用户名: 密码: 验证码:
多孔介质中水合物饱和度与声波速度关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种极有潜力的化石能源-海洋天然气水合物日益受到人们更多的关注。目前,海洋地球物理勘探技术仍是海洋天然气水合物勘探和开发的主要技术,具有经济和高效等特点。海洋沉积物中水合物饱和度与声学特性关系是水合物地球物理探测技术的基础。天然气水合物是怎样改变地震波的传播,我们对此了解得还很不够。
     关于多孔介质中声波速度与水合物饱和度的关系,已经有一些理论模型。然而,在同一地区用不同的理论和模型得出的结果却有很大的不同,这就需要进行实验验证和参数分析以确定模型使用的适用性。
     在实验室中,模拟自然环境中天然气水合物赋存的条件,测量多孔介质中不同水合物饱和度情况下的声波速度,并研究两者之间的关系,可为水合物实际地震勘探数据采集、处理和解释,圈定含水合物沉积层的范围,估算天然气水合物的蕴藏量等方面提供指导意见,在方法和应用研究上具有重要意义。
     本文研制了一套实验装置,将超声技术和时域反射(TDR)技术结合,可以同时测量多孔介质中水合物的饱和度与声波速度等参数。使用该装置在固结人工岩心以及松散沉积物中进行了共计58个轮次的天然气水合物生成和分解实验,得到了可靠的实验结果。实验中温压、超声和TDR探测水合物的生成和分解均十分灵敏,而且,三种方法所探测到的生成点、分解点吻合,这说明利用超声技术和TDR技术联合探测多孔介质中水合物的饱和度与声速是十分有效的。
     实验得出了固结人工岩心中水合物饱和度与声波速度(包括纵波速度Vp和横波速度Vs)的关系,并使用实测的实验数据对时间平均方程、伍德及其修正方程、李权重方程和BGTL理论等常用的水合物饱和度估算模型进行了验证。实验结果表明,李权重方程和BGTL理论的速度预测值与实验值比较吻合,有广泛的适用性。对于李权重方程中W和n的取值、BGTL理论中G和n的取值在文中分别给出了一些建议,可以为两模型的实际应用提供一些参考。
     实验发现,水合物饱和度对沉积物声学特性的响应关系十分复杂,单一的模型或模型中参数的单一取值方式可能并不能完全适应所有的应用实例。在本实验人工固结岩心中天然气水合物赋存的微观模式,是颗粒接触模式或胶结模式。而在松散沉积物实验中,水合物先依附于沉积物骨架生成,并胶结了骨架颗粒,之后水合物开始在沉积物孔隙中以悬浮状形态生成。
     虽然本文实验中使用的材料与实际的海洋沉积物存在差别,但是得到的实验结果仍具有一定的指导意义。在掌握实验技术的基础上,使用实际的海洋沉积物岩心进行同样的实验,研究水合物饱和度与声学参数的响应关系,确定各理论方程中参数的取值,将得到实际的应用。
Marine gas hydrate, potential fossil energy resources, has attracted more and more attention. As an economic and effective technique, marine geophysical survey is still the primary explorative technology at present. Relationship between gas hydrate saturation and acoustic characteristics in marine sediments is the foundation of geophysical exploration. However, it’s unclear how gas hydrate affect seismic wave.
     There are many existing models to describe the relationship between acoustic velocities and gas hydrate saturation. However, different models used in the same area may bring on different results. It’s necessary to confirm the legitimacy of the models and get an approach to use them correctly.
     Interpretation of seismic data, afterward locating of gas hydrate and estimation of resource require to understand the relationship between physical properties and saturation in gas hydrate-bearing sediments.
     An experimental apparatus was developed in the thesis. The apparatus combined high precision ultrasonic detection with Time Domain Reflectometry (TDR) in the same experimental apparatus to study the relationship between gas hydrate saturation and acoustic characteristics. Gas hydrate was formed and dissociated in artificial core and unconsolidated sediments for 58 experimental runs. Ultrasonic and TDR can detect the formation and dissociation of gas hydrate in porous media sensitively. The results show the experimental method is very effective.
     Relationship between gas hydrate saturation and acoustic velocities (including Vp and Vs) in consolidated artificial core was gained. Observed data in experiments was compared with the calculated data by time-average equation, Wood’s equation, Lee’s weighted equation and Biot-Gassmann Theory by Lee (BGTL). It suggests that the Lee’s weighted equation and BGTL are more applicable in our experiments and various sediments. The thesis also gave some instructive advices about the selection of W, n and G, n values in Lee’s weighted equation and BGTL.
