用户名: 密码: 验证码:
电弧法制备纳米粉体的稳定化处理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以直流电弧等离子体法制备金属纳米粉、金属-陶瓷复合纳米粉的工业化技术和金属纳米粉应用为目的,对纳米粉的稳定化处理方法、抗氧化性能及应用进行了研究。
     采用直流电弧等离子体制备了松油醇(C_(10)H_(18)O)包覆Cu-Ag复合纳米粉,C包覆Ni、Fe纳米粉,Mg纳米粉、Mg-Mg_2Si-Si复合纳米粉和Fe-TiC复合纳米粉。利用X射线衍射(XRD)、透射电子显微镜(TEM)、X光电子谱(XPS)、红外光谱(IR)、化学分析、氧含量分析、示差热-热重(DSC-TG)和振动样品磁强计(VSM)等测试技术,研究了纳米粉的相组成、形貌、结构、抗氧化性能和磁性等。用松油醇包覆的Cu-Ag复合纳米粉作为导电相制备了导电浆料,研究了其制备方法和导电性能;用C包覆的Ni、Fe纳米粉作为磁性颗粒制备了耐腐蚀、高粘度磁性液体,研究了其制备方法和耐腐蚀性能。
     针对金属纳米粉用于制备导电浆料时,其表面的氧化层严重影响导电性能,开发了一种用直流电弧等离子体制备金属纳米粉的稳定化方法,即气-液两相稳定法。并用该方法制备了松油醇包覆的Cu-Ag复合纳米粉,制得的复合纳米粉具有双层的壳结构,内层是一层薄的氧化层,外层是松油醇分子层。具有双层壳结构的Cu-Ag复合纳米粉比单氧化层结构的粉体的抗氧化性和导电性好。
     针对用直流电弧等离子体在纯CH_4气氛下制备的C包覆Ni、Fe纳米粉中含有大量的游离碳,严重降低其饱和磁化强度的问题,研究了将工作气氛改变为50%CH_4+20%H_2+30%Ar的混合气氛的稳定化方法。制备出的C包覆Ni、Fe纳米粉中的游离碳含量分别降低了11wt%和12wt%,饱和磁化强度分别提高了5.1A·m~2/kg和45.5A·m~2/kg。
     针对Mg纳米粉具有极高的表面活性、易氧化、易燃、易爆和不易批量制备的问题,研究了用直流电弧等离子体批量制备Mg纳米粉的工艺、粉体的稳定化处理方法和抗氧化性。结果表明,在Ar、Ar+H_2和Ar+CH_4三种不同工作气氛下制备的Mg纳米粉,在含有微量氧气和空气的氩气中稳定化处理后可得到稳定的Mg纳米粉,其中在Ar+CH_4气氛下制备的Mg纳米粉的稳定性和抗氧化性最好。
     针对机械合金化法制备Mg基复合纳米粉费时、能耗大的问题,研究了用直流电弧等离子体以纯Mg为原料,在含有SiH_4的气氛中合成Mg-Mg_2Si-Si复合纳米粉的工艺、稳定化处理方法和抗氧化性。结果表明,用含有微量氧气和空气的氩气稳定化处理后可得到稳定的Mg-Mg_2Si-Si复合纳米粉。在室温大气条件下,粉体中Mg_2Si相的含量越高,则抗氧化性越好。在流动空气中,粉体温度高于410℃左右时,粉体氧化速度加快。
     针对球磨法制备TiC弥散强化铁基合金粉末时间长、能耗大的问题,研究了用直流电弧等离子体以Fe-Ti合金为原料,在含有CH_4的气氛中合成Fe-TiC复合纳米粉的工艺、稳定化处理方法和抗氧化性。结果表明,用含有微量氧气和空气的氩气稳定化处理后可得到稳定的Fe-TiC复合纳米粉。粉体由Fe、TiC和少量Fe_3C组成,复合粒子的形态主要有亚铃形和多面体形,复合粒子的生成机制遵寻VLS机制。并对气相中可能发生的化学反应进行了热力学计算。在室温大气条件下,粉体中TiC相的含量越高则抗氧化性越好。在流动空气中,温度高于330℃时样品氧化明显加快,在410℃左右,TiC纳米粒子氧化分解。
     针对目前贵金属价格猛增,使得电子浆料的成本不断提高这一问题,初步进行了纳米低成本金属电子浆料的制备研究。用松油醇包覆的Cu-Ag复合纳米粉作为导电相、用乙基纤维素为添加剂的松油醇溶剂为载体,配制了导电浆料,该导电浆料在烧结温度180℃-200℃、保温时间60min-70min、真空度为1.33Pa条件下获得了电阻率为(1.10-2.16)×10~(-4)Ω·cm的导电膜。
     针对目前国内无耐腐蚀、高粘度磁性液体这一问题,初步进行了耐腐蚀、高粘度磁性液体的制备研究。用C包覆的Ni、Fe纳米粉作为磁性颗粒、油酸为表面活性剂、全氟聚醚油和少量硅脂的混合液为基液制备了耐腐蚀、高粘度磁性液体。制备的磁性液体具有较好的耐腐蚀性能。磁性液体在25℃粘度为9Pa·S-25Pa·S,在85℃粘度为2Pa·S-16Pa·S,室温下饱和磁化强度为Ni磁性液体5.19A·m~2/kg-17.83A·m~2/kg、Fe磁性液体15.36A·m~2/kg-59.88A·m~2/kg。
With a research background of industrial production and application of metal nanopowders, metal-ceramics composite nanopowders fabricated by arc discharge method,the stabilization, oxidation resistance and application of the nanopowders are studied in this thesis.
