用户名: 密码: 验证码:
喇嘛甸油田低效无效循环带识别方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆喇嘛甸油田是陆相砂岩油田,因其储层为河流相沉积岩层,具有明显的非均质特点。由于长期注水开发,自1997年起已经进入到特高含水开发期,储层物性参数、孔隙结构、流体分布等均产生一系列的变化,这些变化在测井曲线特征上都会有所反映。检查井岩心分析、室内物模试验和现场动态监测资料均表明,以厚油层为主的非均质多油层砂岩油田综合含水上升到90%以后,存在着严重的无效和低效循环问题,并在厚油层和薄油层中都有分布。大量的注入水沿高渗透、高含水的便捷通道(简称“低效无效循环带”)无效或低效循环。低效无效循环带的存在,导致油田采收率低、生产成本上升,开发效益下降,给油田开发带来巨大压力。运用常规裸眼测井资料的测井曲线特征进行定量识别低效无效循环带的研究,对于三次采油、堵水调剖、注采结构调整以及提高油层波及体积和石油采收率等具有重要的现实意义。
     研究分成薄油层和厚油层两个部分,研究区块有两个,分别以喇嘛甸油田北东块低效无效循环识别与治理试验区,总共有油水井212口,其中的56口二次加密井和41口聚合物驱井(研究厚油层)和喇嘛甸油田北北块油气缓冲区,总共有油水井135口(研究薄油层),其中的二次加密井、聚驱井和聚驱上返新钻井56口井作为研究资料。从萨Ⅱ到高Ⅰ共5个油层组、38个沉积单元作为低效无效循环层识别与治理的研究对象。主要开展了以下几方面的工作:
     1、对该区块开展油藏精细地质、开发历程和生产动态研究,绘制精细地质图幅54张。分析同位素吸水剖面资料85口,分析密闭五组合测井资料25口,绘制油层连通图120多张。
     2、在全油田范围内收集5口2000年以后所钻取的岩心井资料,统计储层的岩性、物性储层参数,并提取相对应的各条测井的读值,建立完整的数据库,重新进行岩电关系研究,依据低效无效循环带形成机理,利用其微观变化在测井曲线上和储层参数上的反映,找到低效无效循环带与油层水淹特征相区别的曲线特征,制定了低效无效循环带判别标准。
     3、研究形成了低效无效循环带定量识别方法,重新建立模型解释储层泥质含量、有效孔隙度、总孔隙度、束缚水饱和度、含水饱和度、含油饱和度、渗透率、粒度中值、孔隙半径、出水率等18个静动态参数,并编制解释程序。本研究实现了低效无效循环带判别的计算机化,经过和岩心井的岩心分析资料对比,其计算精度是完全可以达到低效无效循环带判别的要求。
     4、对喇嘛甸油田低效、无效循环识别与治理试验区212口井进行低效无效循环带单井解释,并在精细地质上绘制出低效无效循环带,分析其平面分布特征。在三年的识别研究、治理和应用过程中,绘制低效无效循环带平面分布图幅6个区块300余张。目前已经作为正常生产项目,与水淹层一同进行解释。
     5、利用低效无效循环带纵向识别成果和平面分布图,通过编制堵水、长胶筒封堵、细分层注水、补孔、多次射孔、封堵等措施方案,总结出多种有效地低效无效循环带治理方法、工作流程和管理制度,实现了三个区块的低效无效循环带的有效治理,并成厚油层内部剩余油挖潜、开发方案编制、生产动态分析等的基础资料,为油田的各项开发工作提供保障。
The Lamadian oilfield is a nonmarine sandstone oilfield, which is nonhomogeneous due to river facies sedimentary formation of the reservoir. It has been waterflooded for 30 years and has been in particular-higher containing water development period since 1997. During this period, petrophysical parameters of the reservoir, pore structure, fluid distribute etc. have been through a series of varieties which can be reflected in the logging curve. Core analysis of examining well, indoors substance module experiment and field dynamic monitoring material show that there exist serious inefficacy and low efficacy in inhomogeneous multilayer sandstone oil field made of mainly thick layer when the comprehensive saturation is up to 90%. Abundant injected water circulates ineffectively or low effectively through convenient channel with high permeability and high saturation (which is called bighole in abbreviation).The existence of bighole results in low recovery ratio, production cost rising and development benefit descending, which bring substantial pressure to the oil field development. Coupled with conventional open hole logging curves, the research on bighole is useful for tertiary recovery, blocking profile adjusting and injection structure adjusting, and improving the volume of reservoir sweep and reservoir recovery.
