用户名: 密码: 验证码:
大型洞室群地应力测试及基于统一强度理论的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地下工程项目中,水电站地下厂房的建设由于其规模庞大、空间组成复杂、洞室间相互影响而关系到整个电站的安全运营和巨大的经济效益。对其设计方法和稳定性分析方法的研究已成为当前地下工程建设中亟待解决和值得深入探讨的重大课题。
     本文从大型洞室群所处岩体地应力场分布规律及其与地质构造关系、复杂几何体建模、本构关系推演等方面对大型洞室群围岩稳定性展开系统研究,并以辽宁本溪桓仁电站建设为工程背景对地下厂房开挖和支护的稳定性进行分析和探讨。在现场测量和室内实验的基础上得出地应力场分布与区域构造的关系;提出了复杂几何体构形及空间面、体关系运算算法,实现了FLAC3D软件复杂几何体直接建模和地质界面后期插入的功能;通过对厂房区地应力场的分布进行拟合研究获得了多种构造位移影响下的整体应力场分布规律;针对统一强度理论在岩石力学中应用较少和FLAC3D有限差分软件中缺少统一双剪力学模型的情况,推导出了基于统一双剪强度理论的有限差分计算形式,开发了FLAC3D的非关联统一双剪理论的力学模块,并据此开展统一双剪强度理论下的厂房区大型洞室群开挖和支护的稳定性分析。取得的主要成果有:
     (1)对桓仁电站地下厂房区采用空心包体应变计法进行了地应力测量,并结合室内和现场的实验分析,得到了厂房区地应力大小和方向,经过分析得出该地区地应力分布主要受新华夏系构造控制,最大主应力方向为北北西,大小为5~7MPa的结论;
     (2)针对FLAC3D模拟软件在复杂几何体建模上的困难,提出了二次切割下的准三维拉伸、四面体子块划分等建模前处理和后处理算法,实现了FLAC3D复杂几何体空间直接构形和地质界面后期插入的功能,扩展了FLAC3D建模功能,为厂房区地应力场拟合及大型洞室群稳定性分析建模进行了准备;
     (3)根据地应力实测数据和现场地质构造条件、地形地貌特征,对区域地应力场进行了数值模拟分析,以多元线性回归法实现了由点到体的电站地下厂房区地应力场拟合的计算,得到了各个单位构造位移的影响系数。以边界荷载提取法实现了应力边界和位移边界的变换,并以此实现了多种构造位移同时影响下的整体地应力场的模拟,得到了其分布规律并将其作为厂房洞室群稳定性计算中边界条件选取依据;
     (4)针对FLAC3D缺少统一双剪模型和统一强度理论的强度准则在岩石力学领域应用较少的情况,结合统一强度理论基本原理和有限差分计算迭代原则,推导出统一强度理论的有限差分计算形式。并考虑关联和非关联本构关系在岩土工程中的适用情况,提出了一种适合此理论有限差分计算的非关联流动法则,并开发了FLAC3D中统一双剪强度理论的塑性模块,使统一双剪这一新的塑性理论在有限差分计算中得以实现,也拓展了FLAC3D力学分析的适用性。采用数值模拟的方法对统一双剪力学模块进行检测验证,结果显示此模块很好的体现出了统一强度理论中第二主应力效应这一特点;
     (5)以统一双剪强度理论为塑性破坏依据,以边界荷载提取法取得模型精确的边界条件,开展了基于统一强度理论的桓仁电站地下厂房洞室群开挖和支护的稳定性分析,得到了洞室群开挖破坏区发展、分布规律和位移变化情况。
In underground engineering, the construction of underground powerhouse in a hydropower station is often related to the safe operation of the whole station and enormous benefits because of its large scale, complicated space composing and effects between caverns. The theories in stability analyses and the methods of design are urgent heated issues.