     A series of objective materials encapsulated nanopowders are prepared by arc discharge. The phase composition,core-shell structure and morphology are characterized by X-ray diffraction(XRD) and transmission electron microscope(TEM).X-ray photoelectron spectroscopy(XPS),infrared spectrum(IR),oxygen content analysis and differential thermal-thermogravimetry analysis(DSC-TG) are used to analysis the surface layer,oxidation resistance.Magnetic behavior is investigated by using vibrating sample magnetometer(VSM). The conductive paste is prepared by using Cu-Ag composite nanopowders coated with terpineol (C_(10)H_(18)O) as conductive phase,the fabrication technology and conductive characters are also discussed.The magnetic liquid of the corrosion resistance and high viscosity is prepared using Ni,Fe nanopowders covered by carbon as magnetic-particles,the preparation technology and corrosion resistance are researched.
     A new stabilization method,called gas-liquid phase stability method for metal nanopowders by arc discharge is applied.The new method is mainly to solve the problem that the oxide layer of the nanopowders surface has a strong impact on conductibility during the preparing conduct paste by the metal nanaopowder.Cu-Ag composite nanopowders coated with terpineol are prepared by the new method.It turn out these nanopowders have double-shells structure,a thinner oxide layer is encapsulated by terpineol molecular layer.These nanopowders with double-shells structure show better oxidation resistance and conductibility comparing with single oxide layer structure.
     To aim at the problem that a lower saturation magnetization is always obtained under pure CH_4 atmosphere by arc discharge.A great of free carbons in nanopowders play the most important role.We try to change the working atmosphere with 50%CH_4+20%H_2+30%Ar mixture atmosphere.The experiment shows 11wt%and 12wt%of free carbon content is decreased,saturation magnetization increased 5.1A·m~2/kg and 45.5A·m~2/kg for Ni and Fe nanopowders.
     The Mg nanopowders have ultra high surface activity,easy oxidation,flammability,easy burst and difficultly to be prepared in large quantity.A systematic preparation and stabilization technology to avoid these problems by arc discharge is researched in this thesis.The experiment results that the Mg nanopowders prepared in Ar,Ar+H_2 and Ar+CH_4 can be stabilized in Ar with little O_2 and air.The Mg nanopowders prepared in Ar +CH_4 atmosphere have the best stability and oxidation resistance.
     The energy exhaust and time consuming during preparing Mg based composite nanopowders by the mechanism alloying method are to be solved problem.A technology which Mg-Mg_2Si-Si composite nanopowders are synthesized by arc discharge is developed.Pure Mg takes as a raw material and is prepared under the mixture with SiH_4 atmosphere.The results show that the Mg-Mg_2Si-Si composite nanopowders can be stabilized in Ar with little O_2 and air.At room temperature and under atmospheric conditions,the more Mg_2Si phases in powder, the better oxidation resistance.In flow air condition,the powders are evidently oxidized when temperature is higher than 410℃.
     There exist many problems to prepare TiC dispersion strengthening iron base nanopowders by the ball milling method such as energy exhaust and time consuming etc.Fe-TiC composite nanopowders are synthesized under different condition by arc discharge.Fe-Ti alloy is taken as a raw material,and is prepared the Fe-TiC composite nanopowders in mixture with CH_4 atmosphere.The results show that the Fe-TiC composite nanopowders can be stabilized in Ar with little O_2 and air.The composite nanopowders consist of Fe,TiC and little Fe_3C.The morphology of composite nanoparticles owns two types.One is dumbell-like,another is polyhedron.The growth mechanism of composite nanoparticles obeys VLS.Thermodynamic calculation of chemical reaction in gas phases has been done to analyze the possibility of reactions.At room temperature and under atmospheric conditions,the more TiC phases in powder,the better oxidation resistance.In flow air condition,the powders are evidently oxidized when temperature is higher than 330℃.TiC nanoparticles are oxidized to dissolve at about 410℃.