     It is divided into two segments, thin layer and thick layer. The two research blocks are as following: test area of identifying and administering the bighole in the northeast of Lamadian oilfield, there are 212 oil/water wells in all, of which 56 infill wells and 41 polymer flooding wells as data (thick layer); gas/oil buffer zone in the north-north of Lamadian oilfield, there are 135 oil/water wells in all (thin layer), of which 56 infill wells, polymer flooding wells, polymer returning fluid wells as data. The research subjects of identifying and administering the bighole are 5 reservoir groups and 27 sedimentation units. The researches are as following:
     1. The blocks were researched in fine reservoir geology, exploitation course and production performance, 54 fine reservoir geology maps were made. 85 wells were researched in isotope sop profile, 25 in confinement five combination logging, and more than 120 reservoir connection maps were made.
     2. Collecting core well data of 5 wells since 2000 all over the oilfield, counting petrophysical parameters of the reservoir and extracting the value of each relative curve, establishing complete database to analyze the relationship between lithologic character and electric property, finding out a curve to distinguish the inefficient and ineffective circling loop and the water flooded zone based on the formation mechanism of inefficient and ineffective circling loop and the microcosmic changes reflected in the logging curve and reservoir parameters, and setting up a criterion to identify the inefficient and ineffective circling loop.
     3. Establishing ways to identify the inefficient and ineffective circling loop, rebuilding a model to explain the 18 static and dynamic parameters such as reservoir shale content, active porosity, total porosity, bound water saturation, oil saturation, permeability, median grain diameter, pore body radius, water productivity etc. and making up a interpretation program. This research has realized computerization and when it is compared with the core well data, the calculation accuracy can completely meet the demand which is required to identify inefficient and ineffective circling loop.
     4. Interpreting 212 wells of the test area of identifying and administering the bighole in the northeast of Lamadian oilfield, drawing inefficient and ineffective circling loop in fine geology map and analyzing plane pattern. About 300 inefficient and ineffective circling loop’s plane maps of 6 blocks were drawn during three-year period of recognizing, administering, and application. As normal producing project the research is interpreted together with water flooded layer at present.
     5. Combining with inefficient and ineffective circling loop’s vertical data recognition and plane maps and measures such as water shutoff, long rubber barrel’s formation sealing, subdivision of reservoir’s infusion, perforations, repeat gun perforation etc., many kinds of treatment methods, working processes and management system about inefficient and ineffective circling loop’s administering were summed up. It has realized the effective administration of inefficient and ineffective circling loops in three blocks. It also becomes basic foundation for tapping the remaining oil in thick layer, compiling development plan, and analyzing production performance etc., and provides support for further and comprehensive development of oilfield.
引文
[1]雍世和,孙宝佃。用滑动平均滤波法消除测井曲线上的毛刺干扰。华东石油学院学报,1983(1):11~19。
    [2]雍世和编著。最优化测井解释。石油大学出版社,1995年5月第1版,4~47。
    [3]雍世和,张超谟主编。测井数据处理与综合解释。石油大学出版社,1996.9 49~80。
    [4]雍世和,孙宝佃。用计算机对放射性测井曲线进行环境影响校正。测井技术,1984年第4期。47~54。
    [5]雍世和,靳秀英。用计算机对双感应-浅聚焦测井曲线进行泥浆浸入影响校正。测井技术,1985年第3期。
    [6]雍世和。用计算机对双侧向曲线进行泥浆浸入影响校正。华东石油学院学报,1985年第3期。
    [7]王群,庞彦明,郭洪岩,杨知盛编著。矿场地球物理测井。石油工业出版社,P80~85。
    [8]李周波主编。钻井地球物理勘探。地质出版社,P80~83,P68~72。
    [9]宋延杰,王群等, S-B电导率模型:确定泥质砂岩储层含水饱和度的新方法.测井技术, 1995年
    [10]雍世和等。测井资料解释与数字处理。石油工业出版社,1982:24~35。
    [11]陈一鸣等。矿场地球物理测井技术测井资料解释。石油工业出版社,1994:246~263。
    [12]徐守余.孤东油田七区中水淹层测井资料综合解释及评价1999年10月
    [13]吴浩江,周芳德.应用RBF神经网络智能识别油气水多相流模型[J].石油学报,2000,21(3):57~60.
    [14]王智平等.遗传算法在BP网络权值学习中的应用[J].甘肃工业大学学报,2001,27(2):20~22.
