用户名: 密码: 验证码:
高速柴油机配气机构性能及系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足现代车用内燃机对配气机构综合性能要求不断提高的需要,本文对顶置气门下置凸轮轴式配气机构综合性能的分析方法进行全面深入的研究,以6DF1-26柴油机为研究对象,根据所建立配气机构运动学、动力学、润滑和接触应力模型确定配气机构综合性能指标,使配气机构性能评价不再局限于某一个领域。
     本文首先在对凸轮型线谐波分析的基础上,对配气机构进行时频联合动力学分析,确立了凸轮型线、配气机构动力学响应、机构固有特性之间精确的对应关系,为精确分析实测动力学响应的成分及影响因素提供了理论依据,避免了传统的单纯通过时域或频域对动力学响应分析针对性差、精度低的缺点。通过精确的动力学分析,获得了机构总动变形量、各零部件振动及载荷随转速和气门间隙等影响因素的变化规律。另外,为提高配气机构动力学模型的精度,本文根据最小二乘原理衡量气门动力学理论规律与实测规律的一致性,采用自适应随机搜索优化方法辨识配气机构动力学模型的参数,从而提高了动力学模型对转速、气门间隙、凸轮型线、气门弹簧等大范围变化的适应性,因而可以取代传统的按经验试凑确定动力学模型参数的方法。
     其次,根据运动学模型和动力学模型提供的精确参数,利用动态油膜厚度和赫兹接触应力模型计算分析了润滑油膜和接触应力的变化规律。经过2000h可靠性实验验证,凸轮-挺柱副出现过度磨损的情况和位置与根据模型理论计算的高应力低膜厚区对应。
     最后,针对车用内燃机转速范围宽广、工作转速高、凸轮机构个性强的特点,以极限工作转速最高为目标,展开对包括N次谐波凸轮型线和气门弹簧在内的配气机构联合优化设计方法的研究。优化设计以高精度运动学模型、动力学模型及润滑和接触应力模型对配气机构综合性能全面计算为基础,用网格法和随机搜索方法优化确定气门弹簧(n_a,D,d)和参数凸轮型线(ρ_1,ρ_2,ρ_3,ρ_4,ρ_5,ρ_6,ρ_7,R_1,θ_Z等)。对6DF1-26柴油机配气机构联合优化设计的实例表明,联合优化设计方法可以有效折中凸轮负加速度段的气门弹簧特性、凸轮-挺柱副润滑和应力特性的关系,在不降低最高飞脱转速的情况下,可以最大限度的实现换气性能、动力性能、润滑和接触应力性能的最优匹配。
     本文提出的研究方法紧密联系工程实际,为高速内燃机配气机构综合性能分析和系统优化设计方法的实用化奠定了研究基础。
In order to meet the elevated requirement of modern vehicle ICE design to the performances of valvetrain, complete investigation is conducted into the synthetical performances analyzing method of OHV type valvetrain. This dissertation takes 6DF1-26 diesel engine as the objective, kinematic, dynamic, lubrication and friction models are set up, and its relative characteristics & features are analyzed, that makes evaluation to the valvetrain performances not restricted in one field.
     Based on the harmonic analysis to the lift curve of the cam follower, the time-frequency analysis to the dynamic response of the valvetrain is carried out. The relationship between the valvetrain dynamic response, cam profile and natural characteristics is revealed, and that makes the analysis of the components of the dynamic response of the valvetrain and of its determinants possible. This method is able to avoid the defection of weak pertinence and low precision problem through the traditional method purely in time domain or frequency domain. With the aid of the precise dynamic model, the response sequence including vibration and contact load etc. following the camshaft rotation speed & valve clearance etc. are acquired. In order to improve the precision of the dynamic model of valvetrain, adaptive random search method is used to identifiy the parameters of the dynamic model, such as M, C, K etc., with the least squares criterion to determine the measure of agreement between single mass-spring & (4+N_1+N_2) mass-spring dynamic model of the valvetrain and the physical system, and with the help of it, a method has been developed for converting the measured dynamic response of a system into estimates of its unknown physical parameters. By using a more refined model of the valvetrain with high precision and the greatly improved adaptiveness to variant working conditions, valve clearance, cam profile, valve spring etc., and the traditional try-and-error method that is lack of scientific basis is replaced by identification method.
     Secondly, the dynamic oil film thickness and contact Herts stress are calculated through the EHL model and Herts contact theory, on the basis of accurate data from the Kinematic and Dynamic model, the low film thickness and high stress zone is located, and that is confirmed by the 2000h reliability test.
     Lastly, considering the wide speed range, high speed, and individuality features of valvetrain for vehicle internal combustion engine, systemic optimal design methodology is developed which makes valve spring design an integral part of N~(th) degree harmonic cam profile design, with the aid of the high precision dynamic model and lubrication & friction model. Grid optimal method and random search method is adapted separately to select the best matched parameters of the valve spring (n_a, D, d) and the cam profile (ρ_1,ρ_2,ρ_3,ρ_4,ρ_5,ρ_6,ρ_7, R_1,θ_Z etc.).
     The systemic optimal valve-train design methodology practice on 6DF1-26 Dielsel Engine is proved that it makes spring-inertia force match characteristics and lifter-cam lubrication and fatigue-resistant properties in the cam zone more balanced. As a result, the air charging, dynamical, lifter-cam lubrication and fatigue-resistant properties are improved without lowering the valve train jump-up speed.
     The methodology developed in the dissertation also indicates adaptability and applicability for engineering optimal systemic design of ICE valvetrain.
引文
[1]倪宏杰.中国内燃机发展指南,上海:上海交通大学出版社1994.4
    
