8):3419-3423
    106.Ota T,Kimura M.A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population.Genet.Res.,1973,22:201-204
    107.Parducci L,Szmidt AE,Madaghiele A,Anzidei M,Vendramin G G.Genetic variation at chloroplast microsatellites(cpSSRs) in Abies nebrodensis(Lojac.) mattei and three neighboring Abies species.Theor.Appl.Genet.,2001,102:733-740
    108.Patrick H,Degnan,Elisabeth,Arevalo.Isolation of Microsatellite Loci in Sceloporus grammicus (Squamata,Phrynosomatidae).American Journal of Undergraduate Research,2004,2(4):1-12
    109.Plaschke J,Borner A,Wendehake K,Ganal M,Roder M.The use of aneuploids for the chromosomal assignment of microsatellite loci.Euphytica,1996,89:33-44
    110. Powell J M, Kron K A. An analysis of the phylogenetic relationships in the wintergreen group (Diplycosia, Gaultheria, Pernettya, Tepuia; Ericaceae). Syst. Bot., 2001,26: 808-817
    111. Powell W, Morgante M, Andre C, Hanafey M, Vogeel J, Rafalski A. The comparision of RFLP、 RAPD、 AFLP and SSR markers for germplasm analysis. Mol. Breeding, 1996a, 2: 225-238
    112. Powell W, Morgante M, Doyle J J, McNicol J W, Tingey S V, Rafalski A J. Genepool variation in genus Glycine subgenus soju revealed by polymorphic nuclear and chloroplast Microsatellites. Genetics, 1996b, 144: 793-803
    113. Powell W, Morgante M, McDevitt R, Vendramin G G, Rafalski J A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genomes of pines. Proc. Natl. Acad. Sci USA, 1995,92: 7759-7763
    114. Prather L A, Ferguson C J, Jansen R K, Polemoniaceae phylogeny and classificatin: implications of sequences data from the chloroplast gende ndhF . Amer. J. Bot., 2000, 87: 1300-1307
    115. Provan J, Pamela M B, McMeel D, Mathews S. Universal primers for the amplification of chloroplast microsatellites in grasses (Poaceae). Mol. Ecol. notes,2004,4: 262-264
    116. Provan J, Russell J R, Booth A, Powell W. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum. Mol. Ecol., 1999, 8: 505 -511
    117. Provanl J, Soranzo N, Wilson N J, McNicol J W, Forrest G I, Cottrell J, Powell W. Gene-pool variation in Caledonian and European Scots Pine(Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proc. R. Soc. Lond. B., 1998,265:1697-1705
    118.Pupko T, Graur D. Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units. J. Mol. Evol., 1999, 48:313-316
    119. Ramsay L, Macaulay M, Cardie L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J., 1999,17: 415-425
    120. Ribeiro M M, Plomion C, Petit R, Vendramin G G, Szmidt A E. Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor. Appl. Genet., 2001, 102:97-103
    121. Richards E J,Goodamn H M, Ausubel F M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucl. Acids Res., 1991, 19: 3351-3357
    122. Richards R I, Sutherland G R. Dynamic mutations: a new class of mutations causing human disease. Cell, 1992, 70: 709-712
    123. Richardson BA, Brunsfeld S J, Klopfenstein N B. DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Mol. Ecol., 2002, 11: 215-227
    124. Ris H, Plaut W. The ultrastructure of DNA containing areae in the chloroplasts of Chlamydomonas, J.Cell Biol., 1962,13: 383-391
    125. Ritland K, Clegg M T. Evolutionary analysis of plant DNA sequences. Amer. Naturalist, 1987, 30S: 74-100
    126. Ritland K, Clegg M T. Optimal DNA sequences divergence for testing phylogenetic hypothese, in Clegg M T, O. Brien S J [eds.], Molecular evolution, UCLA symposia on molecular and cellular biology. Alan R. Liss, New York, NY, new series, vol. 1990,122: 289-299
    127. Rocha EP, Matic I, Taddei F. Over-representation of repeats in stress response genes: A strategy to increase versatity under stressful conditions. Nucleic Acids Res., 2002,30 (9): 1886-1894
    128. Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan P B.The use of microsatellite DNA markers for soybean genotype identification.Theor.Appl.Genet.1995,90:43-48.