     Experimental results revealed that the relationship between gas hydrate saturation and acoustic characteristics in sediments is quite complicated, and single model or parameter can’t be applicable for all situations. It is indicated that the micromodels of gas hydrate formed in the artificial core are grain contact model or cementation model in our experiments. However gas hydrate is formed firstly on the skeleton and cement the granules in unconsolidated sediments experiments, afterward they grow suspending in the pore space.
     Although the physical characteristics of experimental materials are different from them of actual marine sediments, the experimental results can direct practical application in some sense. Actual marine sediment cores will be used in similar experiments to study the relationship between gas hydrate saturation and acoustic parameters. Parameters of the models determined by experiments will be useful in practical application.
引文
[1] Sloan,E,D. Clathrate Hydrate of Nature Gases. Marcel Bekker Inc. New York,1990.
    [2] Sloan,E.D. Natural Gas Hydrates, Journal of Petroleum Technology, Dec. 1991, 1414-1417
    [3]史斗,郑卫军.世界天然气水合物研究开发现状和前景.地球科学进展,1999,14(4):330~338
    [4]史斗等.国外天然气水合物研究进展.兰州大学出版社,1992.
    [5]周怀阳等.天然气水合物.海洋出版社.2000,4.
    [6]张立生.气体水合物未来的能源.四川地质学报.1999,19(1),32-37.
    [7]杨锋杰等.天然气水合物—下世纪的新能源.中国煤炭.1999,25(3),37-59.
    [8]方银霞等.海底天然气水合物的研究进展.海洋科学.2000,24(4),18-21.
    [9] Kvenvolden,K.A. Gas Hydrate-Geological Perspective and Global Change. Reviews of Geophysics.1993,31:173~187.
    [10]宋海斌等,天然气水合物的地球物理研究.北京:海洋出版社,2003.
    [11] Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors. J. Geophys. Res., 1992, 97:6683~6698
    [12] Wyllie M R J, Gregory, and Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 1958, 23:459~493
    [13] Pearson C F, Halleck P M, McGulre P L, et al. Natural gas hydrate; A review of in situ properties. J. Phys. Chem., 1983, 87:4180~4185
    [14] Nobes D C, Villinger H, Davis F F, et al. Estimation of marine sediment bulk physical properties at depth from seafloor geophysical measurements. J. Geophys. Res., 1986, 91: 14033~14043
    [15] Lee M W, Hutchinson D R, Collett T S, et al. Seismic velocities for hydrate-bearing sediments using weighted equation. J. Geophys. Res., 1996, 101:20347~20359
    [16] Biot M A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, 12: 155~164
    [17] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, I: Low-frequency range;Ⅱ: Higher frequency range. J. Acoust. Soc. Am., 1956, 28:168~191
    [18] Gassmann F. Elasticity of porous media, Vierteljahrsschrift der Naturforschenden Gesselschaft, 1951, 96:1~23
    [19] Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments. Geophysics, 2002, 67, 1711~1719
    [20] Lee M W. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments. Marine Geophysical Researches, 2002, 23:403~412
    [21] Zillmer M. A method for determining gas- hydrate or free-gas saturation of porous media from seismic measurements. Geophysics, 2006, 71:21~32
    [22] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrate: Effective medium modeling. Geophysical Research Letters, 1999, 26:2021~2024
    [23]宋海斌,松林修,吴能友等.海洋天然气水合物的地球物理研究(Ⅰ):岩石物性[J].地球物理学进展,2001,16(2):118-126
    [24]王秀娟,吴时国,刘学伟.天然气水合物和游离气饱和度估算的影响因素.地球物理学报,2006, 49(2):504一511
    [25]王秀娟,吴时国,郭璇等.南海陆坡天然气水合物饱和度估计.海洋地质与第四纪地质,2005,25(3):89-95
    [26] Winters W J, Waite W F, Mason D H,et al.Acoustic,pore pressure, and strength properties of sediment containing gas hydrate. MINERALS OF THE OCEAN INTERNATIONAL CONFERENCE. Russia:St-Petersburg,April 20-23 2002,161-164.
    [27] Winters, W.J., Dillon, W.P., Pecher, I.A. and Mason, D.H., GHASTI-determining physical properties of sediment containing natural and laboratory-formed gas hydrate, Natural Gas Hydrate in Oceanic and Permafrost Environments, 2000, Chapter 24, 311-322.
