用户名: 密码: 验证码:
复杂体型大跨屋盖风致振动的风洞试验与实测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,城市建设中涌现了越来越多的大跨屋盖结构,此类结构具有质量轻、柔性大、阻尼小、结构固有频率低等特点,对风荷载十分敏感,风荷载成为此类结构设计的控制荷载。因此,本文综合采用风洞试验、现场实测和人工神经网络模拟方法对大跨屋盖在强风作用下的风压分布和结构响应进行深入研究,主要包括以下内容:
     1.近地台风风场实测研究。近地台风风场对大跨屋盖结构的风效应有着重要影响,同时对于大跨屋盖风洞试验的流场模拟也有指导意义,但目前土木工程相关的近地台风风场的实测研究很少,台风过程的观测记录多不完整,且观测仪器对实测数据精度的影响也尚待研究。本文采用两种不同采样频率的三维风速仪记录了强台风“珍珠”(极值风速67.3m/s)和“派比安”(极值风速40.7m/s)从登陆至离开的全过程。在此基础上,对台风风速分量、风向角、风攻角、湍流强度、阵风因子、脉动风速的概率分布和湍流积分尺度进行了全面研究。结果显示,高采样频率的仪器所记录的台风实测数据精度较高;在低风速情况下,脉动风速的概率分布接近正态分布;湍流强度与阵风因子存在近似的线性关系。将实测脉动风速谱与Davenport、Von Karman、Kaimal等经验风速谱进行了比较,结果表明,实测风速谱与我国规范采用的Davenport经验谱相差较大,但与Von Karman或Kaimal谱吻合较好,本文对实测风速谱进行了拟合。
     2.复杂体型大跨屋盖风压分布特性研究。大跨屋盖表面的风压分布是影响其风振响应的主要因素之一。此类结构通常位于湍流复杂的近地风场中且其建筑形式多样,特别是近年来出现的大波浪型、角部翘起等屋盖形式,其表面的风压分布更为复杂,风压分布特性仍有待进一步研究。深圳市民中心(跨度486m)和广州会展中心(跨度458.5m)是复杂体型大跨屋盖结构的典型代表,本文对其进行了刚性模型风洞测压试验,详细研究了屋盖平均风压、脉动风压分布规律和典型测点的脉动风压三维功率谱,得出大跨屋盖表面风压分布的一些共性特征并分析了其产生机理,提出了有利于结构抗风性能的外型设计建议。
     3.大跨屋盖风压分布的人工神经网络预测。大跨屋盖的刚性模型风洞测压试验通常需要布置足够多的测点,以尽可能全面地获得屋盖表面的风压分布信息,但测试设备的限制使得测点个数非常有限,因此有必要尝试研究基于风洞试验的风压分布仿真方法。本文对BP和RBF网络在工程应用中的参数选择进行了详细分析,在此基础上,利用上述两种人工神经网络预测了两个复杂体型大跨屋盖的典型测点平均风压,并提出神经网络可以预测复杂体型大跨屋盖区域风压分布、典型测点风压时程以及脉动风压功率谱,并对仿真结果进行了对比分析。对内插值与外插值两种方法进行了对比研究,结果表明,内插值工况的仿真结果优于外插值工况。针对BP网络不能预测流场变化剧烈区域测点风压的问题,本文提出用遗传算法改进BP网络,通过优化BP网络的初始权值、阈值改进BP网络收敛速度与稳定性。计算结果表明,遗传算法改进BP网络可以较精确的预测流场复杂区域的风压。
     4.大跨屋盖风致响应研究。部分文献认为大跨屋盖风致响应计算中测点风压向有限元节点风荷载的转换矩阵为0、1组成的力指示矩阵,本文对此提出质疑并给出了物理意义明确的测点影响系数矩阵快速算法,编制了通用计算程序R-Generator。CQC法是计算大跨屋盖结构风振响应的精确方法,但对于自由度数量较多的建筑,其计算量巨大,如何在保证计算结果精确的前提下节省计算量是需要研究的问题。虚拟激励法需要对激励的谱矩阵进行三角分解,对于处理多点随机激励问题依然比较繁琐。本文推导了简化的屋盖风振响应计算公式,该方法考虑了所有模态耦合项与力谱耦合项,其计算结果与CQC方法精确等价,但省略了CQC法中不必要的计算位移响应互谱的部分,因此大大节省了计算量。另一方面,空间网架结构(如深圳市民中心)与桁架梁结构(如广州国际会展中心)屋盖的风致振动形式与破坏特征有着很大差别,本文分析了其风致振动响应规律,认为桁架梁结构的风致最大位移响应由屋盖整体振动控制,通常出现在跨中位置;角部悬挑空间网架结构的风致最大位移响应由屋盖角部的局部振动控制,通常出现在悬挑角部顶点处。对比分析了不同阻尼比、不同参振模态阶数工况下的节点位移响应谱,对其机理进行了分析。
     5、大跨屋盖原型实测研究。有限元模态分析结合刚性模型风洞试验是当前研究大跨屋盖风振响应的主要途径,对大跨屋盖的原型实测则是检验上述方法的最佳手段。本文采用竖向拾震器分组实测了广州国际会展中心屋盖风致振动的速度时程,提出了能够快速便捷地识别屋盖竖向整体振动固有频率的功率谱点积法,该方法与传统的自互谱法相比具有较高的识别精度,且能够有效排除自互谱中常出现的“假峰”与“毛刺”的干扰。在此基础上识别了屋盖竖向整体振动的固有频率和模态振型。结果表明,根据实测数据识别的结构模态参数与有限元模型模态分析结果吻合较好。
     原型实测可以提供最可靠的大跨屋盖风效应数据,但由于测试手段的限制,所获信息有限;风洞试验能够获得较为全面的大跨屋盖风压分布信息,但由于流场模拟、模型缩尺效应等原因,其试验结果仍需要原型实测来检验;人工神经网络方法可以有效弥补试验测点数量不足的缺点。因此原型实测、风洞试验和人工神经网络模拟方法在大跨屋盖风效应研究中是相辅相成的。本文的研究结果对于大跨屋盖结构的设计和研究有重要的参考意义。
In recent years,more and more long-span structures have been built with increasing span and structural refinement.Roofs of such structures usually have the characteristics of light mass,high flexibility,slight damping and low natural frequency.As the span increases, the natural frequencies generally decrease,and the susceptibility of a roof structure with long-span to resonant excitation by turbulent wind action increases. Consequently,these structures have become progressively more wind sensitive. Therefore,the major objective of this research study is to further the understanding of wind effects on and structural behavior of long-span roof structures under strong wind actions by means of field measurements,wind tunnel tests and numerical prediction in order to apply such knowledge to design.This study includes five closely related parts.
     1.Field measurements of typhoon-generated characteristics near ground.Field measurements of typhoon-generated characteristics near ground are very useful, particularly for further understanding wind effects on long-span roof structures,and for incorporation into useable boundary layer wind flow simulation in wind tunnel tests. However,the chance to conduct field measurements of typhoon-generated characteristics near ground is quite rare,and obtained data are very important and valuable.Time series of wind speed and wind direction data were full recorded by two kinds of 3-D anemometers installed on the observation tower during the passages of Typhoon Chanchu(The maximum wind speed is 67.3 m/s) and Typhoon Prapiroon (The maximum wind speed is 40.7 m/s).The measured wind data are analyzed to obtain the information on mean wind speed and direction,turbulence intensity,gust factor,turbulence integral scale and probability distribution of fluctuating wind speed. This chapter presents some selected results including:(1) A 3-D anemometer with higher sampling frequency performs well in precision;(2) The probability density functions of fluctuating wind speeds approximately follow the normal distribution under lower wind velocity;(3) The gust factor is found to be linear with the longitudinal turbulence intensity.(4) The von-Karman and Kaimal type spectra are identified to be able to describe the energy distribution fairly well for the wind speed components in longitudinal direction of Typhoon Prapiroon and Typhoon Chanchu, respectively.