    [2]Hrones, J. A.. An analysis of the dynamic forces in a cam driven system. Transactions of theASME, 1948:473-482
    
    [3]Barkan P.. Calculation of high speed valve motion with a flexible overhead linkage. Transactionsof SAE, 1954,61:687-700
    
    [4]Hundal M. S.. Aid of digital computer in the analysis of rigid spring-loaded valve mechanisms.Applications of Computers in Valve Gear Design, SAE, 1963:4-8
    
    [5]H. Sakai, And K. Tsuda. Analysis of Valve Motion In Overhead Valve Linkages. Bulletin of theJSME, 1970,13(55): 120-128
    
    [6] Johnson G. I.. Studying valve dynamics with electronic computers . Applications of Computers invalve Gear Design, SAE, 1963: 10-25
    
    [7]A.K. Subramaniam. Evaluation of Internal Combustion Engine valve Trains by an empiricallyTuned simulation Model. ASME paper. 78-DGP-9
    
    [8]Akiba. K. and Shimizu A. A comprehensive simulation of high speed driven valve trains. SAEpaper,810865
    
    [9]Mircea Teodorescu. Modular Approach For Valve Train Dynamics And Friction Simulation WithIn Situ Experimental Validation[D]. Graduate School of Wayne State University, Detroit, Michigan.2003.5
    
    [10]A. P. Pisano, and F. Freudenstein. An Experimental and Analysis Investigation of the DynamicResponse of a High-speed Cam-Follower System. Part 1: Experimental Investigation, ASME J. ofMechanisms, Transactions, and Automation in Design, 1983,105(12):692-698
    
    [11]A. P. Pisano, and F. Freudenstein. An Experimental and Analytical Investigation of the DynamicResponse of a High-speed Cam-Follower System. Part 2: A Combined, Lumped/DistributedParameter Dynamic Model, ASME J. of Mechanisms, Transactions, and Automation in Design,1983,105(12):699-704
    
    [12]A. P. Pisano. Coulomb Friction In High-Speed Cam Systems. ASME Journal of Mechanisms,Transmissions, and Automation in Design, 1984,106:470-474
    
    [13]Chan. C. and Pisano. A Dynamic model of a fluctuating rocker arm ratio cam system. ASMEJournal of Mechanisms, Transactions, and automation in Design, 1987,109:356-365
    