     To aim at the problem that the cost of the conduct paste increase with the price of the precious metal,the preparation of the conduct paste for nanopowders of inexpensive metal is studied preliminarily.The conduct paste is synthesized by Cu-Ag composite nanopowders coated with terpineol as conduct phase and terpineol solvent additive ethylcellulose as bearer.A thick film with resistivity(1.10-2.16)×10~(-4)Ω·cm can be obtained after the nanopowders conductive paste sintered at 180℃-200℃for 60 min-70 min under 1.33Pa.
     At present,there is no magnetic liquid with corrosion-resistant and high viscosity in our country.The preparation of magnetic liquid with corrosion resistant and high viscosity is studied preliminarily.Ni and Fe nanometer particle coated with carbon are to be magnetic particle,oleic acid as surfactant,miscible liquids of polyether oil and little silicone grease as base solution.The prepared magnetic liquid shows high resistant corrosion ability.The viscosity of magnetic liquid is 9Pa·S -25Pa·S at 25℃and 2Pa·S -16Pa·S at 85℃.The saturation magnetization of Ni magnetic liquid is 5.19A·m~2/kg-17.83A·m~2/kg and Fe magnetic liquid is 15.36A·m~2/kg-59.88A·m2Z/kg.
引文
[1]lijima S.Helical microtubules of graphic carbon.Nature,1991,354(6348):56-58.
    [2]Birringer R,Gleiter H,Klein H P et al.An approach to a novel solid structure with gas-like disorder.Phys.Lett.,1984,102A(8):365-369.
    [3]Saito Y,Yashikawa T,Okuda M et al.Synthesis and electron-beam incision of carbon nanoeapsules encaging YC_2.Chem.Phys.Lett.,1993,209(1-2):72-76.
    [4]Cox D M,Trevor D J,Whetten R L et al.A aluminum clusters:magnetic properties.J.Phys.Chem.,1986,84(8):4651-4656.
    [5]Uyeda R.Crystallography of metal smoke particles.Tokyo:Terra Scientific Publishin Company,1987.
    [6]Si P Z,Zhang M,You C Y et al.Amorphous boron nanoparticles and BN encapsulating boron nanopeanuts prepared by are decomposing diborane and nitriding.Mater.Sci.,2003,38(4):689-692.
    [7]Zhao J J,Liu B C,Zhai H J et al.Magic numbers and a growth pathway of high-nuclearity titanium carbide cluster.Solid state communication,2002,124(7):53-256.
    [8]Cohen M,Chou M Y,Knight W D et al.Physics of metal cluster.Phys.Chem.,1987,91(12):3141-3149.
    [9]Frnk S,Poncharal P,Wang Z L et al.Carbon nanotube quantum resistor.Science,1998,280(5370):1744-1746.
    [10]Zyster R D,Romero H,Ramos C A et al.Evidence of large surface effects in Co-Ni-B amorphous nanoparticles,Magn.Magn.Mat.,2003,266(1-2),233-242.
    [11]Halperin W P.Quantum size effects in metal particles.Rev.of Modern.Phys.,1986,58(3):533-605.
    [12]张立德,牟季美.开拓原子和物质的之间领域--纳米微粒与纳米固体.物理,1992,21(3):167-173.
    [13]Zhu X,Birringer R,Herr U et al.X-ray diffraction studies of the structure of nanometers-sized crystalline materials.Phys.Rev.B,1987,35(17):9085-9090.
    [14]Zhang Z K,Cu Z L,Chen K Z et al.Structure ofnano-conductive fibers.Chinese Science Bulletin,1997,42(18):1535-1537.
    [15]Yeh T S,Sacks M D.Low temperature sintering of aluminum oxide.Journal of the American Ceramic Society,1988,71(10):841-844.
    [16]Rochefort A.Electric and transport properties of carbon nanotubes peapods.Phys.RevB,2003,67:115401-115407.
    [17] Chiu P W, Yang S F, Yang S H et al. Temperature of conductance character in nanotube peapods. Appl. Phys. A, 2003, 76: 463-467.
    [18] Neel L, Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites, Ann. Geophys. 1949, 5(1): 99-136.