     2.Wind pressures on long-span roof structures.Investigations on the characteristics of wind loads and wind-induced response of long-span roofs have been made extensively.However,roof shapes of long-span structures vary widely from structure to structure.It is well known that wind effects on roof structures strongly depend on roof shape and incident wind flow characteristics.Consequently,it is difficult to propose a unified analytical approach to estimate wind loads and wind-induced response of various kinds of long-span roof structures.Therefore,there is a need to carry out comprehensive wind tunnel studies to further the understanding of wind effects on long-span roof structures.In this chapter,wind tunnel tests are conducted to investigate wind pressure distributions on two typical long-span roof structures under different wind directions;and the measured wind pressures,such as mean,root-mean-square(rms) and peak pressure coefficient distributions on the two roofs are presented and discussed.Furthermore,power spectra of fluctuating wind pressures measured from some typical taps located at the roof edges under different wind directions are presented.Based on these results,according to the characteristics of wind loads on the roofs,some roof configuration design strategies to improve the wind-resistance capacities of long-span roof structures are recommended.
     3.Prediction of wind-induced pressures on long-span roof structures using artificial neural networks.In wind tunnel experiments for long-span roof structures, it is usually necessary to install as more pressure taps as possible on model surfaces in order to capture the detailed characteristics of wind loads on the structures,since the cladding or roofing covers of the structures are very wind sensitive to the spatial variation and severe damages caused by wind-induced loading often occur in these locations.Although recent technological advances have made it possible to simultaneously measure surface pressures at more than 1000 locations on a building model,such experimental arrangement may still not be able to cover the whole surfaces of a large roof structure.Therefore,there is a need to explore an effective way to predict the wind-induced pressures on the entire roof structure on the basis of the pressure data from limited measurement points.The application of artificial neural networks(ANNs) to solve the title problem has received increasing interests in recent years.This chapter is concerned with developing two ANN approaches(a backpropagation neural network[BPNN]and a radial-basis function neural network [RBFNN]) for the prediction of mean,root-mean-square(rms) pressure coefficients, power spectra of fluctuating wind pressures and time series of wind-induced pressures on two typical long-span roof structures.Comparisons of the prediction results by the two ANN approaches and those from the wind tunnel test are made to examine the performance of the two ANN models,which demonstrates that the two ANN approaches can successfully predict the pressures on some regions of the large roof which are underwent small pressure variations on the basis of wind tunnel pressure measurements from a certain number of pressure taps.Meanwhile,it is also found that the prediction performance of the two ANN models for the interpolation case is better than that for the extrapolation case.Furthermore,an improved BPNN based a genetic algorithm(GA) is developed for the predictions of wind-induced pressures at some roof locations which are underwent large pressure variations with high rms pressure values due to strong flow separation;in which the number of weights is adjusted by GA to improve the convergence rapidity and stability of BPNN.It is shown through this chapter that the developed ANN approaches can be served as an effective tool for the design and analysis of wind effects on long-span roof structures in conjunction with wind tunnel tests.
     4.Wind-induced response of long-span roof structures.This chapter presents a new description of wind-induced response of long-span roof structures.It is noteworthy that in the proposed approach the total dynamic response is directly calculated by the complete quadratic combination(CQC) approach,in which the contributions of multimode response and modal response correlations are taken into consideration,and meanwhile the tapping influence coefficient approach is proposed to simplify the calculation of the node load vectors.Moreover,unlike existing approaches,it is not required to calculate the correlation of the load and the response, which is difficult to be determined by conventional methods.Finally,two typical extra-long-span roof structures are considered to illustrate the determination of the wind-induced response by the proposed approach and to demonstrate its effectiveness. On the other hand,special attention is also paid to the characteristics of wind pressures and wind-induced response of the spatial