    129.Rose O,Falush D.A threshold size for microsatellite expansion.Mol.Biol.Evol.,1998 15:613-615
    130.Ross C L,Dyer K A,Erez T,Miller S J,Jaenike J,Markow T A.Rapid divergence of microsatellite abundance among species of Drosophila.Mol.Biol.Evol.,2003,20(7):1143-1157
    131.Sainudiin R.Statistical inference of microsatellite models:an application to humans and chimpanzees.MS Thesis,Comell University,New York.2003
    132.Sanderson M J,Doyle J J.Reconstruction of organismal and gene phylogenies from data on multigene familes:concerted evolution,homoplasy,and confidence.Syst.Biol.,1991,41:4-17
    133.Sato S,Nakamura Y,Kaneko T,Asamizu E,Tabata S.Complete structure of the chloroplast genome of Arabidopsis thaliana.DNA Res.,1999,6:283-290
    134.Schlotterer C,Tautz D.Slippage synthesis of simple sequence DNA.Nucleic Acids Res.,1992,20:211-215
    135.Schlotterer C,Wiehe T.Microsatellites,a neutral marker to infer selective sweeps.In:Goldstein D,Schlotterer C(eds) Microsatellites:evolution and applications.Oxford University Press,Oxford,1999,238-248
    136.Schlotterer C.Evolutionary dynamics of microsatellite DNA.Chromosoma,2000,109:365-371
    137.Schug M D,Hutter C M,Noor M A F,Aquardo C F.Mutation and evolution of microsatellites in Drosophila melanogaster.Genetica,1998,102-103(1-6):359-367
    138.Scott K D,Eggler P,Seaton G,Rossetto M,Ablett E M,Lee L,Henry R J.Analysis of SSRs derived from grape ESTs.Theor.Appl.Genet.,2000,100:723-726
    139.Shaw J,Small R L.Addressing the "hardest puzzle in american pomology" phylogeny of prunus sect.prunocerasus(Rosaceae) based on seven noncoding chloroplast DNA regions.Am.J.Bot.,2004,91(6):985-996.
    140.Shimada T,Haji T,Yamaguchi,Takeda M,Yoshida M.Classification of Mume(Prunus mume sieh.et Zuee.) by RAPD assay,J.Jap.Soc.Hort.Sci.,1994,63:543-551
    141.Shfiver M D,Jin L,Chakraborty R,Boerwinlde E.VNTR allele frequency distributions under the stepwise mutation model:a computer simulation approach.Genetics,1993,134:983-993
    142.Skinner D M,Bettie W G.Blattner F R.The repeat sequence of a hemit crab satellite deoxyribonucleic acid(TACG)n ×(ATCC)n.Biochemistry,1974,13:3930-3937
    143.Stanford A M,Harden R,Parks C R.Phylogeny and biogeography of Jugland(Juglandaceae) based on matK and ITS sequence data.Amer.J.Bot.,2000,87:872-882
    144.Strand M,Prolla T A,Liskay R M,Petes T D.Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair.Nature,1993,365:274-276
    145.Streisinger G;Owen J E.Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4.Genetics,1985,109:633-659
    146.Subramanian S,Madgula V M,George R,Mishra R K,Pandit M W,Kumar C S,Singh L.Triplet repeats in human genome:distribution and their association with genes and other genomic regions.Bioinformatics,2003,19:549-552