     The effects of irregular surface, in-situ stress field’s distribution and different constitutive relations on stability have been studied in this paper. The stability of large caverns during the excavation and supported was analyzed in the case of the construction of Huanren powerhouse The relationships between the in-situ stresses and geological structures have been established by the data acquired from in-situ measurements and laboratory tests; the algorithms to establish the model under complex geologic conditions and to judge the relationships between faces and zones are proposed, and the pre-processing and post-processing functions of complex model’s assembling and interfaces’inserting were realized; the factors effecting on the value of in-situ stresses, and the model of the stress field’s distribution in powerhouse zone by multiple linear regression were analyzed, the distribution of the whole stress field effected by many factors was obtained; since the unified strength theory has seldom been used in rock mechanics, there’s not corresponding constitutive models in FLAC3D, the special unified double shear modules with a non-associated flow rule for the FLAC3D was developed, base on the unified strength theory the stability of the underground caverns with large scale was analyzed. The main achievements are shown as below:
     (1) The values and directions of the in-situ stresses in powerhouse area were measured with the method of CSIRO cells, the relationships between the stress and the new cathaysian structures were established. The direction of the max principal stress is about 280o, and the corresponding range of the value is about from 5 to 7MPa.
     (2) According to the difficult of FLAC3D software in building models with irregular surfaces, the algorithms of quasi-three dimension models’stretching after zones’sub-divided and tetrahedron shaped sub-zones’dividing to establish the models with irregular surfaces and to insert the interfaces to the assembled zones were proposed.
     (3) According to the data acquired from the measurements and the geological conditions, distribution of the in-situ stress field was obtained by multiple linear regression, which can be served as the basis of boundary conditions.
     (4) Based on the principles of united strength theory and fast lagrangian analysis of continua in 3D, finite-difference forms of the unified strength theory was deduced, and non-associated flow rule for the calculation was established. The special module is developed for numerical simulation.
     (5) Under the conditions of united strength theory as the plastic rule and boundary conditions obtained by boundary-loading-extracting, the stability of the powerhouse caverns during its’excavation and supporting was analyzed.The development and distribution of plastic zones were similuated, acquire the change process of displacement was obtained.
引文
[1]李远,乔兰,孙歆硕.关于影响空心包体应变计地应力测量精度若干因素的讨论[J].岩石力学与工程学报,2006,25(10):2140–2144.
    [2]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000.
    [3]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [4]蔡美峰,乔兰,于劲波.空心包体应变计测量精度问题[J].岩土工程学报,1994,16(6):15–20.
    [5]乔兰,蔡美峰,李长洪.应理解除法若干新技术在某金矿地应力场测量中的应用[J].华北水利水电学院学报, 1994,(4):79–84.
    [6] E.Hoek E.T.Brown等著.岩石地下工程[M].连志升,田梁灿,王维德等译.北京:冶金工业出版社,1986.
    [7]杨柯,张立翔.地下洞室群有限元分析的地应力场计算方法[J].岩石力学与工程学报,2002,21(11):1639–1644.
    [8]郭怀志,马启超.岩体初始地应力场的分析方法[J].岩土工程学报,1983,5(3):64–75
    [9]张志峰,张勤.基于Ansys的三维地应力场及洞室围岩稳定分析[J].水文地质工程地质,2003,(6):49–51.
    [10]金艳丽,刘汉东.初始地应力场反演及回归方法研究[J].隧道建设,2004,24(02):6–8.
    [11]杨林德.初始地应力位移反分析的有限单元法[J].同济大学学报,1985(4):69~77.
    [12]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1995.
    [13]徐卫亚,邵建富.边坡工程反馈设计研究的人工神经网络方法[J].武汉水利电力大学(宜昌)学报,1997,19(2):9–11.
    [14]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩石力学与工程学报,1999,21(5):638–641.
    [15]易达,徐明毅,陈胜宏等.人工神经网络在岩体初始应力场反演中的应用[J].岩土力学,2004,25(6):943–946.
    [16]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [17]张能林.地下工程三位非线性有限元正反分析系统的研究[D].南京:河海大学,1994.
    [18]郭怀志,马启超,薛玺成等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):64–76.
    [19]王芝银,杨志法,李云鹏等.石窟顶板流变断裂过程的数值模拟与反演分析[J].岩石力学与工程学报,2006,25(01):9–15.