lattice structure and truss beam structure in this chapter.This chapter presents some selected resulting including:(1) wind-induced response and destroyed modes of the spatial lattic structure are very different from those of the truss beam structure;(2) the peak displacement response of the truss beam structure generally occurred in the middle of the span is induced by the holistic vibration of the roof;(3) the peak displacement response of the cantilevered spatial lattic structure generally occurred at the windward corner of the roof is induced by the partial vibration of the roof corner;(4) damping ratio and mode effects on power spectra of displacement responses of the nodes are analyzed;furthermore,the mechanism is also discussed in detail.
     5.Full-scale measurements of wind effects on long-span roof structures. Although there have been many advances in wind tunnel testing and numerical simulation techniques for investigating wind effects on long-span roof structures, there are still many critical phenomena which can only be investigated by full-scale experiments.It has been widely recognized that the most reliable evaluations of dynamic characteristics and wind effects are obtained from experimental measurements of a prototype structure.In this chapter,full-scale measurements of wind effects on the long-span roof structure of Guangzhou International Exhibition Centre were conducted under strong wind action.Based on the field measurement results,a new method to identify the first several natural frequencies of the roof in vertical direction,using the dot matrix of power spectrum density approach,was presented.The new method eliminates the shortcoming of the conventional power spectrum density approach,such as the dummy apex and burr phenomena;and can perform well in precision.Comparison of the frequency results determined by the proposed method and those obtained from the finite element model analysis results was made to examine the applicability and accuracy of the proposed method.
     The field measurements can provide reliable but limited information.The wind tunnel tests can generate detailed and additional results that are not available from the field measurements.On the other hand,the ANN approach can be used as a supplement to wind tunnel tests to accurately estimate wind-induced pressures on long-span roof structures.Therefore,the field measurements,the wind tunnel tests and the ANN approach are complementary so that the understanding of wind effects on long-span roof structures can be improved.The outcome of this study is expected to be of considerable interest and practical use to professionals and researchers involved in the design of long-span roof structures.
引文
[1]张相庭.工程结构风荷载理论和抗风计算手册.同济大学出版社.1990,第一版:1-10.
    [2]黄本才.结构抗风分析原理及应用.同济大学出版社.2001.第一版:8-13.
    [3]A.G.DavenPort.How can we simplify and generalize wind loads.Journal of Wind Engineering and Industrial Aerodynamics.1995,54:657-669.
    [4]张相庭.工程抗风设计计算手册.中国建筑工业出版社.1998,第一版:1-5.
    [5]A.G.DavenPort.The missing links.Wind engineering into21st Century.Balkema,1999:3-13.
    [6]项海帆.结构风工程研究的现状和展望.振动工程学报.1997,10(3):258-263.
    [7]贺德馨.我国风工程研究现状与展望.力学与实践.2002,24(4):10-19.
    [8]Z.S.Makowski.Space structure-a review of development in last decade.Space Structure Ⅳ.London,1993:3-5.
    [9]沈世钊.大跨空间结构的发展—回顾与展望.土木工程学报.1998,3(3):5-14.
    [10]蓝天,张毅刚.大跨度屋盖结构抗震设计.中国建筑工业出版社.2000,第一版:1-5.
    [11]Kolousek.Wind Effects on Civil Engineering Structures.ELSEVIER Press,1984:105-106.
    [12]Cook N.J.The designer's guide to wind loading of building structures.1985:11-19
    [13]沈世钊,徐祟宝,赵臣 悬索结构设计.中国建筑工业出版社.1997,第一版:20-21
    [14]曹国峰,林颖儒.上海八万人体育场抗风分析.第八届全国结构风效应学术会议论文集.庐山,1997:510-516
    [15]A.Kareem,T.Kijewski.7~(th) U.S.national Conference Wind Engineering:A summary of papers.Journal of Wind Engineering and Industrial Aerodynamics.1996,62:81-129
    [16]金新阳.风荷载规范中体型系数应用的若干问题.第十二届全国结构风工程会议论文集.2004:250-253.
    [17]孙炳楠,傅国宏,陈鸣,唐锦春.9417号台风对温州民房破坏的调查.第七届全国结构风效应会议论文集.1996:51-129.
    [18]A.Kareemand,T.Kijewski.7~(th) U.S.National Conference on Wind Engineering A Summary of Papers..J.Wind Eng.Ind.Aerodyn.1996,62:81-129.
    [19]黄翔.悬臂弧形挑篷风荷载和等效静风荷载研究.同济大学博士论文.2005.
    [20]A.G.Davenport.The application of statistical concepts to the wind loading of structures.Proc Inst Civ.Eng.1961,19(4):449-472.
    [21]Simiu E.Logarithmic Profiles and Design Wind Speeds.J.Eng.Mech.Div.ASCE,99,NO.EMS.1973(10):1073-1083.
    [22]Solari G.Along wind response estimation:closed form solution.Journal of the Structural Division.ASCE.1982,108(1):225-244.
    [23]建筑结构荷载规范(GB50009-2001).中国建筑工出版社出版.2002,第一版.
    [24]A.G.DvaenPort.The specturm of horizontal gustiness near the ground in high winds.Quarterly of the Royal Met Society.1987:194-211
    [25]A.G.DavenPort.The relationship of wind structure to wind loading.Paper No.2 Proc Conf on Wind Effects on Buildings and Structures.N.P.L.1963.