    [15]焦李成神经网络系统理论[M]西安电子科大出版社,1995
    [16]窦之林,曾流芳.低效无效循环带诊断和描述技术研究.石油勘探与开发,2001,28(1):75~77
    [17] CrazeR C, Permormance of Lime stone Reservoir, Trans. AIME, 189(1950)287
    [18] Larson,RGetal, Percolation Theory of Two-phase Flowin Porous Media,Chem. EngSci,36(1981)75~85
    [19]荆万学等.应用测井新方法的薄层水淹层综合解释方法研究.研究成果报告,1994.2
    [20] Brigham.WE,Dehganl.MA.Tracer testing for reservoir description [C].SPE14102,1987.
    [21] Yousef.AA,Gentil.P.A capacitance model to infer inter-well connectivity from production and injection rate fluctuations[C].SPE95322,2005.
    [22] Maghsood Abbaszadeh-Dehghani, Brigham W E. Analysis of well-to-well tracer flow to determine reservoir [J].JPT,1984.
    [23] Arhcei,GE.用电阻率测井曲线确定若干储层特征参数.李宁译.地球物理测井,1991,15(5):1~5.
    [24] K.W.Weissenbuger. The Engineering Approachto Sand Production Perdietion[c].SEP16892,1987.
    [25] Koojiman,A.P.etal.Large-Scale Lbaoratoy Snad Prduction Test[C].SPE247981992.
    [26] Veeken , C.A.M.etal , Snad Porduction Perdictio Review:Developing an Integrated Approach[C].SPE22792,1991.
    [27] Moritat,N , Whitfill,D.L..Paramertie Sudty of Sand-Production Prediction:Analtical Approach[C].SPE16990,1989.
    [28] GilliesR.Getal.Oil water and sand flow experiments in a model horizontal well[J].J..Can,Pet.Tech.,1995,34(9),56~63.
    [29] Brigham W.E.Abbaszadeh-Dehghnai M.Tracer Testin for Resevoir Description.JPT.MAY.1987
    [30] Selby R J,Foaruq Ali S M.Mechnaics of sand production and the flow of fines in porous media[J].JCPT,1988,27:55
    [31]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982..
    [32]姜汉桥,陈月明.分析注水井调剖的新方法.石油大学学报(自然科学版)[J]1994,18(Suppl):13~16.
    [33]刘顺生,胡复唐.洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,14(4):350~356.
    [34]刘顺生,杨玉珍.储层中高渗透层段剖面连通概率计算方法[J].新疆石油地质,1991,12(1):31~33.
    [35]陈永生.油田非均质对策论[M].北京:石油工业出版社,1993.
    [36]赵福麟,张贵才,孙铭勤,等.粘土双液法调剖剂封堵地层大孔道的研究[J].石油学报,1994,15(1):56~65.
    [37]姜汉桥,姚军,陈月明.胜二区沙二3封堵大孔道方案优化设计[J].石油大学学报(自然科学版),1994,18(Supp1):90~95.
    [38]梁开方,张勇,田玉珠,等.粘土颗粒堵剂封堵大孔道配套技术[J].石油钻采工艺,1994,16(6):62~72.
    [39]田根林,郑德温,于大森.阴、阳离子聚合物地层内凝胶化改善水驱效果的研究[J].油田化学,1994,11(1):55~60.
    [40]宁廷伟.胜利油田开发和应用的粘土类堵水、调剖剂[J].油田化学,1994,11(4):357~361.
    [41]林伟民.胡状集油田胡十二块以调剖堵水为中心的综合治理研究[J].断块油气田,1994,1(2):40~46.
    [42]赵秀兰.大港油田港东开发区调剖堵水区块治理[J].油气采收率技术,1995,2(3):32~40.
    [43]孙卫.膨胀颗粒与甲叉基聚丙烯酰胺复合堵剂堵水研究[J].西北大学学报(自然科学版),1998,28(1):80~82.
    [44]李宇乡,刘玉章,白宝君,等.体膨型颗粒类堵水调剖技术的研究[J].石油钻采工艺,1999,21(3):65~68.
    [45]姜汉桥,刘奋,洪光明,等.用概率模型方法确定卞东油田高渗通道地质参数的研究[J].石油勘探与开发,1997,24(1):55~58.
    [46]陈永生.油藏流场[M].北京:石油工业出版社,1998.
    [47]赵国瑜.井间示踪剂技术在油田生产中的应用[J].石油勘探与开发,1999,26(4):92~95.
    [48]张学锋,祝明华,杨顺贵,等.砂岩油藏高含水期封堵大孔道工艺技术研究及应用[J].石油钻采工艺,1999,21(5):87~90.
    [49]何长,李平,汪正勇,等.大孔道的表现特征及调剖对策[J].石油钻采工艺,2000,22(5):63~66.