    [20]张中生,陈子荫,朱维申.地下结构荷载的广义反演方法[J].土木工程学报, 2001,34(02):38–43.
    [21]樊琨,刘宇敏,张艳华.基于人工神经网络的岩土工程力学参数反分析[J].河海大学学报(自然科学版),1998(04):98–103.
    [22]宋建波等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    [23] E.Hoek and D.Wood. A modified Hoek-Brown failure criterion for jointedrockmasses [J]. Proc.Int.Conf.Eurock’92,1992:202-214.
    [24]昝月稳,俞茂宏,吉嶺充俊.一种适合于岩石材料的双剪模型[J].工程地质学报, 2004,12(3):274–279.
    [25]范文,邓龙胜,白晓宇,俞茂宏.统一强度理论在边坡稳定性分析中的应用[J].煤田地质与勘探,2007,35(2):63–66.
    [26]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [27]胡小荣,俞茂宏.三剪强度准则及其在巷道围岩弹塑性分析中的应用[J].煤炭学报,2003,28(4):389-393.
    [28]高江平,俞茂宏.三剪应力统一屈服准则研究[J].西安建筑科技大学学报(自然科学版),2005,37(4):526-535.
    [29]陈良森,李长春.关于岩石的本构关系[J].力学进展,1992,22(2):173-182.
    [30]朱浮声.岩石的强度理论与本构关系[J].力学与实践,1997,19(5):8-16.
    [31]周维垣,孙卫军.岩石的临界状态非关联弹塑性本构模型[J].岩石力学与工程学报,1990,9:1–10.
    [32] Xia-Ting Feng,Bingrui Chen,Chengxiang Yang,et al. Identification of viscoelastic models of rock materials using genetic programming coupled with the modified particle swarm optimization algorithm [J]. Int. J. Rock Mech. Min. Sci,2006,43(5):789-801.
    [33] Terzaghi K.Rock defects and load on tunnel support.In:Proctor R V,White T,editors.Rock tunneling with steel supports[J].Youngstown,OH:Commercial Shearing Co.,1946:15–99.
    [34] Deere D.U.,Miller R.P. Engineering classification and index properties for intact rocks[J]. Technical Report No.AFNL-TR-65-116,Air Force Weapons Laboratory,New Mexico,1966:1024–1030.
    [35] Deere D.U.Technical description of rock cores for engineering purposes[J].Rock Mech.& Engng.Geol.,1964,1:17–22.
    [36] Barton N.,Lien R.,Lunde J.Engineering classification of rock masses for the design oftunnel support[J].J.Rock Mech.,1974,6(4):189–236.
    [37] Barton N.Some new Q-value correlations to assist in site characterization and tunnel design[J].Int.J.Rock Mech.&Min.Sci.Geomech.Abstr.,2002,39(2):185–216.
    [38] Bieniawski Z.T.Engineering classification of jointed rock masses[J]. Trans.S.Afr.Inst. Civ.Eng.,1973,15(12):335–344.
    [39] Bieniawski Z T.Classification of rock masses for engineering:the RMR system and future trends[J].In:Hudson J A,editor.Comprehensive rock engineering,1993,4:553–573.
    [40] Bieniawski Z T.Rock mass classification in rock engineering[J].In:Bieniawski ZT,editor.Proceedings of the Symposium on Exploration for Rock Engineering,1976,1:97–106.
    [41] Bieniawski Z T.Engineering rock mass classifications:a complete manual for engineers andgeologists in mining[J],civil and petroleum engineering,1989:215.
    [42] Hoek E.Strength of rock and rock masses[J].ISRM New Journal,1994,2(2):4–16.
    [43] Hoek E,Marinos P,Benissi M. Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses The case of Athens Schist Formation[J].Bull Eng Geol Env,1998,57:151–160.
    [44] Hoek E.,Brown E.T.Practical estimates of rock mass strength[J]. Int. J.Rock Mech.& Min.Sci.Geomech.Abstr.,1997,34(8):1165–1186.
    [45] Palmstrm A.Characterizing rock masses by the RMi for use in practical rock engineering, Part 1 :the development of the rock mass index(RMi) [J]. Tunnelling Underground SpaceTechnol.,1996,11(2):175–88.