    [26]R.I.Harris.The nature of the wind.Paper3,The Modern Design of Wind-sensitive structures, CIRIA,1971:29-56
    [27]D.M.Deaves,R.I.Harris.A mathematical mode of the structure of strong winds.CIRIA Report No 76,1978
    [28]Duchene-Marullaz P,Full-scale measurement of atmospheric turbulence in a suburban area.Proc of the 4~(th) int'l Conf.On Wind Eeffcts on Buildings and Structures,1975:23-32
    [29]S.Mackey,P.K.L Ko.Spatial configuration of gust.Pro 4~(th) Int'l Conference to Wind Effects on Buildings and Structures,1975:31-40
    [30]E.C.Choi.Gradient height and velocity profile during typhoon.6~(th) ICWE,Australia,1983
    [31]N.Kato,T.Okhuma,J.R.Kim,H.Marukawa,Y.Niihori.Full scale measurements of wind velocity in two ubran areas using an ultrasonic anemometer.8ICWE,WEIA.1992:67-78.
    [32]J.T.Snaebjornsson,R.Sigbjornsson.Wind sturcutre over postglacial lava surface.JWEIA 1992:305-315.
    [33]K.Miyashita,Y.Tamura,Y.Asami,S.Natio.Asia/Pacific symposium on wind engineering.1993:423-428.
    [34]T.Amano,H.Fukushima,T.Ohkuma,A.Kawaguchi,S.Goto.The observation of typhoon winds in Okinawa by Doppler sodar.1999,83:11-20.
    [35]王存忠,曹文俊.天津市郊大气边界层湍谱特征分析.气象学报.1994,52(4):484-492
    [36]刘小红,洪钟祥.北京地区一次特大强风过程边界层结构的研究.大气科学.1996,20(2):223-228
    [37]Q.S.Li,Y.Q.Xiao,C.K.Wong.Full-scale monitoring of typhoon effects on super tall buildings.Journal of Fluids and Structures.2005,20:697-717.
    [38]王蓓蕾,曹文俊.重庆地区近地面层湍流谱特征分析.南京气象学院学报.1997,20(2):237-242.
    [39]Bao-Shi Shiau,Yuan-Bin Chen.In suit measurement of strong wind velocity spectra and wind characteristics at Keelung coastal area of Taiwan.Atmospheric Research.2001,57:171-185
    [40]杨杰.广东汕尾9810号台风实测分析.合肥工业大学学报.1992,5(1):1-4
    [41]Y.L.Xu,S.Zhan.Field measurements of Di Wang Tower during Typhoon York.Journal of wind Engineering and Industrial Aerodynamics.2001:89-93.
    [42]程志军,楼文娟,孙炳楠,唐锦春.屋面风荷载及风致破坏机理.建筑结构学报.2000,21(4):39-47.
    [43]武岳,段忠东,林志兴.我国建筑风洞建设的现状与思考.工业建筑.2007,37(7):73-77.
    [44]贾彬,王汝恒.风洞试验在我国建筑工程中的应用简介.四川建筑科学研究.2006,32(3):39-41.
    [45]赵金程,房庆强,李亚明.上海科技馆主楼模型风洞试验研究.工业建筑.2001,31(10):4-6.
    [46]颜大椿,孙智利,黄盛,丁吾泉,陈明福,林荣生,仇畔祥,李红,刘翰林.中国国家大剧院模型风荷载风洞试验.北京大学学报(自然科学版).2001,37(3):330-335.
    [47]顾志福.北京国际金融大厦风荷载风洞试验研究.流体力学试验与测量.1999,13(3):36-41
    [48]Jensen M.The model-law for phenomena in natural wind,Ingenioren,international edition.1958,4.
    [49]Cook N.J.Wind-Tunnel Simulation of the Adiabatic Atmospheric Boundary Layer by Roughness,Barrier,and Mixing-Device Methods.J.Wind Eng.And Indus.Aerodyn.1987(3):157-176.
    [50]Cermak J.E.Wind-Simulation Criteria for Wind-Tests.ASCE.1984,110(2):328-339.
    [51]Hunt J.C.R.,Fernholz H.Wind Tunnel Simulation of the Atmospheric Boundary Layer.J.Fluid Mech.1975,70(8):543-559.
    [52]丁宗梁,张华.北京西站主站房建筑风荷载模拟实验研究.建筑结构学报.1996,17(5):10-15.
    [53]吴太成,陈钦豪.深圳机场航站楼扩建工程风压风洞试验研究.建筑结构学报.1997,18(4):8-18.
    [54]钮珍南.体育场挑蓬风荷载和内场风环境实验研究.第五届全国风工程及工业空气动力学学术会议论文集.1998:9-16.
    [55]王国砚,张相庭.上海八万人体育场屋盖结构驰振分析研究.第八届全国结构风效应学术会议论文集.1997:151-159.
    [56]Barnard B.H.Wind loads on cantilevered roof structures.Journal of Wind Engineering and Industrial Aerodynamics.1981,8(4):21-30.
    [57]Vickery B J,Majowiecki M.Wind induced response of a cable supported roof.Journal of Wind Engineering and Industrial Aerodynamics.1992,42(1):1447-1458.
    [58]Borri C.,Majowiecki M.,Spinelli P.Wind response of a large tensile structure:the new roof of Olympic stadium in Rome.Journal of Wind Engineering and Industrial Aerodynamics.1992,42(1):1435-1446.
    [59]Nakamura O.,Tamura Y.A case study of wind pressure and wind-induced vibration of a large span open-type roof.Journal of Wind Engineering and Industrial Aerodynamics.1994,52(5):237-248.
    [60]Lam K.M.,To A.P.Generation of wind loads on a horizontal grandstand roof of large aspect ratio.Journal of Wind Engineering and Industrial Aerodynamics.1995,54(2):345-357.
    [61]Jozwiak R.,Kacprzys J.,Zuranski J.A.Wind tunnel tests of a cable supported roof of a stadium.In:wind engineering into the 21~(st) century.Larsen,Larose and Liversey(eds).Rotterdam.1999:1511-1517.
    [62]Xie J.M.,Peter A.Determination of wind loads large roofs and equivalent gust factors.In:International symposium on wind and structures for the 21~(st) century.Korea,1999:417-424.
    [63]Zhao J.G.,Lam K.M.Occurrence of peak lift on a large cantilevered roof.In:International symposium on wind and structure for the 21~(st) century.Korea,1999:26-28.
    [64]Marghetti J.,Wittwer A.,DeBortoli M.Fluctuating and mean pressure measurements on a stadium covering in wind tunnel.Journal of Wind Engineering and Industrial Aerodynamics.2000,84(3):321-328.
    [65]Barnard R.H.Predicting dynamic wind loading on cantilevered canopy roof structures.Journal of Wind Engineering and Industrial Aerodynamics.2000,85(1):47-57.
    [66]顾明,朱川海.大型体育场主看台挑蓬的风压及其干扰影响.建筑结构报.2002,23(4):20-26.