    [50]尹庆文,潘淑琴,董福印.大孔道地层注水剖面测井技术[J].测井技术,1999,23(2):146~149.
    [51]徐婷,赵福麟,李秀生,等.注水开发油田二次孔道的形成机理[J].石油大学学报(自然科学版),2001,25(5):57~59.
    [52]曾流芳,赵国景,张子海,等.疏松砂岩油藏大孔道形成机理及判别方法[J].应用基础与工程科学学报,2002,10(3):266~268.
    [53]窦之林,曾流芳,张志海,等.大孔道诊断和描述技术研究[J].石油勘探与开发,2001,28(1):75~77.
    [54]刘月田,孙保利,于永生,等.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54~59.
    [55]王祥,夏竹君,张宏伟,等.利用注水剖面测井资料识别大孔道的方法研究[J].测井技术,2002,26(2):162~164.
    [56]赵永强,王秀鹏,史田,等.放射性同位素示踪剂技术研究油水井间高渗透层[J].断块油气田,2002,9(2):77~80.
    [57]徐保庆,伍泰荣,田树全.自然伽马测井在油田开发中的应用[J].断块油气田,2002,9(5):86~88.
    [58]雷有为,刘寿平,姚京坤,等.五参数注入剖面组合测井资料解释[J].江汉石油学院学报,2003,25(1):67~68.
    [59]艾长虹,高维衣.吸水剖面曲线与大孔道定量分析技术的应用[J].油气田地面工程,2003,22(4):51~52.
    [60]商志英,万新德,何长虹,等.应用水力探测方法确定储层大孔道及剩余油分布状况的研究———北2-20-P60井组典型实例解剖[J].大庆石油地质与开发,2004,23(2):30~32.
    [61]尹文军,陈永生,王华,等.水力探测大孔道及剩余油饱和度解释模型的建立[J].油气地质与采收率,2005,12(1):63~65
    [62]金山.“大孔道”测试方法的优化[J].国外测井技术.2004,10: 61~64
    [63]宋考平,杨秋荣,付青春等.模糊综合评判方法判断低效循环井层[J] .钻井工艺,2006,29:35~37
    [64]孟凡顺,孙铁军,朱炎等.利用常规测井资料识别砂岩储层大孔道方法研究[J].中国海洋大学学报,2007(37)3:463~468
    [65]彭仕宓,史彦尧,韩涛等.油田高含水期窜流通道定量描述方法[J].石油学报,2007(28)5:79~83
    [66]张英志,郑希科,李众焕等.油井高含水分析及测井检测方法[J].测井技术2006(30)1:97~99
    [67]黄修平,黄伏生,卢双舫等.喇嘛甸油田特高含水期注采无效循环识别方法[J].大庆石油地质与开发2007(26)1:76~78
    [68]周嘉玺,赵平起,蔡明俊主编.大港油藏开发后期挖潜技术研究—大港油田开发优秀论文选编[C]1北京:石油工业出版社,2000:2~51.
    [69]宋万超,孙焕泉,孙国,等.油藏开发流体动力地质作用[J]石油学报,2002,23(3):52~55.
    [70]徐守余,李红南.储集层孔喉网络场演化规律和剩余油分布[J].石油学报,2003,24(4),48~53.
    [71]郭尚平,黄延章,周娟,等.物理化学渗流微观机理[M].北京:科学出版社,1990:183~186.
    [72]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001.
    [73]白振强.河流一三角洲储层大孔道形成机理研究[J].断块油气田,2007(14)4:7~9
    [74]史丽华.微量物质井间示踪技术在识别油层大孔道中的应用[J].大庆石油地质与开发,2007(26)4:130~132
    [75]安亚光,李众焕,王晓荣.油井高含水原因浅析及测井检测技术[J].大庆石油地质与开发,2006(25)5:47~49
    [76]韩镇石,具海啸,刘刚,等.应用测井资料识别喇嘛甸油田大孔道[J].大庆石油地质与开发,2006(25)4:72~74
    [77]曾流芳,陈柏平,王学中.疏松砂岩油藏大孔道定量描述初步[J].油气地质与采收率2002(9)4
    [78]王学忠.无效注水量估算研究[J].断块油气田,2007(14)1:67~69
    [79]郑浩,宋考平,马春华等.应用数值模拟方法判定特高含水期“低效、无效循环”井层的形成条件[J].石油天然气学报,2007(29)2:91~96
    [80]戴家才,郭海敏,张晓岗.多参数吸水剖面组合测井方法研究[J].中国测试技术,2007(23):10~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700