    [14]D. Kim and J. W. David. A Combined Model for High speed Valve Train Dynamics (PartlyLinear and Partly Nonlinear). SAE Technical Paper series 901726
    
    [15]董锡明,李圣华,罗杰敏等.内燃机配气机构动力学的研究.中国铁道科学,1979,1(1):35-50
    
    [16]袁兆成,王建华.用多质量模型研究配气机构的动态特性.农业工程学报,1998,14(3):48-52
    
    [17]樊久铭,徐斌,程东明等.配气机构多质量动力学模拟.哈尔滨工业大学学报,1999,31(2):52-54
    
    [18]刘忠民,俞小莉,沈瑜铭.配气机构动力学模型的比较研究.浙江大学学报(工学版),2005,39(12):1941-1945
    
    [19]隋允康,滕弘飞,韦日钰.柴油机配气机构有限元动力分析.内燃机学报,1988,6(3):235-242
    
    [20]乐俊秉,李惠珍,吴广全.配气机构有限元动力计算及分析.汽车工程,1994,16(1):36-43
    
    [21]乐俊秉,李惠珍,方华,吴广全.顶置凸轮轴配气机构有限元动力模型计算及试验研究.汽车技术,1995,(2):10-14,33
    
    [22]周锦生,范洪宾.用等参元法分析PA6-280柴油机配气机构的动态特性.内燃机学报,1997,15(4):499-504
    
    [23]龙连春,胡丽萍,隋允康.X6V柴油机配气机构的分析计算.内燃机学报,2002,20(5):454-458
    
    [24]吴广全,李惠珍,乐秉俊.用多体系统动力学研究内燃机的配气机构.内燃机学报,1992.10(1):27-34
    
    [25]郝勇刚,俞小莉,刘忠民.基于刚柔耦合多体动力学模型的配气机构计算.车用发动机,2006,(5):31-35
    
    [26]王明武,华建文.七项式动力凸轮及最佳设计.内燃机工程,1985,(3):26-33
    
    [27]姜树李,王德海,王仲章.N次谐波凸轮的设计方法.内燃机学报,1989,7(2):137-144
    
    [28]张可村,王勇,陈洽刚.内燃机配气机构的优化设计.内燃机工程,1987,8(4):38-48
    
    [29]韦日钰,滕弘飞,隋允康.五次样条配气凸轮型线动力优化设计.内燃机学报,1993,11(4):360-367
    
    [30]覃文洁,廖日东,左正兴等.多体系统动力学在配气凸轮型线改进设计中的应用.北京理工大学学报,2002,11(2):133-136
    
    [31]Greenwood, J.A. & J.H. Tripp. The Contact of Two Nominally Flat Rough Surfaces. Proc. Instn.Mech.Engrs 185(48/71):625-633
    
    [32]Greenwood, J.A.& G.E. Morales-Espejel. The Behaviour of Transverse Roughness in EHLContacts. Proc. Instn. Mech. Engrs 208(J):121-132
    
    [33]Morales-Espejel, G.E., C.H. Venner & J.A. Greenwood. Kinemtics of transverse real roughnessin elstohydrodynamically lubricated line contacts using Fourier analysis. Proc. Instn. Mech.Engrs214(J):523-534.
    
    [34]Kumar, P.,S.C. Ray. Study of surface roughness effects in elastohydrodynamic lubrication ofrolling line contacts using a deterministic model. Tribology International, 34:713-722
    
    [35]Dowson, D.& G.R. Higginson. Elasto-hydrodynamic Lubrication, Pergmon Press Ltd.,1966.
    