    [67]Ogawa T,Nakayama M,Murayarna S.Characteristics of wind pressure on spherical domes in turbulent boundary layers.In:Proceeding of the 10~(th) National Symposium on Wind Engineering.Tokyo,1988:55-60.
    [68]Taylor T J.Wind pressures on a hemispherical dome.Journal of Wind Engineering and Industrial Aerodynamics.1992,40(2):199-213.
    [69]Kawakita S,Kiuchi T,Moehizuki T.Characteristic of wind pressure acting on spatial large dome.Journal of Wind Engineering and Industrial Aerodynamics.1992,42(1):1511-1512
    [70]Hongo T.Experimental study of wind forces on spherical roofs.Tohoku University Ph.d.Thesis.Tohoku:Tohoku University,1995:35-48.
    [71]Uemats Y,Yamada M,Inoue A.Wind loads and wind-induced dynamic behavior of a single-layer lattice dome.Journal of Wind Engineering and Industrial Aerodynamics.1997,66(4):227-248
    [72]Rarke G A,Toy N,Savory E.Appraisal of deployable dome structures under wind loadings.Wind and Structures.1998,54(1):317-336
    [73]Letchford C W,Sarkar P P.Mean and fluctuating wind loads on rough and smooth parabolic domes.Journal of Wind Engineering and Industrial Aerodynamics.2000,88(1):101-117
    [74]Marukawa Y,Uematsu Y.Design wind load on flat long-span roofs.In:Process of 4~(th) east Asia-Pacific conference on Structure Engineering and Construction.Seoul.1993,1619-1624
    [75]Uematsu Y,Yamada M,Sasaki A.Wind-induced dynamic response and resultant load estimation for a flat long-span roof.Journal of Wind Engineering and Industrial Aerodynamics.1996,65(1):155-166
    [76]Uematsu Y,Watanabe K.Wind-induced dynamic response and resultant load estimation of a circular flat roof.Journal of wind Engineering and Industrial Aerodynamics.1999,83(1):251-261
    [77]Suzuki M,Sanada S,Hayami Y,Ban S.Prediction of wind induced response of a semi-rigid hanging roof,91CWE,New Delhi,India.1995,1195-1206
    [78]Yasui H,Marukawa H,Katagiri H.Study of wind-induced response of long-span structure.Journal of Wind Engineering and Industrial Aerodynamics.2000,83(1):97-117
    [79]周晅毅,顾明.大跨度屋盖表面风压系数的试验研究.同济大学学报.2002,30(12):1423-1428
    [80]陆锋,楼文娟,孙炳楠.大跨度平屋面结构风洞试验研究.建筑结构学报.2001.12:87-94
    [81]楼文娟,李本悦,陆锋.大跨度屋面风压分布拟合公式及风荷载取值.同济大学学报.2002,30(5):587-593
    [82]吴太成,强士中,陈东红.复杂大跨屋面脉动风压风洞试验研究.空气动力学学报.2004,9:78-84.
    [83]谢壮宁,倪振华,石碧青.大跨屋盖风荷载特性的风洞试验研究.建筑结构学报.2001,4:24-29.
    [84]高隽.人工神经网络原理及仿真实例.机械工业出版社.2003.8,第一版.
    [85]钟义信,潘新安,杨义先.智能理论与技术——人工智能与神经网络.人民邮电出版社,1992.第一版.
    [86]董聪,郦正能,夏人伟.多层前向神经网络研究进展及若干问题.力学进展,1995,25(2):186-195.
    [87]F.Giralt,A.Arenas,J.Ferre-Gine,R.Rallo,G.A.Kopp.The simulation and interpretation of free turbulence with a cognitive neural system.Phys.Fluids.2000,12:1826-1835.
    [88]W.E.Faller,S.J.Schreck..Real-time prediction of unsteady aerodynamics:application for aircraft control and maneuverability enhancement.IEEE Trans.Neural Networks.1995 6(6):1461-1468.
    [89]R.I.Levin,N.A.J.Leven.Dynamic finite element model updating using neural networks.Journal of Sound and Vibration.1998,210:593-607.
    [90]M.J.Atalla,D.J.Inman.On model updating using neural networks.Mechanical system and signal processing.1998,12:135-161.
    [91]徐宜桂,周轶尘,王志华.用神经网络方法修正悬索桥动力模型.振动工程学报.2000.13(1):46-52.
    [92]瞿伟廉,王锦文.基于神经网络的大跨度网架FEM修正.武汉理工大学学报.2004.26(12):59-62.
    [93]瞿伟廉,谭冬梅,汪菁,滕军.基于神经网络的大型空间网架结构的有限元模型修正.地震工程与工程振动.2003,23(4):83-89.
    [94]瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法.土 木工程学报.2003,36(5):37-45.
    [95]N.Turkkan,N.K.Srivastava.Prediction of wind load distribution for air-supported structures using neural networks.Can.J.Civ.Eng.1995,22:453-461.
    [96]A.C.Khanduri,C.Bedard,T.Stathopoulos.Modelling wind-induced interference effects using backpropagation neural networks.J.Wind Eng.Ind.Aerodyn.1997,72:71-79
    [97]P.Sandri,K.C.Mehta.Using a backpropagation neural network for predicting wind induced damage to buildings.Proceedings of the Ninth International Conference on Wind Engineering,New Delhi,India.1995:1989-1999.
    [98]Y.Chen,G.A.Kopp,D.Surry.Prediction of pressure coefficients on roofs of low buildings using artificial neural networks.J.Wind Eng.Ind.Aerodyn.2003,91:423-441.
    [99]Y.Chen,G.A.Kopp,D.Surry.Interpolation of wind-induced pressure time series with an artificial neural network.J.Wind Eng.Ind.Aerodyn.2002,90:589-615.
    [100]Y.Chen,G.A.Kopp,D.Surry.Interpolation of pressure time series in an aerodynamic database for low buildings.J.Wind Eng.Ind.Aerodyn.2003,91:737-765.
    [101]J.Y.Fu,S.G.Liang,Q.S.Li.Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks.Computers & Structures.2007,85:179-192
    [102]J.Y.Fu,Q.S.Li,Z.N.Xie.Prediction of wind loads on a large flat roof using fuzzy neural networks.Engineering Structures.2006,28(1):153-161.
    [103]傅继阳,甘泉.大跨平屋盖结构风压分布特性的神经网络模型.华南理工大学学报(自然科学版).2003,31(8):62-66.
    [104]傅继阳,谢壮宁,倪振华.大跨屋盖结构风压分布特性的模糊神经网络预测.建筑结构学报.2002,23(1):62-67.
    [105]傅继阳,甘泉,谢壮宁.模糊神经网络方法在结构风工程中的应用.汕头大学学报(自然科学版).2002,17(2):50-56