    147.Sukhotu T,Kamijima O,Hosaka K.Nuclear and chloroplast DNA differentiation in Andean potatoes.Genome,2004,47:46-56
    148.Swallow D M,Gendler S,Griffiths B,Comey G,Taylor-Papadimitriou J,Bramwell M E.The human tumour-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM.Nature,1987,328:82-84
    149.Tautz D.Hypervariability of simple sequences as a general source for polymorphic DNA markers (J).Nucleic Acid Res.,1989,17:6463-6471
    150.Tautz D,Renz M.Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucleic Acids Res.,1984,12(10):427-438
    151.Temnykh S,DeClerck G;Lukashova A,Lipovich L,Cartinhour S,McCouch S.Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):Frequency,length variation transposon associations,and genetic marker potential.Genome Res.,2001,11(8):1441-1452
    152.Thomas M R,Cain P,Scott,N S.DNA typing of grapevine:A universal methodology and database for describing cultivars and evaluating genetic relatedness.Plant Mol.Biol.,1994,25:939-949
    153.Toth G,Gaspari Z,Jurka J.Microsatellites in different eukaryotic genomes:Survey and analysis.Genome Res.,2000,10(7):967-981
    154.Tsutsumi C and Kato M.Molecular phylogenetic study on Davalliaceae.Fern.Gaz.,2005,17(3):147-162
    155.Vogt P.Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved chromatin folding code.Human Genet..1990,84:301-336
    156.Walker J W.Evolutionary significance of the exine in the pollen of primitive angiosperms.Linn.Soc.Symper,Number 1.Royal botanic gardens kew:Academic Press.1976,251-308
    157.Walter R,Epperson B K.Geographic pattern of genetic variation in Pinus resinosa:area of greatest diversity is not the origin of postglacial populations.Mol.Ecol.,2001,10:103-111
    158.Wang Z,Weber J L,Zhong G;Tanksley S D.Survey of plant shor tandem DNA repeats.Theor.Appl.Genet.,1994,88:1-6
    159.Wanntorp L,Kocyan A,Renner S S.Wax plants disentangled:A phylogeny of Hoya(Marsdenieae,Apocynaceae) inferred from nuclear and chloroplast DNA sequences.Mol.Phylogenet.Evol.,2006,39:722-733
    160.Warren F,Christopher G A.Using simple sequence repeats(SSR) for DNA fingerprinting germplasm accessions of grapes pecies.Amer.Soc.HortSci.,1998,123(2):182-188
    161.Weber J L,Wong C.Mutation of human short tandem repeats.Hum.Mol.Genet.,1993,2:1123-1128
    162.Weber J L.Informativeness of human(dC-dA)n.(dG-dT)n polymorphisms.Genomics,1990,7(4):524-530
    163.Weising K,Gardner R C.A set of conserved PCR primers for analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms.Genome,1999,42:9-19
