用户名: 密码: 验证码:
电力系统连锁反应故障的预防与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网互联程度的加深,在取得了较大经济效益的同时,电网的整体安全性也受到更严重的威胁,局部电网某些故障的影响有可能波及附近的区域电网,并诱发连锁反应,元件相继退出运行造成大面积停电甚至整个电网的崩溃。因此,如何有效地防止电力系统连锁反应故障是避免大停电事故的关键。
     论文首先通过对三起连锁故障导致的大停电事故演化过程的总结分析,概括了连锁故障导致大停电的一般模式,得出连锁故障在传播过程表现出来的演化规律。典型的连锁反应大停电事故初始故障与触发故障发生时刻之间的时间间隔都比较长,初始故障集合各元素发生时刻的时间间隔也较长,初始故障集合中的各个故障不断恶化系统的状态,而触发故障导致系统发生连锁反应,最终可能导致系统崩溃,连锁故障阶段各个故障间的时间间隔小到几分钟、几秒钟,有时甚至是同时发生。因此应在初始故障阶段进行调整,避免进入连锁故障阶段。
     论文结合协同学理论解释了连锁故障的演化机理。连锁故障导致大停电的过程在一定意义上可以看成是电网各元件间关联作用逐渐增强,某个或某几个元件故障,导致与其关联强的元件退出运行,促使系统进入临界状态,最终形成整个系统崩溃的过程。
     论文建立了连锁故障预防的多阶段序贯博弈模型。模型将连锁故障博弈多阶段过程分解为单个阶段,每个阶段以电网的一次扰动开始,以电网的调整结束,即包含博弈双方的各一次行动。调整后的电网,能够承受电网的下次扰动,下次扰动发生后再进行调整,如此反复。在此基础上,提出了博弈模型的单阶段逆向归纳解法,并用博弈树描述博弈的过程。由于仅针对博弈过程的单个阶段进行求解,且在求解过程中反复剔除电网扰动方的劣行动,因此计算量非常小,适合于在线应用。同时,模型具有良好的开放性,新的电网扰动类型以及扰动带来系统新的问题都可计入模型。
     最后,论文给出了上述模型在实际电网中可行的两种应用模式,提出了基于模式识别理论的电网运行方式匹配方法,基于该方法,应用模式一的实现成为可能。
With the development of power grid interconnection, not only was great economic benefit achieved, but also power grid was threatened. Some fault in local grid may extend and induce cascading failure. Components quited from grid one after another. This leads to blackouts. So prevention of cascading failures is the key to avoid blackouts.
     The processes of three blackouts, which are causes by cascading failures are analyzed in the paper. Generic scenario of a cascading blackout is summarizing. By summarizing the course of development of them, evaluative laws and general characteristics of cascading failures are drawn. It is long time between initial fault and trigger fault in typical cascading failure. And it is large intervals among faults in initial phase. The faults in initial phase deteriorate system state and the trigger fault results in cascading failure. Sometimes the faults in cascading phase happened simultaneously. So adjustments must be executed in initial phase to avoid entering into cascading phase.
     Mechanism of cascading failures is analyzed. In the process of blackout caused by cascading failure, the relation among components is gradually increased, the system enters into self-organized critical state and the system collapses. Based on analysis of evolution law of cascading failure, the paper analyses the mechanism and preventing strategies of cascading failure and puts forward search method of cascading failure by analogy with simple phenomenons.
     In the paper, a multi-stage sequential-move game model is set up. The model decompose multi-stage into single stage. Each side has one action during single stage: begin with disturbance and end with adjustment. The power grid which has been adjusted can bear next disturbances and it is readjusted after next disturbances. On this basis, the single-stage backwards induction method of solving game model. The process of game is described with game tree. The computation burden is greatly reduced by iterated elimination of weakly actions, and it is well suited for on-line application. The model has good openness, new types of disturbance and new problem can be included in the model.
     At last, two patterns are put forward to apply the game model to actual power grid. Matching method between two operation mode is brought forth. Based on this method, pattern one comes true.
引文
[1]电网技术杂志编辑部.进入新世纪世界各地频发大范围停电事故.电网技术,2005,29(11):84
    [2] U.S.-Canada power system outage task force. Final report on the August 14,2003 blackout in the United States and Canada: causes and recommendations [EB/OL]. http://www.nerc.com/.
    [3] OFGEM. Report on support investigations into recent blackouts in London and west Midlands. http://www.pserc.wisc.edu/Resources.htm#Resources_London.htm.