    [36]Dowson, D.& G.R. Higginson & J.F. Archard & A.W.Crook. Elasto-hydrodynamic Lubrication,Pergmon Press Ltd.,1977
    
    [37]Dyson. A. Elastohydrodynamic lubrication and wear of cams bearing against cylindrical tappets. SAE paper No. 770018
    
    [38]Holland, J.. Die instationare Elastohydrodynamik, Konstruktion, 1978,30(9): 369-369
    
    [39]Xiaolan. A. And Haiqing Y.. A numerical analysis for the transient EHL process of a cam-tappet pair in I.C. engine . Transactions of the ASME. Journal of Tribology, 1989,111: 413-417
    
    [40]张培望.内燃机凸轮挺柱间油膜厚度的计算方法.北京工业大学学报,1989,15(3):87-92
    
    [41]梅雪松,谢友柏.高速内燃机凸轮与挺柱付润滑过程的数值分析.内燃机学报,1994.12,(1):71-77
    
    [42]梅雪松,谢友柏.线接触非稳态部分弹流润滑方程的完全数值分析.西安交通大学学报,1 994,28(1):29-35
    
    [43]梅雪松,谢友柏.两种线接触非稳态部分弹流模型数值解的比较.应用力学学报,1994,11(2):48-55
    
    [44]梅雪松,谢友柏,邓文和.表面粗糙度对内燃机配气凸轮-挺杆副弹流润滑的影响.西安交通大学学报,1995,29(7):42-48
    
    [45]梅雪松,陶涛,邓文和.凹坑深度对表面动态弹流润滑的影响.西安交通大学学报,1997,31(7):29-34
    
    [46]Straton, J.T. and P.A. Willermet. An Analysis of Valve Train Friction in Terms of LubricationPrinciples. SAE Paper, 830165
    
    [47]Griffths, D.W. & D.J. Smith. The Importance of Friction Modifiers in the Formulation of FuelEfficient Engine Oil. SAE TECHNICAL PAPER SERIES, 852112.
    
    [48]Sun D.C. and Rosenberg R.C.. An experimental study of automotive cam-lifter interface friction.ASLE Transactions, 1986, 30: 167-176
    
    [49]Dowson D. Taylor C. M. and Zhu G.. Mixed lubrication of a cam and flat faced follower. Proc.of the 13~(th) Leed-Lyon Symp. on Tribology, Fluid film Lubrication-Osborne Reynolds Centenary.1986: 599-609
    
    [50]Gecim B. A. Lubrication and Fatigue analysis of a cam and roller follower. Proc. Of the 15~(th)Leeds-LyonSymp. On Tribology, The Tribology Design of Machine Elements. 1988:91-100
    
    [51]Gecim B. A. Tribology study for a low-friction cam/tappet system including tappet spin. STLETransactions 1992,35:225-234
    
    [52]Willermet,P.A., Pieprzak,J.M. & Dailey, D.P.. Tappet rotation and friction reduction in acenter pivot rocker arm contact. Transactions of the ASME, Journal of tribology, 1990,112:655-661
    
    [53]Willermet,P.A.. The composition of surface layers formed in a lubricated cam/tappet contact.Transactions of the ASME, Journal of tribology, 1991,113:38-47
    
    [54]Paranjpe R. S. and Gecim B.A.. Comparative friction assessment of different valve train typesusing the FLARE code. SAE paper No.920491
    
    [55]Taylor,C.M. Elastohydrodynamic lubrication theory. Engine Tribology, Elsevier SciencePublisher B.V.1993:15-51
    
    [56]Taylor,C.M. Valve train-Cam and follower: Background and lubrication analysis. ElsevierScience Publisher B.V.1993:159-183
    
    [57]Wakuri,K.D., Marius & K. Volker. Advanced calculation method of the contact stress in rollerfollower valvetrain systems. SAE TECHNICAL PAPER SERIES, 2002-01-0852
    
    [58]Jongmin Lee. Dynamic Modeling And Experimental Verification of A Valve train includingLubrication And Friction[D]. the University of Michigan, 1993
    