    [46] Palmstrm A.Characterizing rock masses by the RMi for use in practical rock engineering, Part 2: some practical applications of the rock mass index(RMi) [J]. Tunnelling and Underground Space Technol.,1996,11(3):287–303.
    [47] Palmstrm A.RMi. a rock mass characterization system for rock engineering purposes[D]. Norway :University of Oslo,1995.
    [48] Kendorski F S,Cummings R A,Bieniawski Z T,Skinner EH.Rock mass classification for block caving mine drift suppor[J]. Proceedings of the Fifth ISRM,1983:51–63.
    [49] Laubscher D H.A geomechanics classification system for the rating of rock mass in minedesign[J]. J South Afr Inst Min Metall.,1990,90(10):257–73.
    [50] Potvin Y.Empirical open stope design in Canada. PhD thesis, Department of Mining and Mineral Processing[D], University of British Columbia,1988.
    [51] Sonmez H,Ulusay R.A discussion on the Hoek-Brown failure criterion and suggested modification to the criterion verified by slope stability case studies[J]. Yerbilimleri (Earthsciences) ,2002,26:77–99.
    [52] Cai M , Kaiser PK , Uno H , Tasaka Y , Minami M.Estimation of rock mass deformationmodulus and strength of jointed hard rock masses using the GSI System[J]. Int J Rock MechMin Sci,2003,41(1):3–19.
    [53]水利水电工程地质勘察规范(GB50287-99)[S].中国计划出版社,1999.
    [54]工程岩体分级标准(GB50218-94)[S].中国计划出版社,1995.
    [55]杜时贵,李军,徐良明等.岩体质量的分形表述[J].地质科技情报,1997(1):91–96.
    [56]连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究[J].岩石力学与工程学报,2001,20(增):1695–1698.
    [57] M.N.Bagde,A.K.Raina,A.K.Chakraborty,et al. Rock mass characterization by fractal dimension[J]. Engineering Geology,2002,63:141–155.
    [58]张丽华,陶连金,李晓霖.节理岩体地下洞室群的地震动力响应分析[J].世界地震工程,2002,02(036):158–163.
    [59]林天健.岩土强度与变形关系的理论剖析[J] .力学与实践,2001,02(01):1–9.
    [60]刘立,朱文喜,路军富等.层状岩体损伤演化与应变关系的研究[J].岩石力学与工程学报,2005,25(02):350–354.
    [61]邬爱清,丁秀丽,陈胜宏,石根华. DDA方法在复杂地质条件下地下厂房围岩变形与破坏特征分析中的应用研究[J].岩石力学与工程学报,2006,25(01):1–8.
    [62]王克忠.大型地下洞室群层状复合围岩稳定性研究[D].北京:北京科技大学,2006.
    [63]朱维申,李晓静,郭彦双等.地下大型洞室群稳定性的系统性研究[J].岩石力学与工程学报,2004,23(10):1689–1693.
    [64]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [65]邵国建.岩体初始地应力场的反演回归分析[J].水利水电科技进展,2000,20(5):36–41.
    [66]吴立军,刘迎曦,韩国城等.位移测量反演分析的正、逆定式化方法及其算法程序实现[J].工程力学,2003,20(6):182–187.
    [67]胡斌,冯夏庭,黄小华等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报,2005,24(22):4055–4065.
    [68] Goodman R E.不连续岩体中的工程地质方法[M].北方交通大学隧道与地质教研室译,北京:中国铁道出版社, 1980.
    [69]王启耀.陡倾角层状岩体中大型地下洞室群围岩变形的预报与控制[D].上海:同济大学,2003.
    [70]蔡美峰,乔兰,于波等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):414–418.
    [71]蔡美峰,陈桂中,乔兰等.地应力测量在新城金矿采矿设计中的应用[J].黄金,1994,15(10):25–30.
    [72]蔡美峰,乔兰,于波等.梅山铁矿地应力测量结果及其分析[J].岩石力学与工程学报,1997,16(3):233–239.