    [106]易少华,刘树堂.BP遗传算法在结构形状优化设计中的应用.广州大学学报(自然科学版),2007,3:86-90
    [107]何国华,王先义,张颖.神经网络技术在隧道围岩变形预测中的应用.山西建筑.2008,3:369-370
    [108]李忠献,刘永光.基于遗传神经网络与模态应变能的斜裂缝两阶段诊断方法.工程力学.2008,2:17-24
    [109]周岱,舒新玲,大跨度空间结构风振响应及其计算与试验方法,振动与冲击,2002,21:7-12.
    [110]张相庭,结构风工程—理论、规范、实践,中国建筑工业出版社,2006,第一版.
    [111]伯野元彦编,李明昭等译,土木工程振动手册,中国铁道出版社,1992,第一版.
    [112]Liepmann H.W.On the application of statistical concepts to the buffering Problem.Journal of Aeronautical Sciences.1952,19(12):793-800.
    [113]Davenport A.G.Gust loading factors.Journal of the Structural Division.ASCE.1967,93(3):11-34.
    [114]Kasperski M.Extreme wind load distributions for linear and nonlinear design.Engineering Structure.1975,14(1):27-34.
    [115]Kasperski M.& Niemann H.J.The L.R.C.method-a general method of estimation unfavorable wind load distributions for linear and non-linear Sttuetures.Journal of Wind Engineering and Industrial Aerodynamics.1976,44(41):1753-1763.
    [116]Holmes J.D.,Syme M.J.,Kasperski M.Optimised design of a low-rise industrial building for wind loads.Journal of Wind Engineering and Industrial Aerodynamics.1985,57:391-401.
    [117]Holmes J.D.Along-wind response of lattice towers-Ⅱ.Aerodynamic damping and deflections.Engineering Structures.1986,18(7):483-488.
    [118]Holmes J.D.Along-wind response of lattice towers-Ⅲ.Effective load distributions.Engineering Structures.1988,18(7):489-494.
    [119]Holmes J.D.,Kasperski M.Effective distributions of fluctuating and dynamic wind loads.Australian Civil/Structural Engineering Transactions.1990,38(2):83-88.
    [120]ZhouYin,GuMing,XiangHaifan.A long wind static equivalent wind loads and responses of tall buildings.Part Ⅰ:Unfavorable distributions of static equivalent wind loads.Journal of wind Engineering and Industrial Aerodynamics.1995,79:135-150.
    [121]ZhouYin,Kareem A.,GuMing.Equivalent static buffeting loads on structures.Journal of Structural Engineering.ASCE.1998,126(8):989-992.
    [122]Holmes J.D.Effective static load distributions in wind engineering.Journal of Wind Engineering and Industrial Aerodynamics.1995,90:91-109.
    [123]Uematsu Y.,Yamada M.,Inoue A.,Hongo T.wind-induced dynamic response and resultant load estimation for a flat long-span roof.Journal of Wind Engineering and Industrial Aerodynamics.2000,66:227-248.
    [124]UematsuY.,Yamada M.,Karasu A.Design wind load for struetural frames of flat long-span roof:gust loading factor for the beams supporting roofs.Journal of Wind Engineering and Industrial Aerodynamics.2001,66:35-50.
    [125]Uematsu Y.,Yamada M.,Karasu A.Design wind loads for structural frames of flat long-span roofs:gust loading factor of a structurally integrated type.Journal of Wind Engineering and Industrial Aerodynamics.2002,66:155-168.
    [126]M.Nakayama,Y.Sasaki,K.Masuda,T.Ogawa.An efficient method for selection of vibration modes contributory to wind response on dome-like roofs.Journal of Wind Engineering and Industrial Aerodynamics.1998,73:31-44
    [127]Yasui H.Study of wind-induced response of long-span structure,for selection of vibration modes contributory to wind response on dome-like roofs.Journal of Wind Engineering and Industrial Aerodynamics.1997,67-68:509-532
    [128]何艳丽,董石麟,龚景海.大跨空间网格结构风振系数探讨.空间结构.2001,7(2):3-10.
    [129]王国砚,黄本才,林颖儒,徐晓明.基于CQC方法的大跨度屋盖结构随机风振响应计算.第六届全国风工程及工业空气动力学学术会议论文集.2002:113-119.
    [130]黄开明,倪振华,谢壮宁.里兹向量直接叠加法在圆拱顶屋盖风致响应分析中的应用.第十一届全国结构风工程学术会议论文集.2003:321-326.
    [131]周晅毅.大跨度屋盖结构风荷载及风致响应研究.同济大学博士论文.2004
    [132]Apperley L.,Surry D.,Stathopoulos T.,Davenport A.G.Comparative measurements of wind pressure on a model of the full scale experimental house at Aylesbury,England.Journal of wind Engineering and Industrial Aerodynamics.1988,4:207-228.
    [133]Vickery P.J.,Surry D.the Aylesbury experiments revisited-further wind tunnel tests and comparisons.Journal of Wind Engineering and Industrial Aerodynamics.2000,11:39-62
    [134]Hansen S.O.,Sorensen E.G.The Aylesbury experiment.Comparison of model and full-scale tests.Journal of wind Engineering and Industrial Aerodynamics.2002,22:1-22
    [135]Sill B.L.,Cook N.J.,Blackmore P.A.IAWE Aylesbury comparative experiment-preliminary results of wind tunnel comparisons.Journal of Wind Engineering and Industrial Aerodynamics.2005,32:285-302.
    [136]Sill B.L.,Cook N.J.,Fang C.The Aylesbury comparative experiment:a final report.Journal of wind Engineering and Industrial Aerodynamics.2002,41(44):1553-1564
    [137]Richardson G.M.,Surry D.The Silsoe building:a comparison of Pressure coeffieients and spectra at model and full-scale.Journal of Wind Engineering and Industrial Aerodynamics.2002,41(11):1653-1664.
    [138] Richardson G. M., Surry D. The Silsoe structures buildings: comparison between full- scale and wind-tunnel data. Journal of Wind Engineering and Industrial Aerodynamics. 2004, 51: 157-176.
    