    [19] Brown W F. Thermal fluctuations of a single domain particle. Phys. Rev., 1963, 130(5): 1677-1686.
    [20] Qiu Z Q, Du Y W, Tang H, Walker J C. A Mossbauer study of fine iron particles, J. Appl. Phys, 1988, 63(8): 4100-4104.
    [21] Uchida H, Curtis C J, Kamat P V et al. Opitical properties of GaAs nanocrystals. The Journal of Physical Chemistry, 1992,96(3): 1156-1160.
    [22] Hou B, Ji X, Li J et al. ESR study on nanocrystalline and amorphous Cr_2O_3. Nanostructured Materials, 1995, 5(5):599~605.
    [23] Saito Y, Mihama K, Uyeda R. Formation of ultrafine metal particles by gas-evaporation VI bcc metals, Fe,V,Nb,Ta,Cr,Mo and W. Japan. Appl. Phys., 1980, 19(9):1603~1610.
    [24] Klein L C. Sol-gel coatings, in thin film processes II, eds Vossen J L and Kern W. Boston: Acadmeic Press, 1991:501-522.
    
    [25] Jones R W. Fundamental principles of Sol-Gel technology. London: Institute of Metals, 1992:208-210
    [26] De G, Kundu D, Karmakar B. Transparent silicagel tubes by the sol-gel process. Journal of Materials Science Lerrers, 1993, 12(9): 654-655.
    [27] Paturi P, Raittila J. Preparing superconducting nanopowder based YBCO/Ag tapes. Physica C , 2002 ,372-376.
    [28] Parll T M. Transsmission infrared study of acid-catalyzed sol-gel silica coatings during room ambient drying. J.Mater.Res., 1992,7(8):2230~2239.
    [29] Brinker C J, Hurd A J, Schunk P R et al. Review of sol-gel thin film formation. J. Noncryst. Solids, 1992, 147-148:424-436.
    [30] Takeyuki Y, Hideaki M, Katsuki K. Control of the pore characteristics of thin alumina membranes with ultrafine zirconia particles prepared by the reversed micelle method. Journal of Membrane Science, 1993, 85(2): 167-173.
    [31] Toshiyuki M, Kazuyasu F, Peng Yumin. Characterization and catalytic properties of Al_2O_3 ultrafineparticles prepared by the microemulsion method. Journal of Alloys and Compounds, 1998, 268(1):116-122.
    [32] Schlump W, Grewe H. Technical note: nanocrystalline materials by mechanical alloying. Int. J. MaterProd. Technol., 1990,5(3):281-292.
    [33] Oleszak D, Matyja H. Nanocrystalline Fe-based alloys obtained by mechanical alloying. Nanostru. Mater., 1995,6:425-428.
    [34] Schwarz R B, Johson W L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett., 1983,51(5):415-418.
    [35]Gayle F W,Biancaniello F S.Stacking faults and crystalline size in mechanical alloyed Cu-Co.Nanostru.Mater.,1995,6:429-432.
    [36]Kotov Y A,Samatov O M.Production of nanometer-sized AIN powders by the exploding wire method.Nanostructured Materials,1999,12:119-122.
    [37]Kotov Y A,Beketov L V.Synthesis of Al_2O_3,TiO_2 nanopowders by Electrical explosion of wires.Materials Science Forum,1996,225-227(72):913-916.
    [38]Y A Kotov,E I Azarkevich.Producing AI and Al_2O_3 nanopowders by electrical explosion of wires.Key Engineering Materials,1997,132(1):173-176.
    [39]王群,杨海滨,鲍海飞等.电爆炸一步法制备Cu-Zn合金超细粉.金属学报,1999,35(12):1271-1273.
    [40]Li Jiaye,Zhao Yongmei,Liu Xingfang.Uniformity investigation in 3C-SiC epitaxial layers grown on Si substrates by horizontal hot-wall CVD.Chinese Journal of Semiconductors.2007,28(1):1-4.
    [41]陆忠乾,江东亮,潭寿洪等.CVD法合成的无定型纳米粉的晶化,硅酸盐学报,1998,26(1):118-123.
    [42]Oh J H,Choi D J.Fabrication of multi-layer CVD-SiC films with different microstructures by manipulating the input gas ratio.Journal of Materials Science Letters.2000,19(22):2043-2046.
    [43]田雅広.新しい金属超微粒子の製造法.日本金属学会会報,1983,22(5):412-420.