    164.Wharton K A,Yedvobnick B,Finnerty V G,Artavanis-Tsakunas S.Vpa:a novel family of transcribed repeats shared by the notch locus and other developmentally regulated loci in D.melanogaste.Cell,1985,40:55-62
    165.Widmer A,Baltisberger M.Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina(Brassicaceae).Amer.J.Bot.,1999,86:1282-1289
    166.Wolfe K,Li W,Sharp P M.Rates ofnucleotide Substitution vary greatly among plant mitochondrial,chloroplast,and nuclear DNAs.Proc.Natl.Acad.Sci USA,1989,29:208-211
    167.Xu D,Abe J,Gai J,Shimamoto Y.Diversity of chloroplast DNA SSRs in wild and cultivated soybeans:evidence for multiple origins of cultivated soybean.Mol.Ecol.,2002,105(5):645-653
    168.Yang J,Wang J,Chen L,Yu J,Dong J,Yao ZJ,Shen Y,Jin Q,Chen R.Identification and characterization of simple sequence repeats in the genomes of Shigella species.Gene,2003,322:85-92
    169.You C L,Abraham B K,Tzion F,Eviatar N.Microsatellites within genes structure,function,and evolution,Mol.Biol.Evol,2004,21(6):991-1007
    170.Yu J,Hu S,Wang J,Wong G K,Li S,Liu B,Deng Y,Dai L,Zhou Y,Zhang X,Cao M,Liu J,Sun J,Tang J,Chen Y,Huang X,Lin W,Ye C,Tong W,Cortg L,Geng J,Han Y,Li L,Li W,Hu G,Huang X,Li W,Li J,Liu Z,Li L,Liu J,Qi Q,Liu J,Li L,Li T,Wang X,Lu H,Wu T,Zhu M,Ni P,Han H,Dong W,Ren X,Feng X,Cui P,Li X,Wang H,Xu X,Zhai W,Xu Z,Zhang J,He S,Zhang J,Xu J,Zhang K,Zheng X,Dong J,Zeng W,Tao L,Ye J,Tan J,Ren X,Chen X,He J,Liu D,Tian W,Tian C,Xia H,Bao Q,Li G;Gao H,Cao T,Wang J,Zhao W,Li P,Chen W,Wang X,Zhang Y,Hu J,Wang J,Liu S,Yang J,Zhang G,Xiong Y,Li Z,Mao L,Zhou C,Zhu Z,Chen K,Hao B,Zheng W,Chen S,Guo W,Li G,Liu S,Tao M,Wang J,Zhu L,Yuan L,Yang H.Adraft sequence of the dee genome (Oryza-sativa L.ssp.indica).Science,2002,296:79-92
    171.Yu Q Y,Li B,Li G R,Fang S M,Yan H,Tong X L,Qian J F,Xia Q Y,Lu C.Abundance and distribution of microsatellites in the entire mosquito genome.Prog Biochem.Biophy.,2005b,32(5):435-441
    172.Zhang Q A.A diallel analysis of heterosis in elite hybrid rice based on RFLP and microsatellite.Theor.Appl.Genet.,1994,89:185-192
    173.Zhao W G.Miao X X,Jia S H,Pan Y L,Huang Y P.Isolation and characterization of microsatellite loci from the mulberry,Morus L..Plant Sci.,2005,168:519-525
    174.Zhou Z,Miwa M,Hogetsu T.Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat(ISSR).New Phytol.,1999,144:55-63
    175.Zurawski G,Clegg M T.Evolution of higher-plant chloroplast DNA-coded genes:Implications for structure-function and phylogenetics tudies.Ann.Rev.Pl.Phys.,1987,38:391-418
    176.包满珠,陈俊愉.不同类型梅的花粉形态及其与桃、李、杏的比较研究.北京林业大学学报,1992,14(增刊4):70-73
    177.包满珠,陈俊愉.梅及其近缘种数量分类初探.园艺学报,1995,22(1):67-72
    178.陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析.林业科学,2000,3:46-51
    179.陈俊愉.中国梅花研究的几个方面.北京林业大学学报,1995,17(增刊1):1-7.