    [139] Richardson G.M., Blackmore RA. The Silsoe struetures building: comparison of 1:100 model-scale data with full-scale data. Journal of Wind Engineering and Industrial Aerodynamics.2000,57:191-201
    
    [140] Richards P.J., Hoxey R.R, Wanigaratne B.S. The effete of directional variations on the observed mean and rms pressure coefficients. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 54/55: 359-367.
    
    [141] Dally S. Surface Pressure spectra on a model of the Silsoe structures building and comparison with full-scale. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 60:177-187.
    
    [142] Levitan M.L., Mehta K.C. Texas Tech field experiments for wind loads: Parti. Building and Pressure measuring system. Journal of Wind Engineering and Industrial Aerodynamics. 2000,41-44:1565-1576.
    
    [143] Levitan M.L., MehtaK.C. Texas Tech field experiments for wind loads: Parti. Meteorological instrumentation and terrain parameters. Journal of Wind Engineering and Industrial Aerodynamics. 2000,41-44: 1577-1588
    
    [144] Surry D. Pressure measurements on the Texas Tech building: wind tunnel measurements and comparisons with full scale. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 38: 235-247.
    
    [145] Letchford C.W., Iverson R.E., McDonald J.R. The application of the quasi-steady theory to full scale measurements on the Texas Tech building. Journal of Wind Engineering and Industrial Aerodynamics. 2002,48:111-132.
    
    [146] Letchford C. W., Mehta K.C. The distribution and correlation of fluctuating pressures on the Texas Tech building. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 50: 225-234
    
    [147] Xu Y.L. Model and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech building. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 58: 147-173.
    
    [148] Q. S. Li, J. Q. Fang, A. P. Jeary., C. K. Wong, D. K. Liu. Evaluation of wind effects on a super tall building based on full-scale measurements. Earthquake Engng Struct.Dyn.2000, 29: 1845-1862.
    
    [149] Q. S. Li, Y. Q. Xiao, C. K. Wong, A. P. Jeary. Field measurements of typhoon effects on a super tall building. Engineering Structures. 2004, 26: 233-244.
    
    [150] Q. S. Li, C. K. Wong, J. Q. Fang, A. P. Jeary, Y. W. Chow. Field measurements of wind and structural responses of a 70-storey tall building under typhoon conditions. Struct. Design Tall Build. 2000, 9: 325-342.
    
    [151] Q. S. Li, J. R. Wu, S. G. Liang, Y. Q. Xiao, C. K. Wong. Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete tall building. Engineering Structures. 2004, 26: 1779-1794.
    
    [152] Q. S. Li, Y. Q. Xiao, C. K. Wong. Full-scale monitoring of typhoon effects on super tall buildings. Journal of Fluids and Structures. 2005,20: 697-717.
    
    [153] Q. S. Li, J. Q. Fang, A. P. Jeary, C. K. Wong. Full scale measurements of wind effects on tall buildings. J. Wind Eng. Ind. Aerodyn. 1998,74-76:741-750.
    
    [154] Q. S. Li, Y. Q. Xiao, C. K. Wong, S. K. Hau, A. P. Jeary. Serviceability of a 79-storey tall building under typhoon conditions. Proceedings of the Institution of Civil Engineers: Structures & Buildings. 2005,158: 219-228.
    