    [28] Booth J.S., Winters W.J. & Dillon W.P.,Apparatus investigates geological aspects of gas hydrates, Oil & Gas Journal– Special, 1999,Oct. 4, 63-69.
    [29] Winters, W.J., Dillon, W.P., Pecher, I.A. and Mason, D.H., GHASTI-determining physical properties of sediment containing natural and laboratory-formed gas hydrate, Natural Gas Hydrate in Oceanic and Permafrost Environments, 2000, Chapter 24, 311-322.
    [30] Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect of sediment acoustic and strength properties [J]. Journal of Petroleum Science and Engineering 56(2007):127-135.
    [31] Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate [J]. American Mineralogist, 2004,Volume 89, 1221-1227.
    [32] Winters W J, Waite W F, Mason D H, et al. Sediment properties associated with gas hydrate formation [J]. 4th International Conference on Gas Hydrates, 2002, p.722-727, Yokohama, Japan.
    [33] Yun T. S., Francisca F. M., Santamarina J. C., et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophysical Research Letters, 2005, 32, L10609:1~5, doi: 10.1029/2005GL022607.
    [34] Yun T S, Narsilio G A, Santamarina J C, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrastatic pressure. Marine Geology, 2006, 229:285~293
    [35] Yang J, Llamedo M, Marinakis D, et al. Successful application of a versatile ultrasonic test system for gas hydrates in unconsolidated sediments. 5th International Conference on Gas Hydrate, Trondheim, Norway, 2005, 340~346
    [36]赵群,郭建,郝守玲等.模拟天然气水合物的岩石物理特性模型实验.地球物理学报, 2005, 48(3):649~654
    [37] Spangenberg E, Kulenkampff J. Physical properties of gas hydrate-bearing sediments. 5th International Conference on Gas Hydrate, Trondheim, Norway, 2005, 587~596
    [38] Priest J, Best A, Clayton C, et al. Seismic properties of methane gas hydrate-bearing sand. 5th International Conference on Gas Hydrate, Trondheim, Norway, 2005, 440~447
    [39] Sassen R, Macdonald I R. Hydrocarbons of experimental and natural gas hydrates, Gulf of Mexico continental slope. Org. Geochem. Vol. 26 No. 3/4, 289-293, 1997.
    [40]史斗,郑卫军.世界天然气水合物研究开发现状和前景.地球科学进展,1999,14(4)
    [41] Hammerschmidt.Ind Eng Chem.268,851~855
    [42]沙志彬,杨木壮,梁劲.天然气水合物成矿的沉积控制因素.海洋地质动态,2003,19(6):16~20.
    [43]国际在研和新的水合物研究项目.www.gas-hydrate.org.cn
    [44] Ripmeester.A new clathrate hydrate structure.Nature,1987,3
    [45] Udachin.Structure,composition and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. Journal of physical chemistry.2001,105(19):4200-4204
    [46] Khokhar A A,Gudmundsson J S,Sloan E D. Gas storage in structure H hydrates [J]. Fluid Phase Equilibria 150–151 1998 383–392.
    [47]孙志高,王如竹,樊栓狮等.天然气水合物研究进展.天然气工业,2001,21(1):93-96.
    [48] Koh C A. Towards a fundamental understanding of natural gas hydrates. Chem.Soc.Rev.,2002,31:157-167.
    [49] Kvenvolden. Potential effects of gas hydrate on human welfare. Proceedings of national academy of science, USA, 1999,96:3420~3426
    [50]金庆焕.天然气水合物-未来的新能源.中国工程科学,2000,2(11): 29-34
    [51] Hovland. Potential influence of gas hydrates on seabed installations. Natural gas hydrate Am. Geophs. Unions.124:300~309
    [52] Stoll R D,Bryan G M.Physical properties of the sediments containing gas hydrates.J Geophysical Res,1979,84(B4):1629-1634.
    [53] B.A.Buffett and O.Y.Zatsepina.Formation of gas hydrate from dissolved gas in natural porous media.Marine Geology 2000.164:69-77.
    [54]业渝光.地质测年与天然气水合物实验技术研究及应用.海洋出版社,2003,206-244
    [55]业渝光,张剑等.海洋天然气水合物模拟实验技术.海洋地质与第四纪地质.2003,23(1).-119-123.
    [56]张剑.业渝光.刁少波等.超声探测技术在天然气水合物模拟实验中的应用.现代地质, 2005, 19(1):113-118.