    180.陈昆松,李方,徐昌杰,张上隆,傅承新.改良CTAB法用于多年生植物组织基因组DNA的大量提取.遗传,2004,26(4):529-531
    181.程运江.柑橘体细胞胞质遗传及叶绿体SSR引物开发研究.华中农业大学博士论文,2003
    182.程中平,陈志伟,胡春根,邓秀新,罗正荣.利用RAPD技术对新疆桃分类地位的探讨.园艺学报,2001a,28(3):211-217
    183.程中平,陈志伟,胡春根,邓秀新,罗正荣.利用分子标记对桃属植物种的识别及其亲缘关系分析.华中农业大学学报,2001b,20(3):199-204
    184.程中平.利用分子标记对桃李杏梅樱类植物系统发育的分析.中国南方果树,2003,32(3):45-50
    185.褚孟嫄,班俊.梅、杏、李同工酶比较研究.果树科学,1988,5(4):155-157
    186.褚孟嫄,陈翔高,班俊.果梅花粉形态的观察.落叶果树,1988,3:9-10
    187.褚孟螈主编.中国果树志·梅卷.北京:中国林业出版社,1999
    188.董英山,郝瑞,林凤起.西伯利亚杏种质资源的研究.北方果树,1991,1:4-8
    189.董英山,郝瑞.西伯利亚杏、普通杏及东北杏亲缘关系探讨.吉林农业大学学报,1991,13(1):24-27
    190.房经贵,章镇,刘大钧,马正强.一种从贮藏较久番茄叶中提取适于PCR扩增的DNA的方法.植物生理学通讯,2000,36(1):47-50
    191.高锁柱,马德伟,张新文,刘连素.桃属植物花粉形态的观察研究.中国果树,1988,4:13-16
    192.高志红,章镇,盛炳成,姚泉洪.桃梅李杏四种主要核果类果树RAPD指纹图谱初探.果树学报,2001,18(2):120-121
    193.郭振怀,葛会波,王秀伶,闰景慧.桃属植物染色体核型及种间亲缘关系分析.园艺学报,1996,23(3):223-226
    194.过国南,王力荣,阎振立,朱更瑞,方伟超.利用花粉粒形态分析法研究桃种质资源的进化关系.果树学报,2006,23(5):664-669
    195.黄青阳,何予卿,景润春,何予卿,黄青阳.利用微卫星标记定位水稻红莲型细胞质雄性不育恢复基因.科学通报,1999,44(14):1517-1520
    196.黄原.分子系统学-原理、方法及应用.北京:中国农业出版社,1998
    197.李健仔,李思光,罗玉萍,万璐.叶绿体DNA分析技术及其在植物系统学研究中的应用.江西科学,2002,20(3):183-189
    198.李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769-776
    199.李瑶.中国栽培植物发展史.北京:科学出版社,1984,174-175
    200.林盛华,蒲富慎,张加延,高秀云,李秀杰.李属植物染色体数目观察.中国果树,1991,2:8-10
    201.林盛华,褚孟螈.梅染色体研究.北京林业大学学报,1999,21(2):91-93
    202.刘明珍,周忠泽,邱英雄,孙伟,董翔.分子证据支持蓝药蓼和大铜钱叶蓼归入冰岛蓼属.植物分类学报,2007,45(2):227-233
    203.刘青林.梅花起源与品种演化问题初探.北京林业大学学报,1996,18(2):78-82
    204.刘艳玲,徐立铭,程中平.基于ITS序列探讨核果类果树桃、李、杏、梅、樱的系统发育关系.园艺学报,2007,34(1):23-28
    205.刘迎,曾甫清.微卫星不稳定性与膀胧肿瘤.临床泌尿外科杂志,2001,116
    206.刘月学,杨向晖,林顺权,胡桂兵,刘成明.枇杷属植物基因组DNA提取方法的改进及其应用.果树学报2005,22(2):182-185
    207.吕增仁,郭振怀,肖健忠,王凤云.山杏和杏的核型分析.河北农业大学学报.1986,6(2):14-17
    208.莫日根,哈斯阿古拉,姜金安.叶绿体DNA种内多样化.内蒙古大学学报,1998,29(4):574-579
    209.阮颖,周朴华,刘春林.九种李属植物的RAPD亲缘关系分析.园艺学报,2002,29(3):218-223
    210.沈向,郭卫东,任小林,李嘉瑞,郑学勤.用RAPD再探核果类果树间亲缘关系.西北农业大学学报,1999,27(4):19-22