    [44]Ohno S,Uda M.Preparation for Ultrafine Particles of Fe-Ni,Fe-Cu and Fe-Si alloys by hydrogen plasma-metal reaction.Jpn.Inst.Metals,1989,53(9):946-952.
    [45]Uda M.Prodution of ultrafine meal and alloy powders by hydrogen thermal plasma.Nanostructured Materials,1992,1(1):101-106.
    [46]孙维民,金寿日,于莹.Ni-TiN超细粉的制备与特性.粉末冶金技术,2000,18(3):183-186.
    [47]Jin shouri,Sun weimin,Li zhijie et al.Continuous production of ultrafine metal powders by hydrogen plasma-metal reaction.Proc.96 china-Japan symposium on particulogy,Beijing,1996:201-204.
    [48]孙维民,金寿日,李志杰等.超细铁粉的连续制备.粉末冶金技术,1997,26(3):199-201.
    [49]孙维民,金寿日,李志杰等.提高Ni、Cu超微粉生产率的方法研究.应用科学学报,2000,18(2):164-166.
    [50]Dong X L,Jin S R,Sun W M et al.The preparation and characterization of ultrafine Fe-Ni particles.Journal of Materials Research,1999,14(2):398-406.
    [51]Zhang Z K,Cui Z L,Chen K Z.Behaviour of hydrogen in nano-transition metals.J.Mater.Sci.Tech.,1996,12:75-77.
    [52]Zhang Zhikun,Cui Zuolin,Hao Chencheng et al.Defect of nanocrystalline copper and silver.Science in China.1998,41(1):30-35.
    [53]李言荣,谢孟贤,恽正中等.纳米电子材料与器件.北京:电子工业出版社,2005.
    [54]Setter N,Waser R..Electroceramic materials.Acta Mater.2000,48(1):151-178.
    [55]卢磊,隋曼龄,卢柯.纳米晶Cu室温冷轧行为研究.材料导报,2003,15(4):56-58.
    [56]Lu Lei,Lu Ke.Ultrahigh strength and high electrical conductivity in copper.Science,2004,304(16):422-426.
    [57]宁远涛.银纳米材料.贵金属,2003,24(3):54-60.
    [58]孙文通.贱金属电子浆料导电机理研究.电子元件与材料,1996,16(3):14-19.
    [59]张君启,堵永国,张为军等.厚膜电阻浆料用有机载体挥发特性研究.电子元件与材料,2003,22(11):40-42.
    [60]Carroll,Alan,Hang et al.Lead-free thick film paste composition.US patent,Cl:g-02B27/14,5378408,1993.1.3.
    [61]Hormadaly,Jacob.Cadmium-free thick film paste composition.US patent,Cl:g-02B27/14,5491118,1996.2.13.
    [62]张志昆,崔作林,郝春成等.纳米铜和银的缺陷研究.中国科学,1997,27(5):424-429.
    [63]Cui Zuolin,Zhang Zhikun.Ce-Ni nanoparticles with shell strcture for hydrogen storage.Nanostrctured Materials,1996,7(3):355-361.
    [64]Ying J Y,Tschope A,Levin D.Synergistic effects and catalytic properties tailored by nanostructure processung.Nanostructured Materials,1995,6:237-246.
    [65]陈兆平,杨祖馨.汽车排气净化催化剂的研究.稀土,1991,12(1):62-63.
    [66]曹勇.纳米节油晶.当代石油石化,1997,16(1):20-24.
    [67]Jing Liqing,Sun Xiaojun,Shang Jing et al.Review of surface photovoltage spectra of nano-sized semiconductor and its application in heterogeneous photocatalysis.Solar Energy Materials and Solar Cells,2003,79(2):133-151.
    [68]Alronso Vidal.Development in solar photocata for water purification.Chemosphere,1998,37(2):387-398.
    [69]Roberto Andreozzi,Raffaele Marotta.Removal of benzoic acid in aqueous solution by Fe(Ⅲ)homogeneous photocatalysis.Water Research,2004,38(5):1225-1236.
    [70]夏延秋,金寿日,孙维民等.纳米级金属粉对润滑油摩擦磨损性能的影响.润滑与密封,1999,(3):33-35.
    [71]Goldowsky M.New methods for sealing,filtering and lubrication with magnetic fluids.IEEE Trans on Mag,1980,16(2):382-386.
    [72]Popplewell J.Ferromagnetic liquids-their magnetic properties and application.IEEE Trans on Mag,1981,17(6):2923-2928.
    [73]Hans M L,Lowrnan A M.Biodegradable nanoparticles fordrug delivery and targeting.Current Opinion in Solid Sate and Materials Science,2002,6(4):319-326.