    [57]刁少波,业渝光,张剑等.时域反射技术在地学研究中的应用.岩矿测试,2005,24(3):205-211.
    [58]刘昌岭,业渝光,任宏波等.天然气水合物储气量直接测定的技术.天然气工业,2005,25(3):44-47.
    [59]刘昌岭,业渝光,张剑等.天然气水合物相平衡研究的实验技术与方法.中国海洋大学学报,2004,34(1):153-158.
    [60]胡高伟,张剑,业渝光等.天然气水合物勘探-开发-储运-环境响应研究新进展.地质科技情报,2006,25(4):33-41
    [61]顾轶东,林维正,张剑等.模拟岩心中天然气水合物超声检测技术.声学技术,2006,25(3):218-221
    [62]顾轶东,林维正,张剑等.沉积物中天然气水合物超声检测技术.海洋技术,2005,24(3):49-52
    [63]顾轶东,林维正,张剑等.天然气水合物声学检测技术.同济大学学报(自然科学版),2004,32(7):977-980
    [64]赵洪伟,刁少波,业渝光等.多孔介质中水合物阻抗探测技术.海洋地质与第四纪地质,2005,25(1):137-142
    [65] Waite W F, Helgerud M B, Nur A, et al. Laboratory measurements of compressional and shear wave speeds through pure methane hydrate, Annals of the New York Academy of Sciences, 3rd International Conference on Gas Hydrates, in press, 8 pp.
    [66] Stern L A, Kirby S H, Durham W B, et al. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior. In: Natural Gas Hydrate, in Oceanic and Permafrost Environments. M.D. Max, Ed. Kluwer Publ., 2000.323-348.
    [67] Dvorkin J, Helgerud M B, Waite W F, et al. Introduction to physical properties and elasticity models [A]. In: Max, M. D. (ed.), Natural gas hydrate in oceanic and permafrost environments[c], Kluwer Acad. Dordrecht, 2000, 245-260.
    [68]黄兴文,陈建阳,于兴河等,天然气水合物的地震识别方法及研究趋势.天然气工业,2005,25(3): 58-60.
    [69] Winters W. J., Waite W. F., Mason D. H., et al. Effect of grain size and pore pressure on acoustic and strength behavior of sediments containing methane gas hydrate. Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, 2005. Trondheim, Norway, Pages 507-516.
    [70] Lee M W. Velocity ratio and its application to predicting velocities. U.S. Geological Survey Bulletin 2197, available online at: http://geology.cr.usgs.gov/pub/bulletins/b2197/.
    [71] Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments.Marine and Petroleum Geology, 2004 (21) 641-650.
    [72] Priest J, Best A, Clayton C, et al. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand . JOURNAL OF GEOPHYSICAL RESEARCH, 2005,VOL. 110, B04102, doi:10.1029/2004JB003259
    [73] Priest J, Best A, Clayton C, et al. Attenuation of seismic waves in methane gas hydrate-bearing sand . Geophysical Journal International, 2006, 164(1), 149-159. doi:10.1111/j.1365-246X.2005.02831.x
    [74]孙春岩,章明昱,牛滨华等.天然气水合物微观模式及其速度参数估算方法研究.地学前缘(中国地质大学,北京), 2003, 10(1), 191-198.
    [75]吴志强,文丽,童思友等.海域天然气水合物的地震研究进展.地球物理学进展, 2007, 22(1), 218-227.
    [76]业渝光,张剑,刁少波等.气水合物地球物理探测模拟装置.中国发明专利:CN200410036544.X,2004,pp10.
    [77]冯若主编.《超声手册》.南京大学出版社,1999.
    [78]孙承维等.高浓度悬浮液声学特性的探讨.第三届全国声学学术会议论文摘要,527-528,1982.
    [79]魏容爵,张淑仪.超声波在悬浮液中的吸收.物理学报,1965,5.
    [80]唐应吾.声波在纯高岭土悬浮液中的传播.声学学报,1981,3.
    [81]唐应吾.声波在浓悬浮液中的传播.声学学报,1983,4.
    [82]赵松龄.声波在浓密悬浮液中传播的改进理论.声学学报,1986,4.
    [83]杜功焕等.声学基础.南京大学出版社,2001.
    [84]顾轶东.海洋天然气水合物模拟实验的超声检测技术研究.[博士学位论文].同济大学,2004
    [85]侯朝焕等.实用FFT信号处理技术.海洋出版社,1990.
