用户名: 密码: 验证码:
超滤作为海水淡化预处理工艺的应用研究和Monte Carlo模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染和水资源短缺已成为制约社会进步和经济发展的世界性问题。海水淡化作为一种解决水资源短缺的重要战略手段,在世界范围内正发挥着越来越重要的作用。合理的预处理是海水淡化装置成功运行的决定性因素之一。以超滤代替传统预处理技术应用于海水淡化,研究不同规模超滤系统的运行状况,解决运行过程中的实际问题(膜污染等),具有应用和理论的双重意义。本论文的研究内容以超滤作为海水淡化预处理工艺的应用研究为主,与大型海水淡化示范工程相结合,大部分实验在海水淡化现场完成,包括:实验室规模的无机陶瓷超滤膜作为海水淡化预处理工艺的初步可行性研究、有机超滤膜的现场中试试验研究,大型海水淡化示范工程的长期监测与参数优化研究、关于膜污染的临界通量研究和计算机模拟。主要内容和结论如下:
     1.通过胶州湾原海水直接进入系统和海水添加絮凝剂后再进入系统两种工艺,初步验证了50nm管式陶瓷膜作为海水淡化预处理工艺的技术可行性。原海水直接进入系统的最佳操作参数为:错流流速3.2m/s,操作压力0.14~0.18MPa,料液温度25~30℃,料液pH 8~9;FeCl3絮凝-陶瓷超滤膜工艺可有效提高通量和渗透液水质,且FeCl3最佳投加量为4.5~6.0mg/L,pH最佳范围在4~6;分析了海水对陶瓷膜产生的过滤阻力,并从膜污染类型角度分解过滤阻力,进行实验测定;确定40~50℃的0.01%NaClO溶液为最佳化学清洗方案。
     2.通过错流过滤模式的有机超滤膜处理胶州湾海水的中试试验,对操作参数进行优化。从最大净产水量的角度优化反冲参数,反洗周期为40min,反冲时间为30s、反冲流量是超滤产水流量2倍为优化结果。在试验范围内,高回收率-低通量(80%-60L/m2h)为优化运行参数,并通过比回收率通量PR%考察膜污染状况加以验证;超滤产水水质稳定,且满足海水淡化反渗透系统的进水要求。
     3.在胶州湾海域进行了超滤中试的极限试验研究,旨在考察极限条件(低温和死端过滤模式)下超滤系统(外压式、内压式以及双皮层超滤膜)处理胶州湾海水的可行性和稳定性,并简要分析并比较不同超滤膜组件的直接运行费用,为大型海水淡化示范工程提供重要数据。在无化学加强反洗(CEB)和化学清洗条件下,外压式膜组件B比内压式膜组件A的运行稳定,组件A和B的过滤阻力均小于双皮层膜组件C;组件A、B和C产水水质稳定且均满足海水淡化反渗透系统的进水要求,其中组件C的产水水质最优;CEB和化学清洗可抑制膜污染程度;从能耗和化学药品消耗两个方面表明,外压式膜组件B的直接运行年费用最低。
     4.对大型海水淡化示范工程的超滤预处理系统进行长达一年的监测研究,掌握其运行状况,收集和整理规模数据,并根据实际运行状况调整和优化工艺参数以确保超滤系统的稳定运行。超滤系统的全年运行监测数据表明,超滤系统的膜污染现象较严重,且温度对于膜污染和膜性能以及化学清洗效果具有显著影响,选择合适的工艺参数和化学清洗可以一定程度改善膜污染状况和恢复膜性能;超滤系统在正常运行情况下的产水水质符合RO进水要求;进料海水温度过低(5℃左右),超滤膜的机械性能下降且膜丝污堵严重,应采用化学清洗和改善运行工况及时预防超滤膜断丝情况的发生。
     5.将临界通量Jcrit概念引入海水淡化领域,建立了测定Jcrit的实验方法,研究了超滤膜处理胶州湾海水的膜污染情况和最佳操作方式,考察了海水组成(天然有机物、悬浮物和无机盐)、错流流速和超滤膜截留分子量对超滤处理海水的Jcrit和膜污染产生不同程度的影响,该研究对于超滤预处理的通量设计和运行控制以减少化学清洗有重要理论指导意义。
     6.在已有的研究基础上,以错流过滤模式的超滤过程为研究系统,建立极坐标体系和物料衡算、粒子受力、过滤阻力数学模型,并采用Monte Carlo方法从微观角度对错流过滤的超滤膜表面聚集的溶质粒子的随机运动和受力状况进行计算机模拟,建立平衡状态的判定,得到初步模拟结果。实验结果表明,所建模型和Monte Carlo模拟的膜通量与实验值的相对误差为-0.246~1.518%;拟合出ΔP~J曲线,并得到J_(crit)=137.88L/m~2h,为超滤系统的理论模拟奠定了基础。
Water pollution and shortage has become a critical and serious challenge to society progress and economy development in the world. As an important strategic solution to water shortage, seawater desalination has been playing an increasingly momentous role. The desired performance of seawater desalination systems is guaranteed by appropriately designed pretreatment to face the varying seawater quality. It is of great theoretic and practical importance to focus on Ultrafiltration (UF) as an alternative replacement of conventional pretreatment system prior to seawater desalination. Prior to perform Ultrafiltrtion as the pretreatment, laboratory studies, pilot testing and demonstration, and membrane fouling in the filtration process should be considered. Most of the work is conducted on the desalination site and combined with demonstration seawater desalination plant which includes the feasibility studies of ceramic UF membrane and pilot testing of organic UF membrane as a pretreatment prior to seawater desalination on the laboratory scale and pilot scale respectively, the long-period investigation on demonstration seawater desalination plant and optimal performance, the studies of critical flux to minimize the membrane fouling in UF process and computer simulation on cross-flow UF process. The results are shown as follows:
     ⑴Evaluation of the primary technical feasibility of 50nm monolith ceramic UF membrane as pretreatment prior to seawater desalination on the laboratory scale by feeding raw seawater and seawater with coagulant. The results from experiments on ceramic membrane performance including permeate flux and solute removal indicate that the optimal cross-flow velocity, TMP, feed temperature and pH are 3.0~3.5m/s, 0.14~0.18MPa, 25~30℃and 8~9, respectively; the optimum coagulation conditions were 4.5~6mg/L at pH 4~6; the optimum foulant cleaning was 1% NaClO at 40~50℃.