    [59]冯志华,胡海岩.高速机构动力学研究进展.力学进展,2002,32(2):196-204
    
    [60]唐驾时.传动链刚度为凸轮转角函数的配气机构动力学计算.汽车技术,1985,(5):2-4
    
    [61]赵雨东,陆际清.刚度和摇臂比的变化对凸轮轴下置式配气机构动力学计算结果的影响.内燃机学报,1993.11(2):147-152
    
    [62]王文澜.具有对称型多项式凸轮的配气机构的非线性动力方程的渐近解.南昌大学学报(工科版),1987,9(2):80-89
    
    [63]王文澜.非线性配气机构中对称型多项动力凸轮的计算.江西工业大学学报,1988,10(1):11-19
    
    [64]P.J.Philips, A.R.Schamel, J.Meyer. An Efficient Model for Valvetrain and Spring Dynamics.SAE Technical Paper Series, 890619:1-15
    
    [65]邹慧君,郭为忠.平底从动件凸轮机构考虑动态弹流润滑油膜时动力响应的研究.机械工程学报,1999,35(1):106-109
    
    [66]王韬.内燃机配气系统的非线性动力学研究:(博士学位论文).天津:天津大学,2004
    
    [67]张效工,陈法成.内燃机气门落座特性的研究.内燃机工程,1980,(2):23-35
    
    [68]张立梅,张克刚.配气机构振动的研究.内燃机工程,1986,(3):68-77
    
    [69]柳志远,王书茂,王倩华等.变刚度气门弹簧组固有特性对配气机构性能影响的研究.内燃机工程,1996,17(2):68-72
    
    [70]刘忠民,俞小莉,沈瑜铭等,配气机构综合试验系统的开发与研制.内燃机工程,2005,26(1):28-31
    
    [71]K.J.(?)str(?)m,and P.Eykhoff. System Identification-A Survey. Automatica,1971,7:123-162.
    
    [72]赵威.非线性结构的参数估计和系统识别.振动工程学报,1988,1(4):61-73
    
    [73]唐驾时,霍拳忠.由自由振动响应识别非线性系统参数的一种方法.振动工程学报,1989,2(4):65-69
    
    [74]唐驾时.非线性振动系统参数的频域识别实验.振动、测试与诊断,1991,11(1):23-27
    
    [75]霍拳忠,唐驾时.非线性系统参数的时域识别及优化方法.天津大学学报,1992,(1):77-82
    
    [76]唐驾时,尹小波.非线性振动系统参数识别的频响函数.湖南大学学报,1996,23(3):35-38
    
    [77]Anhsuan Liu. System Identification and Optimal Design of High Speed Valve Trainsystems[D], North Carolina State University, 1994
    
    [78]T.D.CHOI, O.J.ESLINGER, C.T.KELLEY, J.W.DAVID, M.ETHERIDGE. Optimization ofAutomotive Valve Train Components with Implicit Filtering, Optimization andEngineering.2000.3:9-27
    
    [79]廖晓山.汽车发动机配气机构.吉林:吉林人民出版社.1981
    
    [80]王德海,姜树李.凸轮型线的动力学优化设计.江苏工学院学报,1985,(1):21-30
    
    [81]尚汉冀.内燃机配气机构-设计与计算.上海:复旦大学出版社,1988
    
    [82]李惠珍,蔡祥吉,乐俊秉等.配气凸轮设计的进展.内燃机工程,1989,10(1):32-37.
    