    [4] The blackout in southern Sweden and eastern Denmark, 23 September, 2003. http://www.pserc.wisc.edu/Resources.htm#Resources_Denmark.htm.
    [5] Final report of the investigation committee on the 28 September 2003 blackout in Italy. http://www.pserc.wisc.edu/Resources.htm#Resources_Italy.htm.
    [6] Technical summary on the Athens and southern Greece blackout of July 12, 2004. http://www.pserc.wisc.edu/Resources.htm#Resources_Greece.htm.
    [7] The Blackout of May 25, 2005: reasons and the cure. http://www.pserc.org/MoscowBlackout.htm.
    [8] Union for the co-ordination of transmission of electricity. Final report : system Disturbance on 4 November 2006. http://www.pserc.wisc.edu/Resources.htm#European_Blackout.htm.
    [9]杨以涵,张东英,马骞,等.大电网安全防御体系的基础研究.电网技术, 2004, 28(9): 23-27.
    [10]周孝信.面向21世纪的电力系统技术.电气知识. 2000, (2): 6-8.
    [11]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型.电力系统自动化, 2006, 30(14): 1-5.
    [12] Yi Jun, Zhou Xiaoxin. Model of Cascading Failures in Power Systems. 2006 International Conference on Power System Technology ( POWERCON2006), Chongqing, China, October 22-26, 2006.
    [13] Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages. IEEE computer application in power, 1996, 9(3): 20-23
    [14] Tanrounglak S, Horowitz S H, Phadke A G, et al. Anatomy of power system: preventive relaying strategies. IEEE Transactions on power delivery, 1996, 11(2):708-714.
    [15] Koeunyi B, Thorp J S. An importance sampling application: 179 bus WSCC system under voltage based hidden failures and relay misoperations. Proceedings of the Thirty-First Hawaii International Conference on System Sciences, Hawaii, 1998, 3: 39-46.
    [16] Thorp J S, Phadke A G, Horowitz S H, et al. Anatomy of power system disturbances: importance sampling. Electrical Power & Energy System, 1998, 20(2):147-152.
    [17] Yu X B, Singh C. Power system reliability analysis considering protection failures. IEEE PES Summer Meeting, Chicago, USA, 2002, 2: 963-968.
    [18] Yu X B, Singh C. Integrated Power system vulnerability analysis considering protection failures. IEEE Power Engineering Society General Meeting, Toronto, Canada, 2003, 2: 706-711.
    [19]陈为化,汪全元,曹一家.考虑继电保护隐藏故障的电力系统连锁故障风险评估.电网技术,2006,30(13):14-19,25.
    [20]李蓉蓉,张晔,汪全元.复杂电力系统连锁故障的风险评估.电网技术, 2006, 30(10): 18-23.
    [21]陈为化,汪全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估.电网技术,2005,29(4):12-17.
    [22]李生虎,丁明,王敏,等.考虑故障不确定性和保护性能的电网连锁故障模式搜索.电网技术, 2004, 28(13): 27-31,44.
    [23]周宗发,艾欣,邓慧琼,等.基于故障树和模糊推理的电网连锁故障分析方法.电网技术,2006, 30(8): 87-91.
    [24]宋福龙,罗毅,涂光瑜,等.基于事故树分析法的电力系统事故链监控研究.继电器, 2006, 34(2): 29-34.
    [25]刘昊,艾欣,邓慧琼.基于循环完善法和树状结构事故链的电网连锁故障研究.现代电力, 2006, 23(2): 24-29.
    [26]邓慧琼,艾欣,张东英,等.基于不确定多属性决策理论的电网连锁故障模式搜索方法.电网技术, 2005, 29(13):
    [27]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探.电力系统自动化, 2001, 25(15): 25-28, 42.
    [28]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估模型和算法.电力系统自动化, 2001, 25(10): 30-34.
    [29] Zhaohong Bie, Xifan Wang. Evaluation of power system cascading outages. Proceedings of International Conference on Power System Technology. Kunming, China: [s.n.],2002:415-419.
    [30] Rodney C. Hardiman, Murali Kumbale, Yuri V.Makarov. An advanced tool for analyzing multiple cascading failures. IEEE 8th International Conference on Probabilistic Methods Applied to Power System, Iowa State University, Ames, Jowa, 2004, 629-635.