    [73]刘允芳,刘元坤.围压试验在空心包体式应变计地应力测量中的作用[J].岩石力学与工程学报,2004,23(23):3 932–3 937.
    [74]廖秋林,曾钱帮,刘彤等.基于ANSYS平台复杂地质体FLAC~(3D)模型的自动生成[J].岩石力学与工程学报,2005,06(01):1010–1013.
    [75]胡斌,张倬元,黄润秋等. FLAC~(3D)前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,09(26):1387–1391.
    [76]孙歆硕,乔兰,李远.玲珑金矿巷道塌陷机理及拱桥法加固数值模拟[J].金属矿山,2007,01:25–29.
    [77] Itasca Consulting Group,Inc. FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimensions,version 2.0,user`s mannual [R]. USA:Itasca Consulting Group,Inc.,1997.
    [78]张延新.公路隧道施工过程力学行为与动态信息监控研究[D].北京:北京科技大学,2005.
    [79] Itasca Consulting Group,Inc. FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimensions,version 2.0,Command Reference [R]. USA:Itasca Consulting Group,Inc.,1997.
    [80]李淑华主编. VB程序设计及应用[M].北京:高等教育出版社,2004.
    [81]阙向红,齐惠颖主编Visual Basic程序设计教程[M].北京:清华大学出版社,2006.
    [82]孙明珠主编. VB程序设计实习指导[M].天津:天津大学出版社,2007.
    [83]何光渝主编. VB常用算法大全[M].西安:西安电子科技大学出版社,2001.
    [84]郑阿奇主编. MATLAB实用教程[M].北京:电子工业出版社,2007.
    [85]张平等编著. MATLAB基础与应用[M].北京:北京航空航天大学出版社,2007.
    [86]王正林,刘明等编著.精通MATLAB7[M].北京:电子工业出版社,2006.
    [87] Cleve B. Moler著. MATLAB数值计算[M].北京:机械工业出版社,2006.
    [88]张圣勤.MATLAB 7.0实用教程[M].北京:机械工业出版社,2006.
    [89]楼顺天,陈生潭,雷虎民. MATLAB5.x程序设计语言[M].西安:西安电子科技大学出版社,2004.
    [90]包健,张晋茂,赵建勇. MatrixVB上智能算法实现的研究[J].计算机工程与设计,2006,27(2):307–308,327.
    [91]胡智文,余增亮,邓铁如.基于MatrixVB的遍历细胞最优化路径方案[J].计算机工程,2003,29(7):52–53,183.
    [92]何强,何英. Matlab扩展编程[M].北京:清华大学出版社,2002.
    [93]潘云鹤主编.计算机图形学--原理、方法及应用[M].北京:高等教育出版社,2001.
    [94] Philip J.Schneider David H.Eberly著周长发译.计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005.
    [95]李清泉.三维空间数据的实时获取、建模与可视化[M].武汉:武汉大学出版社,2003.
    [96]周培德.计算几何[M].北京:清华大学出版社,2005.
    [97]魏海涛.计算机图形学[M].北京:电子工业出版社,2001.
    [98]高目,文洁编著.计算几何[M].北京:清华大学出版社,2000.
    [99]熊照辉.区域初始地应力场的回归计算方法[J].水利学报,1985,10:18–28.
    [100]郭怀志,马启超等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):68–71.
    [101]庞作会,陈文胜,邓建辉,葛修润.复杂地应力场的反分析[J].岩土工程学报,1998,20(4):44–47.
    [102]李青麒.初始应力的回归与三维拟合[J].岩土工程学报,1998,20(5):68–71
    [103]肖明.三维初始应力场反演与应力函数拟合[J].岩石力学与工程学报,1989,8(4):337–345.
    [104]马启超.工程岩体应力场的成因分析与分布规律[J].岩石力学与工程学报,1986,5(4):329–341.
    [105]杨家岭.一种三维位移反分析的有限单元法[J].岩土力学,1996,17(3):1–7.
    [106]朱伯芳.岩体初始地应力反分析[J].水利学报,1994,10:30–35.