    [74]郑幼伟,张培云.磁性药物微球靶向性治疗恶性肿瘤的研究进展.河南肿瘤学杂志,2003,16(4):30-35.
    [75]高家化,沈志坚,丁子上.陶瓷基纳米复合材料.复合材料学报,1994,11(1):1-7.
    [76]新原浩一,伊崎宽正,中平敦.高温超强度Si_3N_4-SiC纳米复合材料.粉末冶金(日),1994,36(1):1-6.
    [77]新原浩一.陶瓷复合体的纳米构造及机械性能.粉末冶金(日),1990,36(1):17-23.
    [78]Niihara K,Izaki K,Kawakami T.Hot-pressed Si_3N_4-32%SiC nanocomposite from amorphous Si-C-N powder with improved strength above 1200 ℃.J.Mater.Sci.Lett,1990,10(2):112-114.
    [79]殷声.SHS-加压法制备TiC-Ni合金的研究.硬质合金,1993,18(2):82-86.
    [80]Zhang X,Lu G,Hoffmann M J et al.Properties and interface structures of Ni and Ni-Ti alloy toughened Al_2O_3 ceramic composites.Euro.Ceram.Soc.,1995,15(3):225-232.
    [81]江东亮,郭景坤,复相陶瓷.硅酸盐学报,1991,19(3):258-268.
    [82]Lu J S,Gao L,Gui L H et al.Preparation thermal stability and sintering behavior of Ni/Al_2O_3 coated powders.Mater.Chem.Phys.,2001,72(3):352-355.
    [83]施卫贤,杨俊,王亭杰等.磁性Fe_3O_4微粒表面有机改性.物理化学学报,2001,17(6):507-510.
    [84]Xing G J,Chen G H,Song X M et al.ZnO and TiO_2 nanoparticles encapsulated in boron nitride nanocages.Microelectron.Eng.,2003,66(1-4):70-76.
    [85]Yuan F L,Hu P,Yin C L et al.Preparation and properties of zine oxide nanoparticles coated with zine aluminate.Mater.Chem.,2003,13(3):634-637.
    [86]Wang Y L,Dave R N,Pfeffer R.Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process.J.Supercrit Fluid,2004,28(2):85-99.
    [87]郑海忠,张坚,鲁世强等.核-壳式纳米Al_2O_3/PS复合粒子改性聚苯乙烯的选区激光烧结实验研究.复合材料学报,2006,23(1):63-68.
    [88]Tokoro H,Fujii S,Oku T.Microstructures and magnetic properties of BN-coated Fe naoparticles synthesized by a solid phase reaction.Mater.Chem.,2004,14(2):253-257.
    [89]Shi G M,Zhang Z D,Yang H C et al.Al_2O_3/Fe_2O_3 composite-coated polyhedral Fe nanoparticles prepared by arc discharge.Journal of Alloys and Compounds,2004,384:296-299.
    [90]Li D,Li W F,Ma S et al.Electronic transport properties of NbC(C)-C nanocomposites.Physical Review B,2006,73:193402-193405.
    [91]Suzuki A,Kasahara M.Surface characterizations of metal nanoparticles.Buntai Oyobi Bunmatzyakin,1995,42:695-700(in Japanese).
    [92]Kisker H,Gessmann T,Wurschum R et al.Magnetic properties of high purity nanocrystalline nickel.Nanostructured Materials,1995,6(8):925-928.
    [93]Trampenau J,Bauszus K,Petry W et al.Vibrational behaviour of nanocrystalline Ni.Nanostructured Materials,1995,6(5):551-554.
    [94]Dong X L,Jin S R,Sun W M et al.Surface characterizations of ultrafine Ni particles.Nanostructured Materials,1998,10(4):585-592.
    [95]Kim D K,Zhang Y,Kehr J,Lason T K et al.Characteration and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain.Magn.Magn.Mater.,2001,225(1-2):256-261.
    [96]Pedersen A S,Sethi S A,Eldrup M.Thermal dissociation of ultrafine passivated Ni powder.Nanostructured Materials,1995,5(1):79-86.
    [97]Teng M H,Host J H,Hwang J H et al.Nanophase Ni particles produced by a blown arc method.Journal of Materials Research,1995,10(3):233-236.
    [98]Dong X L,Jin S R,Sun W M et al.The preparation and characterization of ultrafine Fe-Ni particles.Journal of Materials Research,1999,!4(2):398-406.