    [83]张可村,曹林.内燃机分段组合幂函数凸轮的优化设计.高校应用数学学报A辑(中文版),1990,5(1):115-124
    
    [84]龙连春,马照松,胡丽萍等.避碰组合多项式凸轮型线及其优化设计.内燃机学报,2002,20(2):171-175
    
    [85]王少鹏.谐波凸轮的设计改进及其试验.拖拉机,990,(3):21-28
    
    [86]吴广全,李惠珍,陆孝宽.汽车发动机配气凸轮型线优化设计,吉林工业大学学报,1 990,(2):48-54
    
    [87]曾朝阳,肖敏.顶置式N次谐波凸轮的优化设计.汽车技术,1992,(10):14-22
    
    [88]姜树李,朱埏章,潘平良.摩托车发动机凸轮型线设计新方法.摩托车技术,1996,(11):10-13
    
    [89]姜树李.非对称N次谐波凸轮的优化设计.江苏理工大学学报,1996,17(6):17-22
    
    [90]姜树李,朱埏章,曹茉莉.高信噪比凸轮型线的设计方法.内燃机工程,1997,18(4):12-77
    
    [91]杨涛,浦耿强.非对称式N次谐波顶置凸轮型线设计.汽车科技,2004,(1):18-20
    
    [92]邱述刚,褚超美.非对称N次谐波凸轮型线设计方法的研究.内燃机工程,2006,27():43-46
    
    [93]H.-S. Jeon, K..-J. Park, Y.-S. Park. An Optimal Cam Profile Design Considering DynamicCharacteristics of a Cam valve System, the 1988 SEM Spring Conference on ExperimentalMechanics, 1989,(5):357-363
    
    [94]B. Grant, and A. H. Soni. Cam Design Survey. Design Technology Transfer, 1974 Vol.96.:177-219
    
    [95]陆际清,许昕,李艳东.对气门机构优化设计方法的探讨.内燃机学报,1997,15(1):120-127
    
    [96]S. Seidlitz, An Optimization Approach to Valve Train Design, SAE Technical Paper Series 901638
    
    [97]杨世文,苏铁熊.现代CAD技术与发动机设计方法.车用发动机,1997,(3):44-48
    
    [98]董锡明.近代机车柴油机的新特点与新进展.铁道机车车辆(增刊1),2003,23:1-5,29
    
    [99]Hanson, R.S & Churchill F.T.. New cam design equations. Product Engineering, Aug(1962):45-55
    
    [100]张可村,施兴中.二阶光滑逼近曲线的新求法及其在实测凸轮性能分析中的应用.内燃机工程,1985,(2):60-66
    
    [101]张可村,施兴中.实测凸轮性能分析中的五种有效方法.西安交通大学学报,1985,19(2):73-79
    
    [102]张可村,施兴中.高阶光滑逼近曲线的一种有效算法.工程数学学报,1985,2(2):99-106
    
    [103]张可村,施兴中.实测凸轮性能分析的优化方法.数值计算与计算机应用,1986,(4):225-231
    
    [104]张可村,施兴中.六阶光滑逼近函数的数值方法及其应用.数值计算与计算机应用,1987,(2):96-103
    
    [105]张可村,程平.任意阶光滑逼近的数值方法.应用数学,1996,9(1):86-91
    
    [106]付光琦,康秀玲,郭凌崧等.高速柴油机顶置式配气凸轮机构的动力学计算.内燃机学报,2000,18(2):113-116
    
    [107]刘靖,肖敏,曾朝阳.一种新型配气机构的数值模拟.内燃机学报,1998,16(1):75-81
    
    [108]俞海清,詹先泽.内燃机凸轮润滑特性的评定.内燃机学报,1983,(4):83-93
    
    [109]唐驾时,唐应时.用回归分析方法拟合实测凸轮曲线.小型内燃机与摩托车,1985,(3):22-28
    
    [110]李惠珍,蔡祥吉,乐俊秉等.内燃机配气凸轮型线的数值逼近方法.汽车技术,1985,(6):7-12
    
    [111]石永刚,赵东福.高速凸轮机构动态响应的区段谐波分析.浙江大学学报(自然科学版),1993,27(5):596-603.
    
    [112]石永刚,徐振华.凸轮机构设计.上海:上海科学技术出版社,1995,10:280-323
    
    [113]同济大学数学教研室.高等数学.北京:高等教育出版社,1991:320-322.
    