    [155] J. Q. Fang, A. P. Jeary, Q. S. Li, C. K. Wong. Random damping in buildings and its AR model. J. Wind Eng. Ind. Aerodyn. 1999, 79: 159-167.
    [156]Q.S.Li,K.Yang,N.Zhang.C.K.Wong,A.P.Jeary.Field measurements of amplitude-dependent damping in a 79-storey tall building and its effects on the structural dynamic responses.Struct.Design Tall Build.2002,11:129-153.
    [157]Y.Tamura,K.Fujii,T.Ohtsuki,T.Wakahara,R.Kohsaka.Effectiveness of tuned liquid dampers under wind excitation.Engineering structures.1995,17:609-621.
    [158]K.Miyashita,M.Itoh,K.Fujii,J.Yamashita,T.Takahashi.Full scale measurements of wind-induced responses on the Hamamatsu ACT Tower.J.Wind Eng.Ind.Aerodyn.1998,74-76:943-953.
    [159]H.Ruscheweyh,T.Galemann.Full-scale measurements of wind-induced oscillations of chimneys.J.Wind Eng.Ind.Aerodyn.1996,65:55-62.
    [160]R.O.Denoon,K.C.S.Kwok.Full-scale measurements of wind-induced response of an 84m high concrete control tower.J.Wind Eng.Ind.Aerodyn.1996,60:155-165.
    [161]B.R.Ellis.Full-scale measurements of the dynamic characteristics of buildings in the UK.J.Wind Eng.Ind.Aerodyn.1996,59:365-382
    [162]P.Harikrishna,J.Shanmugasundaram,S.Gomathinayagam,N.Lakshmanan.Analytical and experimental studies on the gust response of a 52 m tall steel lattice tower under wind loading.Computers and Structures.1999,70:149-160.
    [163]G.Solari,M.P.Repetto.General tendencies and classification of vertical structures under gust buffeting.J.Wind Eng.Ind.Aerodyn.2002,90:1299-1319.
    [164]李国强,陈素文,李杰,陆雪平.上海金茂大厦结构动力特性测试.土木工程学报.2000,33(2):35-39
    [165]吕西林,施卫星,沈剑昊,范佩芳.上海地区几幢超高层建筑振动特性实测.建筑科学.2001,17(2):36-39.
    [166]M.Yoshidan,K.Kondo,M.Suzuki.Fluctuating wind Pressure measured with tubing system.Journal of Wind Engineering and Industrial Aerodynamics.1992,41:987-998.
    [167]L.W.Apperley,N.G.Pitsis.Model/full-scale pressure measurements on a grandstand.J.Wind Eng.Ind.Aerodyn.1986,23:99-111.
    [168]N.G.Pitsis,L.W.Apperley.Further full-scale and model pressure measurements on a cantilever grandstand.J.Wind Eng.Ind.Aerodyn.1991,38:439-448.
    [169]谢壮宁,倪振华,石碧青.大跨度屋盖结构的等效静风荷载.建筑结构学报.2007,10:115-120.
    [170]谢壮宁.风致复杂结构随机振动分析的一种快速算法——谐波激励法.应用力学学报.2007,24(2):263-267.
    [171]许丽人,李宗凯,张宏.不同下垫面上近地层湍流的多尺度属性研究.气象学报.2000,50(1):83-94.
    [172]葛耀君,赵林,项海帆.基于极值风速预测的台风数值模型评述.自然灾害学报.2003,12(3):31-40.
    [173]胡晓红,葛耀君,庞加斌.上海“派比安”台风实测结果的二维脉动风谱拟合.第十届全国风工程学术论文集.2000:76-83.
    [174]Q.S.Li,Y.Q.xiao,C.K.Wong,A.P.Jeary.Field measurements of typhoon effects on a super tall building.Engineering sturcutres.2004,26:233-244.
    [175]Q.S.Li,J.R.Wu,S.GLiang,Y.Q.Xiao,C.K.Wong.Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete tall building.Engineering sturcutres.2004,26(12):1779-1794
    [176]伍荣生.现代气象学原理.高等教育学院出版社.1999,第一版:174-175
    [177]孙建超.土木工程相关的近地台风观测研究.哈尔滨工业大学硕士论文.2006.
    [178]庄表中,梁启德,张佑起.结构随机振动.北京:国防工业大学出版社.1995.第二版: 64-71
    [179]高西全.数字信号处理原理、实现及应用.北京:电子工业出版社,2006,第一版:124-125
    [180]黄治宇,刘保华,陈高平.随机信号的功率谱估计及Matlab实现.现代电子技术.2002,第一版:21-23
    [181]Wind Tunnel Testing:A General Outline,The Boundary Layer Wind Tunnel Laboratory.The University of Western Ontario.Faculty of Engineering Science.London,Ontario,Canada N6A5B9,May 1999.
    [182]N.J.Cook..Reduction of wind loads on a grandstand roof.J.Wind Eng.Ind.Aerodyn.1982,10:373-380.
    [183]J.X.Lin,D.Surry,H.W.Tieleman.The distribution of pressure near roof corners of flat roof low buildings.J.Wind Eng.Ind.Aerodyn.1995,56:235-265.
    [184]H.Kawai,G.Nishimura.Characteristics of fluctuating suction and conical vortices on a flat roof in oblique flow.J.Wind Eng.Ind.Aerodyn.1996,60:211-225
    [185]H.R.Maier,G.C.Dandy.The effect of internal parameters and geometry on the performance of back propagation neural networks:an empirical study.Environ.Modell.Software.1998,13(2):193-209
    [186]Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.Addison Wesley Publishing Company.1989.
    [187]张相庭.结构风压和风振计算.同济大学出版社.1985,第一版
    [188]Simiu E.,Scanlan R.H.著,刘尚培,项海帆等译.风对结构的作用—风工程导论.同济大学出版社.1998,第一版.
    [189]谷口修,尹传永译.振动工程大全.机械工业出版社.1983,第一版.
    [190]李国豪.工程结构抗震动力学.上海科学技术出版社.1980,第一版
    [191]林家浩.随机地震响应的确定性算法.地震工程与工程振动.1985,5(1):89-93
    [192]J.H.Lin.A fast CQC algorithm of PSD matrices for random seismic responses.Computers &Structures.1992,44:687-701.
    [193]J.H.Lin,W.S.Zhang,J.J.Li.Structural responses to arbitrarily coherent stationary random excitations.Computers & Structures.1994,50:629-633.
    [194]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应.力学学报.1995,27(5):567-576.
    [195]J.H.Lin,D.K.Sun,Y.Sun,F.W.Williams.Structural Responses to Non-uniformly Modulated Evolutionary Random Seismic Excitations.Communications in Numerical Methods in Engineering.1997,13:605-6t6.
    [196]J.H.Lin,J.J.Li,W.S.Zhang,F.W.Williams.Non-stationary random seismic responses of multi-support structures in evolutionary inhomogeneous random fields.Earthquake Engineering & Structural Dynamics.1997,26:135-145
    [197]林家浩,张亚辉.随机振动的虚拟激励法.科学出版社.2004,第一版.
    [198]李国强,陈素文,李杰,陆雪平.上海金茂大厦结构动力特性测试.土木工程学报.2000,33(2):35-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700