    211.沈志军.基于微卫星标记的桃、李、杏、梅、樱桃亲缘关系研究.南京农业大学硕士学位论文,2003
    212.唐前瑞,魏文娜.桃李梅杏四种核果类植物亲缘关系的研究Ⅲ.过氧化物酶同工酶酶谱比较.湖南农业大学学报,1996,22(4):337-340
    213.唐先华,张晓艳,施苏华,钟扬,赖旭龙.睡莲类植物ITS nrDNA序列的分子系统发育分析.地球科学.中国地质大学学报,2003,28(1):97-101
    214.田欣,李德铢.DNA序列在植物系统学研究中的应用.云南植物研究,2002,24(2):170-184
    215.汪祖华,庄恩及主编.中国果树志·桃卷.北京:中国林业出版社,2001
    216.汪祖华,陆振翔,郭洪.李、杏、梅亲缘关系及分类地位的同工酶研究.园艺学报,1991,18(2):97-101
    217.汪祖华,周建涛.桃种质的亲缘演化关系研究-花粉形态分析.园艺学报,1990,17(3):161-168
    218.王业遴,凌志奋,吴邦良.核果类主要果树花粉形态的鉴定观察.园艺学报,1992,19(1):29-33
    219.魏文娜,唐前瑞,杨国顺.桃李梅杏四种核果类植物亲缘关系的研究Ⅰ.形态特征的异同点.湖南农业大学学报.1996,22(2):125-130
    220.魏文娜,唐前瑞.桃李梅杏四种核果类植物亲缘关系的研究Ⅱ.染色体核型及Giemsa显带的异同点.湖南农业大学学报,1996,22(3):256-260
    221.向建英,管开云,杨俊波.应用ITS区序列对秋海棠属无翅组分类学问题的探讨.云南植物研究,2002,24(4):455-462
    222.杨英军,张开春,林珂.常见桃属植物RAPD多态性及亲缘关系分析.河南农业大学学报,2002,36(2):187-190
    223.俞德浚.蔷薇科植物的起源和进化.植物分类学报,1984,22(6):431-444
    224.俞莉章,唐东起,丁义.肾癌微卫星不稳定性及其机制的研究.中华肿瘤杂志,200 1,23(1):11-13
    225.俞明亮,马瑞娟,许建兰,沈志军,章镇.桃种间亲缘关系的SSR鉴定.果树学报,2004,21(2):106-112
    226.张博,邱丽娟,常汝镇.利用大豆育成品种的SSR标记遗传距离预测杂种优势的初步研究.大豆科学,2003,22(3):166-171
    227.张加延,张钊主编.中国果树志·杏卷.北京:中国林业出版社,2003
    228.张加延,周恩主编.中国果树志·李卷.北京:中国林业出版社,1998
    229.张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱的RAPD分析.北京林业大学学报,1998,20(2):12-15
    230.张天时,刘萍,孟宪红,王伟继,孔杰,王清印.不同对虾种间共用微卫星DNA引物的研究.高技术通讯,2003,13(11):80-85
    231.张新叶,白石进,黄敏仁.日本落叶松群体的叶绿体SSR分析.遗传,2004,26(4):486-490
    232.张秀英,陈海平,王文奎.关于“白花山碧”桃亲缘关系的研究.北京林业大学学报,1998,20(2):51-55
    233.张增翠,侯喜林.SSR分子标记开发策略及评价.遗传,2004,26(5):763-768
    234.中国科学院中国植物志编辑委员会.中国植物志.第三十八卷.北京:科学出版社.1986,46-57
    235.周崇治,彭志海,贺林.结直肠癌中的微卫星不稳定现象.国外医学肿瘤学分册,2001,28(2):149-151
    236.周建涛,郭洪,赵密珍.桃野生种花粉水溶性蛋白IEF电泳分析.侯喜林,常有宏主编.园艺学进展(第2辑).南京:东南大学出版社,1998,143-145
    237.周建涛,汪祖华.核果类种花粉形态研究初报.江苏农业学报,1990,6(3):57-63
    238.周丽华,韦仲新,吴征镒.国产蔷薇科李亚科的花粉形态.云南植物研究,1999,21(2):207-211
    239.宗学普,俞宏,王志强,齐茉陵.桃属植物种间亲缘关系及演化研究--花粉蛋白SDS电泳分析.园艺学报,1995,22(3):288-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700