    [99]Dong X L,Zhang Z D,Jin S R,Sun W M.Characterization of ultrafine α-Fe(C)、γ-Fe(C) and Fe_3C particles synthesis by arc discharge in methane.Journal of Materials Science,1998,33:1915-1919
    [100]Dong X L,Zhang Z D,Jin S R et al.Carbon-coated Fe-Co(C) nanocapsules prepared by arc discharge in methane.Journal of Applied Physics,1999,86(12):6701-45706.
    [101]Dong X L,Zhang Z D,Chuang Y C.Characterization of ultrafine Fe-Co particles and Fe- Co(C)nanpcapsules.Physical Review B,1999,60(5):3017-3020.
    [102]Dong X L,Jin S R,Sun W M et al.Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane.J.Mater.Res.,1999,14(5):1782-1790.
    [103]Hongrui Peng,Liancho Zhu,Zhikun Zhang.Preparation structure and property research of nano-Mg/pp composite.Composite Interface,2004,11(3):231-243.
    [104]Shao Huaiyu,Wang Yuntao,Xu Hairuo et al.Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction.Materials Science and Engineering B,2004,110:221-226.
    [105]Mulas G,Schiffini L,Tanda G et al.Hydriding processes of Mg and Zr alloys by reactive milling.Journal of Materials Science,2004,39(16-17):5251-5254.
    [106]Yu Zhenxing,Liu Zuyan,Wang Erde.Hydrogen storage properties of nanocompostite Mg-Ni-Cu-CrCl3prepared by mechanical alloying.J.Alloys and Comp.,2002,335(1-2):43-48.
    [107]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [108]Swati M,Umbrajkar,Mirko Schoenitz et al.Effect of temperature on synthesis and properties of aluminum-magnesium mechanical alloys.Journal of Alloys and Compounds,2005,402(1-2):70-77.
    [109]Hwang S,Nishimura C,Mccoum P G.Compressive mechanical properties of Mg-Ti-C nanocomposite synthesized by mechanical milling.Scripta Material,2001,44(10):2457-2462.
    [110]Lu L,Froyen L.Mechanically alloyed high strength Mg 5wt%-Al10.3 wt%-Ti4.Twt%-B alloy.Scripta Materialia,1999,40:1117-1124.
    [111]Lu L,Thong K,Gupta M.Mg-based composite reinforced by Mg_2Si.Composites Science and Technology,2003,63(5):627-632.
    [112]Lu L,Lai M O,Hoe M L.Formation of nanocrystalline Mg_2Si and Mg_2Si dispersion strengthened Mg-Al alloy by mechanical alloying.Nanostructured Materials,1998,10(4):551-563.
    [113]Yan Biao,Li Gangi.Mg alloy matrix composite reinforced with TiNi continuous fiber prepared by ball-milling/hot-pressing.Composites Part A:Applied Science and Manufacturing,2005,36(11):1590-1594.
    [114]Toshihiko Kondo,Kazuhiko Shindo,Masayasu Arakawa et al.Microstructure and hydrogen absorption-desorption properties of Mg-TiFe_(0.92)Mn_(0.08) composites prepared by wet mechanical milling.Journal of Alloys and Compounds,2004,375:283-291.
    [115]Castro J.F.R.,Yavari A.R.,Moulec A.L et al.Improving H-sorption in MgH_2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying.Journal of Alloys and Compounds,2005,389(1-2):270-274.
    [116]Mulas G,Schiffini L,Tanda G et al.Hydriding processes of Mg and Zr alloys by reactive milling.Journal of Materials Science,2004,39(16-17):5251-5254.
    [117]王富耻.材料现代分析测试方法.北京:北京理工大学出版社,2006.
    [118]李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,2004.
    [119]蔡克峰,南策文,袁润章.(Nb,Ti)C-Ni金属陶瓷的抗氧化性.硅酸盐学报,1995,23(2):224-228.
    [120]刘宁,赵兴中,江来珠等.Ni粘结的Ti(C,N)金属陶瓷的横向断裂强度与断口的分形分析.金属学报,1995,31(5):229-235.
    [121]邹光正.TiC/Fe复合材料的自蔓延高温合成工艺及应用.北京:冶金工业出版社,2002.
    [122]Roberta Licheri,Roberto Orru,Giacomo Cao et al.Self-propagating combustion synthesis and plasma spraying deposition of TiC-Fe powders.Ceramics International,2003,29(5):519-526.
    [123]Zhang Weifang,Zhang Xinghong,Wang Jianli et al.Effect of Fe on the phases and microstructure of TiC-Fe cermets by combustion synthesis/quasi-isostatic pressing.Materials Science and Engineering A,2004,381:92-97.