    [31] Rodney C. Hardiman, Murali Kumbale, Yuri V. Makarov. Multi-Scenario Cascading Failure Analysis Using TRELSS. CIGRE/IEEE PES International Symposium on Quality and Security of Electric Power Delivery Systems, Montreal, Canada, 2003: 176-180.
    [32] Y.V. Makarov, R. C. Hardiman. Risk, Reliability, Cascading, and Restructuring. IEEEPower Engineering Society General Meeting, Toronto, Canada, 2003, 3: 1417-1429.
    [33]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术, 2005, 29(13): 1-9.
    [34] Bak P, Tang C, Wiesenfeld K. Self organized criticality. Physical Review A, 1988, 36(1): 364-373.
    [35] Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Scientific American, 1991, (264): 26-33.
    [36] Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of 1/f noise. Physical Review Letters, 1987, 59(4): 3812384.
    [37] Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Physical Review, 1988, 38: 3642365, 373.
    [38] Carreras B A, Newman D E, Dobson I, et al. Initial evidence for self-organized criticality in electric power system blackout. The 33th Hawaii International Conference on System Science, Hawaii. 2000: 1-6.
    [39] Carreras B A, Newman D E, Dobson I. Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Transaction on Circuits and systems, 2004: 1733-1740.
    [40] Chen J, Thorp J S, Parashar M. Analysis of electric power system disturbance data. Hawaii International Conference on System Science, Hawaii, 2001.
    [41]于群,郭剑波.我国电力系统停电事故自组织临界性的研究.电网技术, 2006, 30(6): 1-5.
    [42]于群,郭剑波.中国电网停电事故统计与自组织临界性特征.电力系统自动化, 2006, 30(2): 16-21.
    [43]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析.电网技术, 2006, 30(14): 7-12.
    [44]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析,电力系统自动化, 2006, 30(13): 1-6.
    [45] Jie Chen, James S. Thorp, Ian Dobson. Cascading Dynamics and Mitigation Assessment in Power System Disturbances via a Hidden Failure Model. Electrical Power and Energy Systems, 2005, 27, 318-326.
    [46] Dobson I, Carreras B A, Lynch V E, et al. An initial model for complex dynamic in electric power system blackouts. Proceedings of the 34th Hawaii International Conference on System Sciences, Maui, Hawaii, 2001, 710-718.
    [47] Carreras B A, Lynch V E, Sachtjen M L, et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems.34th Hawaii International Conference on System Sciences, Maui, Hawaii, 2002.163-169
    [48] Carreras B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in electric power blackouts. 34th Hawaii International Conference on System Sciences. Maui,Hawaii, 2001.4038-4045
    [49] Carreras B A, Lynch V E, Newman, et al. Blackout mitigation assessment in an electric power transmission system. Hawaii International Conference on System Science, Hawaii, 2003.
    [50] Dobson I, Chen J, Throp J S, et al. Examining criticality of blackouts in power systems models with cascading events, proceedings of the 35th Hawaii International Conference on System Sciences, Maui, Hawaii, 2002: 10-18.
    [51] Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series of blackouts: cascading failure, criticality, and self-organization. Bulk Power System Dynamics and control, Italy, 2004.
    [52] Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. 36th Hawaii International Conference on System Science, Hawaii, 2003: 65-71.
    [53] Carreras B A, Lynch V E, Sachtjen M L, et al. Modeling blackout dynamics in power transmission networks with simple structure.34th Hawaii International Conference on System Sciences. Maui, Hawaii, 2001. 719-727.
    [54]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型.中国电机工程学报, 2005, 25(18): 13-19.
    [55] Surdutovich G, Cortez C, Vitilina R et al. Dynamics of‘small world’networks and vulnerability of the electric power grid. VIII Symposium of Specialists in Electric Operational and Expansion Planning, 2002.
    [56] Newman M E J. Scientific collaboration networks II. shortest paths, weighted networks, and centrality. Physical Review E, 2001,64(2): 016132.
    [57] Amaral L A N, Scala A, Barthelemy M et al. Classes of behavior of small-world networks. Proceedings of the National Academy of Sciences, 2000,97: 11149-11152.
    [58] Zhao L, Park K, Lai Y C. Attack vulnerability of scale-free networks due to cascading breakdown. Physical Review E, 2004, 70(2): 035101.
    [59] Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American power grid. Physical Review E, 2004, 69(1): 025103.
    [60] Watts D J, Strogatz S H. Collective dynamics of‘small-world’networks. Nature, 1998, 393(6): 440-442.