    [86]鄂利海等.频谱分析法研究超声对电化学反应中传质过程的影响.高等学校化学学报2001,10
    [87]唐应吾.地震波在湿颗粒介质中的传播.地球物理学报.1982,25:316-323.
    [88]唐应吾.海底沉积物上的声反射.声学学报.1994,19(4):278-289.
    [89]钱祖文.多孔介质中的声传播及其研究进展.物理.1995,24(9):534-538.
    [90]杨顶辉等.双相各向异性研究、问题与应用前景.地球物理学进展.2000,15(2):7-21.
    [91]杨顶辉、陈小宏.含流体多孔介质的BISQ模型.石油地球物理勘探.2001,36(2):146-159.
    [92] Euler Leonhard, Lettresàune princesse d'Allemagne sur divers sujets de physique & de philosophie. Saint Petersbourg De l'imprimerie de l'Académie des Sciences 1768.
    [93] R. Woltman. Beytr?ge zur Hydraulischen Architectur, Dritter Band, Johann Christian Dietrich, G?ttingen,1794.
    [94] Delesse A. Procédémecanique pour determiner la composition des roches. Annales des Mines 13, (4): 379-388.
    [95] Fick A.über diffusion, Annalen der Physik und Chemie, 1885, 94:59-86.
    [96] Darcy H. Les fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856.
    [97] Fillunger, P. Der Auftrieb von Talsperren, teil I-III. ?sterr. Wochenschrift für den ?ffentlichen Baudienst, 1913,532–570.
    [98] Fillunger, P. Neuere Orundlagen für die statische Berechnung von Talsperren, Zeitschrift des Osterr. Ing.–und Arch..–Vereines, 1914,23:441-447.
    [99] Fillunger, P. Erdbaumechanik. Selbstverlag des Verfassers, 1936,Wien.
    [100] Terzaghi, K., 'Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf derhydrodynamischen spannungerscheinungen,' Sitz. Akad. Wissen. Wien, Math. Naturwiss. Kl., Abt. IIa. 1923,132, 125-138.
    [101] Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Leipzig F. Deuticke, 1925.
    [102] Gassmann, F., Uber die Elastizitat poroser Medien, Veirteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 1951,96, 1-23, 1951.
    [103] Biot, M. A. Le problème de la consolidation des matières argileuses sous une charge, Ann. Soc. Sc. de Brux., 1935,Ser. B, 55:110-113.
    [104] Biot, M. A. General theory of three-dimensional consolidation, J. Appl. Phys., 1941, 12: 155-164.
    [105] Biot, M.A.. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955,26:182–185.
    [106] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency range, J. Acoust. Soc. Am., 1956,28:168-178.
    [107] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, part II: higher frequency range, J. Acoust. Soc. Am. 1956, 28:179-191.
    [108] Biot, M.A. Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics 1962,33:1482-1498
    [109] Biot, M.A. Generalized theory of acosutic in porous dissipative media, The Journal of the Acoustical Society of America 1962,34:1254-1264.
    [110] Biot M.A. Theory of finite deformations of porous solids. Indiana Univers. Math. J., 1972,21: 597-620.
    [111]王尚旭.双相介质中弹性波问题有限元数值解和AVO问题. [博士学位论文]中国石油大学, 1990.
    [112]乔文孝,王宁,严炽培.声波在两种多孔介质界面上的反射和透射.地球物理学报, 1992, 35 (2) : 242-248.
    [113]张应波.Biot理论应用于地震勘探的探索.石油物探, 1994, 33 (4) : 29-38.
    [114]牟永光.储层地球物理学.石油工业出版社, 1996.
    [115]席道瑛、张斌、易良坤.双相介质中应力波的衰减规律.岩石力学与工程学报,1998,17(4):429-433.
    [116]席道瑛、邱文亮、程经毅.饱和多孔岩石的衰减与孔隙率、饱和度的关系.石油地球物理勘探,1997,32(2):196-201.
    [117]席道瑛、刘斌、谢端.孔隙流体饱和砂岩的衰减与频率的关系.石油地球物理勘探, 1998,33(1):66-77.
    [118]刘斌、王宝善、席道瑛.沉积岩中波速、衰减及渗透率随压力的变化.石油地球物理勘探,2000,35(1):129-135.
    [119]席道瑛,易良坤.砂岩石孔隙流体的黏粘性与衰减、模量和速度色散.石油地球物理勘探, 1999, 34 (4) : 420-425.