    [114]胡宗武.工程振动分析基础.上海:上海交通大学出版社,1999,4.:68-71
    
    [115]袁银南.顶置凸轮轴式配气机构设计的若干问题.内燃机工程,1996,17(2):39-45
    
    [116]张惠中,赵荣国.汽车发动机配气机构噪音的研究(上).汽车技术,1976,(4):16-22
    
    [117]张惠中,赵荣国.汽车发动机配气机构噪音的研究(下).汽车技术,976,(5):33-34
    
    [118]柴油机设计手册编辑委员会.柴油机设计手册(中册).北京:中国农业机械出版社,1984,12:1-119,135-159
    
    [119]Б.К.巴留克,A.E.波什科.高速柴油机配气机构的工作可靠性.北京:中国农业机械出版社,1985.1:27-87
    
    [120]船舶柴油机设计手册编辑委员会.船舶柴油机设计手册(八)材料.北京:国防工业出版社,1979.9:8-73
    
    [121]船舶柴油机设计手册编辑委员会.船舶柴油机设计手册(五)船用柴油机主要零部件.北京:国防工业出版社,1982.12:161-233
    
    [122]王彬.振动分析及应用.北京:海潮出版社,1992.9:39-45
    
    [123]蒋文虎,高松,王宇,李军.发动机配气机构动力学计算与试验的结合研究.2006年APC联合学术年会论文集,2006:52-63
    
    [124]TEODORESCU, V. VOTSIOS, H. RAHNEJAT, and D. TARAZA. Jounce and IMPact in Cam-Tappet Conjunction Induced by the Elasto-dynamics of Valve train System M. 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy.157-171
    
    [125]袁兆成,林学东,方华.气门落座特性的数值模拟研究.兵工学报(坦克装甲车与发动机分册),1999,(2):12-16
    
    [126]周吕林,张艳辉.车用发动机配气机构动力特性参数匹配分析.车用发动机,1989,(4):36-42
    
    [127]B. M. Hall, E. D. Calkin, and M. S. Sholar. Linear Estimation of Structural Parameters fromDynamic Test Data, AIAA/ASME 11th Structures, Structural Dynamics and Materials Conf.,1970:193-197.
    
    [128]P. Caravani, and W. T. Thomson. Identification of Damping Coefficients in MultidimensionalLinear Systems, J. of Applied Mechanics, June 1974,:379-382.
    
    [129]P. Caravani, M. L. Watson, and W. T. Thomson. Recursive Least-Squares Time DomainIdentification of Structural Parameters, J. of Applied Mechanics, March 1977, :135-140.
    
    [130]W. T. Hollowell, W. D. Pilkey, and E. M. Sieveka. System Identification of DynamicStructures, Finite Elements in Analysis and Design, Vol. 4,1988 :65-77.
    
    [131]S. H. Brooks. A Discussion of Random Methods for Seeking Maxima, Operations Research,Vol.6, 1958:244-251.
    
    [132]刘忠民.配气机构动力学试验方法与模型规划研究:(博士学位论文).杭州:浙江大学,2005.
    
    [133]袁震东.系统辨识学初探.信息与控制,1980.6:68-69
    
    [134]唐驾时.非线性振动系统参数的频域辨识试验.振动、测试与诊断,1991,11(1):23-27
    
    [135]田刚,高慧慧.振动测试中的参数辨识.高原地震,2002,14(3):52-55
    
    [136]张立梅,张克刚,刘爱萍.6120Q型柴油机气门运动动力分析.汽车技术,1983,(11):2-7
    
    [137]Chen, F.Y.. Dynamics of high speed cam-driven mechanisms, Transactions of the ASME, Journal of Engineering for Industry, 1975, :769-776
    
    [138]Norton, R. L., R. L. Stene, J. I. Westbrook and D. Eovaldi (1998). Analyzing Vibrations in an Engine Valve Tarin. SAE TECHNICAL PAPER SERIES, 980570.
    
    [139]王仲章,王德海,姜树李.发动机动态特性测试和分析.江苏工学院学报,1989,10(1):30-38
    
    [140]韩西,廖东,钟厉.整周期采样法在柴油机振动测试中的应用.机械工艺师,1999,(4):23-24
    
    [141]王水来,马元镐,朱隆碧等.配气机构动态数据处理方法的研究.华中理工大学学报,1995,23(11):56-59
    
    [142]俞海清,詹先泽,黄钰仙.内燃机凸轮-挺柱副动态弹流油膜厚度计算及其润滑性能分析.内燃机学报,1984(2):125-140.
    