    [124]Wang Yisan,Zhang Xinyuan,Zeng Guangting et al.In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering.Composites:Part A:Applied Science and Manufacturing,2001,32(2):281-286.
    [125]Anshui Singh,Wallace Porter,Narendr Hotre.Thermal transitions in Fe--Ti-Cr-C quaternary system used as precursor during laser in situ carbide coating.Materials Science and Engineering A,2005,399:318-325.
    [126]宋延沛,毛协民,董企铭等.WC颗粒增强铁基复合材料的性能研究.功能材料,2005,36(10):1517-1520.
    [127]吴军,王成国,孙康宁.TiC弥散强化铁基合金粉末的研究.金属热处理学报,1996,17(4):47-51.
    [128]王成国,吴军,刘玉先等.Fe-C-Ti机械合金化粉末的电子显微式样制备及分析.粉末冶金技术,1998,16(1):52-56.
    [129]库巴谢夫斯基O,奥尔考克C B.冶金热化学.北京:冶金工业出版社,1985.
    [130]Barin I,Knacke O.Thermochemical properties of inorganic substances.Berlin:Springer-Verlag,1973.
    [131]李志杰,潘学龄,孙维民等.Al_3O_3N纳米线的制备与表征.物理学报,2005,54(1):450-453.
    [132]Papell S S.Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles.U.S.Patent,Cl:g-02B27/14,3215572.1965.6.26.
    [133]Reimers G W,Knalafalla S E.Production of magnetic fluids by peptization techniques.U.S.Patent,Cl:g-02B27/14,3843540.1974.2.13.
    [134]Mehta R V.Thixtropy of certain diester based magnetic fluids in a magnetic field.Journal of Magnetism and Magnetic Material,1983,39(1,2):35-38.
    [135]Popplewell J.Ferromagnetic liquids-their magetic properties and application.IEEE Trans.On MAG,1981,17(6):2923-2928.
    [136]Charles S W,Popplewell J.Progess in the development of ferromagnetic liquids.IEEE Trans.On MAG,1980,16(2):172-176.
    [137]李德才.磁性液体理论与应用.北京:科学出版社,2003.
    [138]Goldowsky M.New methods for sealing,filtering and lubricating with magnetic fluids.IEEE Trans on MAG,1980,16(2):382-386.
    [139]李德才.磁性流体及其在润滑、密封、阻尼中的应用.化学工程师,1995,(2):11-14.
    [140]Raj K.A review of damping application of ferrofluids.IEEE Trans on MAG,1980,16(2):358-362.
    [141]Li Decai.The theoretical and experimental study of serrated form on magnetic fluid sealing.Journal of Mechanical Engineering.1996,9(03):20-24.
    [142]Tamama.Device for sealing a propeller shaft against invation of sea water.U.S.Patent,Cl:g-02B27/14,4436313.1984.2.16.
    [143]Raj K.Magnetic fluid seals for special application.ASLE Trans,1980,23(4):422-430.
    [144]Ozaki Kt,Fujiwara T.An experimental study of high-speed single stage magnetic fluid seals.Journal of Magnetism and Magnetic Materials,1987,(65):382-384.
    [145]李德才,袁祖贻,蒋永莉等.磁性液体往复运动密封耐压公式的理论研究.机械工程学报,1998,18(2):15-20.
    [146]Evsion S I,Sokolov N A,Stradomsky Y I et al.Development of magnetic fluid reciprocating motion seals.Journal of Magnetism and Magnetic Materials,1990,85(1-3):253-256.
    [147]Li Decai,Yang Qingxin.Motion state analysis and seal ability study on the magnetic fluid seal of reciprocating shaft.Chinese Journal of Aeronagnetics,2002,2(15):115-120.
    [148]孙维民,金寿日,李志杰等.高粘度磁性液体在抽油泵滑动密封中的应用研究.润滑与密封,2002,(6):14-15.
    [149]解奉生.氨水泵磁流体密封.润滑与密封,1996,(3):21-23.
    [150]马秋成.磁流体密封水的有关规律研究.润滑与密封,1996,(5):24-27.
    [151]Kurfess J,Muller H K.Sealing liquids with magnetic liquids.Journal of Magnetism and Magnetic Materials,1990,85(1-3):246-252.
    [152]Raj K,Moslowitz R.Commercial application of ferofluids.Journal of Magnetism and Magnetic Materials,1990,85(1-3):233-235.
    [153]孙维民,金寿日,李志杰等.高粘度磁性液体的制备研究.润滑与密封,2003,(1):20-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700