    [120]席道瑛、刘斌、易良坤.饱和岩石的弛豫衰减对时间和温度的依赖性.地球物理学报,2000,43(6):827-834.
    [121]李保忠,蔡袁强.饱和度对横观各向同性准饱和多孔介质中弹性波传播的影响.水利学报, 2003,9:94-101.
    [122] Biot, M. A., and Willis, D. G. The elastic coefficients of the theory of consolidation. J. App.Mech., 1957, 24, 594-601.
    [123] Helgerud M B, Dvorkin J and Nur A. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophysical Research Letters, Vol. 26, No. 13, 1999, p.2121-2124.
    [124] Dvorkin J and Prasad M. Elasticity of marine sediments: Rock physics modeling. Geophysical Research Letters, Vol. 26, No. 12, 1999, p.1781-1784.
    [125] Ecker C. Seismic characterization of methane hydrate structures . US: Stanford University, 2001.
    [126] Dvorkin J and Nur A. 1993, Rock physics for characterization of gas hydrates: The Future of Energy Gases, USGS Professional Paper 1570.
    [127] Nur A, Mavko G, Dvorkin J, et al. Critical porosity: A key to relating physical properties to porosity in rocks [J]. The Leading Edge, 1998, 17, p.357-362.
    [128] Hill R. The elastic behavior of crystalline aggregate . Proc. Phys. Soc., London, A65, 1952, p.349-354.
    [129] Kumar D, Sen M K, Bangs N L. Seismic characteristics of gas hydrates at Hydrate Ridge, offshore Oregon. The Leading Edge, 2006; 25: 610~614
    [130] Sothcott J, McCann C, O'Hara S G. The influence of two different pore fluids on acoustic properties of reservoir sandstones at sonic and ultrasonic frequencies. 70th Ann. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 2000, 2:1883~1886
    [131] Noborio K. Measurement of soil water content and electrical conductivity by time domainreflectometry: a review. Computers and Electronics in Agriculture.2001,31:213–237.
    [132] Yoshio Inoue,Takahide Watanabe,Kohsaku Kitamura.Prototype time-domain reflectomrtry probes for measurment of moisture content near the soil surface for applications to“on-the-move”measurements.Agricultural water Management,2001,(50):41-52.
    [133] Topp G C,Davis J L,Annan A P.Electromagnetic Determination of Soil-Water Content:Measurement in Coaxial Transmission Line .WaterResour Res,1980,16(3):574-582.
    [134] Jeffrey P. Walker. In situ measurement of soil moisture: a comparison of techniques. Journal of Hydrology 2004 (293): 85-99.
    [135] Scott B.Jones, JonM.Wraith and Dani Or. Time domain reflectometry measurement principles and applications.Hydrological Processes,2002,16:141-153.
    [136] Wright J F, Nixon F M, Dallimore S R,Osamu Matsubayashi.A Method for Direct Measurement of Gas Hydrate Amounts Based on the Bult Dielectric Properties of Laboratory Test Media.Proceedings of the Fourth International Conference on Gas Hydrates,Yokohama,May19-23,2002:745-749.
    [137] Zhong Y,Rogers R E. Surfactant effects on gas hydrate formation. Chemical Engineering Science, 2000, 55:4175~4187
    [138]李长文,余春昊,张银海等.岩石声波主频漂移现象及其应用探讨.测井技术,1999,23(4):253-257.
    [139]李亚林,贺振华,黄德济等.岩石孔渗特性与地震波衰减、传播速度的相互关系.天然气工业, 2001, 21(4): 7~11
    [140] Ledbetter H, Kim S, Dunn M, et al. Elastic constants of mullite containing alumina platelets. Journal of the European Ceramic Society, 2001, 21: 2569~2576
    [141] Zhang F C, Luo H H. Reaction sintering of Al2O3/SiC composite in a IR. Journal of ceramics, 2006,27(2):172~175
    [142] Matveva T V and Soloveiv V A. Geological control over gas hydrate accumulation on the Blake outer ridge . Geologiya I Geofizika, 2002, 43(7):658-668.
    [143] Ahrens T J. Mineral Physics & Crystallography: A Handbook of Physical Constants . Published by American Geophysical union, April, 1995:7-54.
    [144] Mavko G and Nur A. Wave attenuation in partially saturated rocks . Geophysics, 1979, 44:161-178.
    [145]范百刚.超声原理与应用.南京:江苏科学技术出版社, 1984, 1-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700