    [143]俞海清,艾晓岚.对Holland凸轮挺柱副非稳态弹流润滑膜厚计算方法的实用性探讨.内燃机学报,1990,8(2):137-142.
    
    [144]褚超美,陈家琪,郭磊.OHC配气机构凸轮.摇臂动态油膜仿真及特性分析.内燃机工程,2005,26(4):8-11
    
    [145]Yu H Q,俞海清.内燃机凸轮-挺柱副动态弹流油膜厚度计算及其润滑性能分析.内燃机学报,1984,2(2):125-140
    
    [146]何家敏,姜树李,王德海等.内燃机配气凸轮.挺柱副的动态润滑.内燃机学报,1992,10(1):41-46
    
    [147]俞海清,董福品.对EQ6100汽油机等六种型线凸轮.挺柱副动态弹流润滑的计算、分析和预测.汽车工程,1985,(3):13-23.
    
    [148]机械电子工业部洛阳拖拉机研究所.拖拉机设计手册(上册).北京:机械工业出版社,1994,:755-761
    
    [149]陈立周,刘辉航,王德成.弹簧手册.北京:机械工业出版社,1997.8,:237-248
    
    [150]陈立周,张英会,吴清一等.机械优化设计.上海科学技术出版社,1982.12:262-281
    
    [151]彭健.变螺距气门弹簧的设计与计算.内燃机工程,1984,(4):25-31
    
    [152]沈婉如.气门弹簧的优化设计.拖拉机.1989,(1):18-22
    
    [153]袁兆成,李传友.车用发动机气门弹簧的优化设计方法.兵工学报(坦克装甲车与发动机分册).1998,(3):43-48
    
    [154]郝强,朱梅林.发动机气门弹簧的模糊优化设计.兵工学报(坦克装甲车与发动机分册),1993,(4):57-62
    
    [155]吴兆汉,陈深龙.内燃机气门弹簧的优化设计.内燃机工程.1981,(4):15-22
    
    [156]王学汉,刘锦池.气门弹簧动态应力与振动频率.小型内燃机与摩托车.1982,(2):1-14
    
    [157]余宝迂.汽车发动机气门弹簧的优化设计.汽车技术,1986,(6):7-12
    
    [158]李晓红,舒荣福.弹簧钢丝抗拉强度与钢丝直径的回归分析及其应用.第六届全国弹簧学术会论文集,1995:161-167
    
    [159]张义和,蔡日恒,潘延春.进气门弹簧断裂分析.汽车工艺与材料,1995,(12):25-26
    
    [160]王德海,姜树李.椭圆-幂函数组合凸轮动力学优化设计.内燃机工程,1987,8(4):48-56
    
    [161]王明武.高次方五项式非对称凸轮的研究与应用.内燃机工程,1994,(2):63-67
    
    [162]张会明.凸轮.从动杆机构动态优化设计分析.华东交通大学学报,1997,14(4):35-38
    
    [163]付光琦,高文志,康秀玲等.高次多项式非对称高速车用柴油机配气凸轮型线设计.内燃机学报,2001,19(1):26-28
    
    [164]FR1EDRICH W S, JURGEN B, RAINER L. Marked progress in both technique and handling of valve train and valve train drive calculation on commercial platforms . Society of Automotive Engine, Engines, 1999: 843-850.
    
    [165]腾弘飞,隋允康,韦日钰.高速柴油机气门弹簧动态优化设计.内燃机工程1994,15(3):62-69
    
    [166]张光澄.非线性最优化计算方法.北京:高等教育出版社,2005,
    
    [167]谢庆生,罗延科,李屹.机械工程模糊优化方法.北京:机械工业出版社,2002,7:177-181
    
    [168]刘惟信.机械最优化设计(第2版).北京:清华大学出版社,1994.9:305-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700