    [107]董志高,吴继敏,施志群等.某水电站地下厂房区初始地应力场回归分析[J].河海大学学报,2003,9:543–546.
    [108]邱祥波,李术才,李树枕.三维地应力回归分析方法与工程应用[J].岩石力学与工程学报,2002,22(10):1613–1617.
    [109]刘允芳,龚壁新,肖本职等.广州抽水蓄能电站地下厂房区地应力场分析[J].长江科学院院报,1990,7(4):45–53.
    [110] BROWN E T,HOEK E. Technical note trends in relationships between measured in-situ stress and depth[J]. Int. J. Rock Mech. Min.Sci. and Geomech. Abstr.,1978,15(4):211–215.
    [111]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1999,16(1):49–63.
    [112] FUCHS K,MüLLER B. World stress map of the earth:a key to tectonic processes and technological applications[J]. Naturwissenschaften,2001,88:357–371.
    [113]尹健民,陈礼伟,钟作武等.某高速公路隧道区水压致裂地应力测量与分析[J].岩石力学与工程学报,2001,20(增):1 827–1 830.
    [114]钟作武,龚壁新,吕国湘.三峡工程地下厂房区域地应力测量与研究[J].长江科学院院报,1996,13(增):17–19.
    [115]董诚,王连捷,杨小聪等.安庆铜矿地应力测量[J].地质力学学报,2001,7(3):17–19.
    [116]吴满路,廖椿庭.大茅隧道地应力测量及围岩体稳定性研究[J].地质力学学报,2000,6(2):71–76.
    [117]王连捷,丁原辰,刘琦胜等.引黄隧洞地应力测量[J].地质力学学报,1996,2(1):62–69.
    [118]侯明勋,葛修润.岩体初始应力场分析方法研究[J].岩土力学,2007.08期:1626-1630
    [119]郭怀志,马启超,薛玺成等.岩体初始地应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [120]朱伯芳.岩体初始地应力反分析[J].水利学报,1994,(10):30-34.
    [121]易达,陈胜宏.地表剥蚀作用对地应力反演的影响[J].岩土力学,2003,24(2):254-256,261.
    [122] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. Geophys. Res.,1971,76:1 225–1 269.
    [123]许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985,6(1):72–80.
    [124]陈惠发.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001.
    [125]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [126] BELL F G. Engineering in Rock Masses[M]. New york: Butterworth-Heinemann,1994.
    [127] Duncan C Wyllie. Foundations on Rock[M]. London: E&FN Spon,1992.
    [128]宋建波,于远忠,刘汉超.用Hoek-Brown强度准则确定岩石地基极限承载力[J].地质灾害与环境保护,1999,10(4):67–70.
    [129] Hoek E,Brown E T. The Hoek-Brown failure criterion—a1988 update[C]. Proceedings of 15th Canadian Rock Mechanics Symposium, Toronto:1988:251–259.
    [130]宋建波,于远忠.剪切破坏模式下确定均质岩基极限承载力两种方法[J].工程地质学报,2001,9(3):317–320.
    [131]于远忠,宋建波.经验参数m,s对岩体强度的影响[J].岩土力学, 2005,26(9):1462–1464.
    [132]宋建波,于远忠,张倬元.基于Hoek-Brown经验强度的滑移线理论体系[J].西南工学院学报,2001,16(2):40–4.
    [133]俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.
    [134]俞茂宏,昝月稳,范文等. 20世纪岩石强度理论的发展[J].岩石力学与工程学报,2000,19(5),545–550.
    [135]沈珠江.关于破坏准则和屈服函数的总结[J].岩土工程学报,1995,17(1):1–8.
    [136]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,14(2):1–10.
    [137]昝月稳,俞茂宏,王思敬.岩石非线性统一强度理论[J].岩石力学与工程学报,2002,21(10):1–8.
    [138]张学言,阎树旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [139]俞茂宏,Yoshimine M.强度理论的发展和展望[J].工程力学,2004,21(6):1–20
    [140] Itasca Consulting Group,Inc. FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimensions , version 2.0 , Theory and Background [R]. USA : Itasca Consulting Group, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700