    [61] Watts D J. Small-worlds: The dynamics of between order and randomness. The American Mathematical Monthly, 2000, 107(7): 664-668.
    [62] Watts D J. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences, 2002, 99(9): 5766-5771.
    [63] Newman M E J, Watts D J. Scaling and percolation in the small-world network model. Physical Review E, 1999, 60(2): 7332-7342.
    [64]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析.电力系统自动化, 2004, 28(15): 21-24.
    [65]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法.电力系统自动化, 2006, 30(8): 7-11.
    [66] Holme P. Edge overload breakdown in evolving networks. Physical Review E, 2002, 66(2): 036119.
    [67] Holme P, Kim B J. Vertex overload breakdown in evolving networks. Physical Review E, 2002, 65(1): 066109.
    [68] Holme P, Kim B J, Yoon C N et al. Attack vulnerability of complex networks. Physical Review E, 2002, 65(1): 056109.
    [69] Lai Y C, Motter A E, Nishikawa T. Attacks and cascades in complex networks. Lecture Notes in Physics, 2004,650: 299-310.
    [70] Motter A E, Lai Y C. Cascade-based attacks on complex networks. Physical Review E, 2002, 66(2): 065102.
    [71] Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Review Letter, 2001, 87: 198701.
    [72] Crucitti P, Latora V, Marchiori M, et al. Efficiency of scale-free networks: error and attack tolerance. Physica A, 2003,320: 622-642.
    [73] Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Physical Review E, 2004,69(1): 045104.
    [74] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the North American power grid. http://arXiv:cond-mat/ 0410318.
    [75] Jung J, Liu C C. Multiagent technology for vulnerability assessment and control. Power Engineering Society Winter Meeting, New York, 2002: 893-899.
    [76] Latora V, Marchiori M. Vulnerability and protection of infrastructure networks. Physical Review E, 2005, 71(1): 015103.
    [77]蓝毓俊. 2003年世界上几起大停电事件的经验教训和启示.电力设备, 2004, 5(12): 67-70.
    [78]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术, 2003, 27(9).
    [79]徐永禧.美欧2003年大停电启示.电力设备, 2004, 5(2): 67-69.
    [80]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训.电网技术, 2003, 27(10): 8-12.
    [81]何大愚.一年以后对美加“8.14”大停电事故的反思.电网技术, 2004, 28(21): 1-5.
    [82]甘德强,胡江溢,韩祯祥. 2003年国际若干停电事故思考.电力系统自动化, 2004, 28(3): 1-4.
    [83]李春艳,孙元章,陈向宜,等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施. 2006, 30(24): 16-21.
    [84]唐葆生.伦敦南部地区大停电及其教训.电网技术, 2003, 27(11): 1~6.
    [85] Thmas L C. Games-theory and applications. Ellis, Horwood Limited, 1984.
    [86] Osbome M J, Rubinstein A. A course in game theory. The MIT Press, 1994, 277-298.
    [87]范如国,韩民春.博弈论.武汉大学出版社, 2006.
    [88]王则柯,李杰.博弈论教程.中国人民大学出版社, 2004.
    [89]傅书逖.势能界面法PEBS暂态稳定分析的综述及展望.电力系统自动化, 1998,22(9):16-18.
    [90]薛禹胜.运动稳定性量化理论-非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社, 1999:45-79.
    [91]薛禹胜.运动稳定性量化理论.江苏:江苏科学技术出版社, 1999:45-80.
    [92]傅书逐,倪以信,薛禹胜.直接法稳定分析.北京:中国电力出版社, 1999:39-77.
    [93]常辉.电力系统暂态稳定分析的在线应用研究. [硕士学位论文],北京:华北电力大学, 2006.
    [94]毕兆东.电力系统暂态稳定控制决策算法. [博士学位论文],浙江:浙江大学, 2002.
    [95] Teo K L, et al. A Unified Computational Approach to Optimal Control Problem. Longman Scienific & Technical Copublished in the United States with John Wiley & Sons Inc, New York, 1991.
    [96] Goh C J, et al. Control Parameterization: A Unified Approach to Optimal Control Problems with General Constraints. Automatica, 1988, 24(1).
    [97]孙即详,等.模式识别中的特征提取与计算机视觉不变量.国防工业出版社,北京.
    [98]边肇祺,张学工,等.模式识别(第二版).清华大学出版社,北京, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700