     ⑵The main purposes of pilot testing of organic UF membrane treating seawater on cross-flow mode are to find the optimum filtration and backwash duration, backwash flow rate, recovery and flux. Based on maximum net product volume, performance of the UF system is good with the following conditions: backwash durationτ=30 s, filtration duration t=40 min, and backwash flow rate is 1800L/h. The operation of the UF system in high recovery-low flux mode (80%-60L/m2h) might be the best and should be adopted. The UF permeate has 100% of turbidity below 0.01NTU and 95% of the SDI15 below 3.0, which satisfies the requirement of SWRO feed water.
     ⑶Pilot testing of organic UF membrane treating seawater in critical conditions of low feed temperature and dead-end mode mainly investigates the performance of inside-out and outside-in UF modules, evaluates the stability of dual-active layer of UF membrane as seawater desalination pretreatment, and analyses the direct operational cost. In filtration process, TMP increases rapidly and membrane fouling is obvious when inside-out module A is operated on designed flux and regular backwash; performance of outside-in module B is better than A with respect to stable TMP and flux, but there is more serious membrane fouling observed when module B is operated at up to 120% each designed flux. Membrane fouling can be controlled effectively by CEB with NaClO or NaClO/HCl, and CEB period of 16h is the optimal parameters. Permeate quality of both module A and B can meet the requirement of SWRO feed despite the variation of the raw seawater quality. The intrinsic resistance of dual-active layer module C is higher than module A and B; in module C, TMP is the highest and permeability is the lowest of all the modules investigated, but the permeate quality is best of all the testing modules. According to the consumption of energy and chemical reagents, the direct operational cost of module B is the lowest.
     ⑷By monitoring the performance and adjusting the process parameters of UF system in the large-scale demonstration seawater desalination plant for one year, the data indicate that the membrane fouling is significant. It is also observed that the feed temperature affects membrane fouling and permeability, and membrane fouling can be reduced to some extent by chemical cleaning and operating at optimum conditions. The quality of UF permeate can satisfy the requirement of SWRO feed water, with turbidity and SDI15 in the range of 0~ 0.02NTU and 2.1~3.5, respectively. When feed temperature is low (about 5℃), mechanical properties of UF membrane may become poor and weak and therefore, rupture. It might be prevented by cleaning and optimum operating condition.
     ⑸The concept of“Critical Flux”(Jcrit) is introduced into the field of seawater desalination, and used to investigate the membrane fouling and the optimal operational mode. A natural flux method is proposed to measure Jcrit which is proved feasible, accurate and easy to operation. By analyzing type of Jcrit in UF treating seawater, it is assumed that the membrane fouling cannot be avoided despite the operating conditions, but can be minimized. The seawater main components (NOM, suspended matter and inorganic salts), cross-flow rate and MWCO of UF membrane have different effects on Jcrit and membrane fouling. Under sub-critical conditions, operating the system on different modes including constant flux, constant pressure and natural flux mode results in the stable performance of UF treating seawater and the trends of flux and TMP have nearly no change. Comparing with different operating modes, natural flux mode has a good performance with the lowest total resistance, and it is the best choice of all the investigated operating modes.
     ⑹By using Monte Carlo, a different point of view of microcosmic to simulate the particle random displacement and force situation in the condition of cross-flow UF process can be provided. It can relate microcosmic parameters (the dimensionless center-to-center separation between two particles scaled by the particle radius, s, and volume fraction,φ) and measuring parameters (flux and TMP). The results indicate that the relative error of flux between Monte Carlo simulation and experimental measurement is in the range of -0.246~1.518%. From fitting the curve ofΔP~J, Jcrit is estimated to be 137.88L/m2h.
引文
[1]高从堦,陈国华.海水淡化技术与工程手册.北京:化学工业出版社,2004.1-4
    [2]联合国人居属动态.人类居住.2003:31-36
    [3]唐传义,党永良.山东省水资源形势和可持续利用对策.山东水利,2001,9:45-47
    [4]胡正.水资源与水旱灾研究.地震出版社. 1999:40
    [5] Merten U. Desalination by reverse osmosis.Cambridge,MIT Press,1966:88
    [6] Hassan A.M.,M AK A.L.S.,Amoudi A.A.L.,et al.A New Approach to Membrane and Thermal Seawater Desalination Process Using Nanofiltration Membrane.Desalination and Water Reuse,1998,8 (1):53-59
    [7] John P.M...The Evolution of SWRO energy-recovery systems.Desalination & Water Reuse,2001,11(3):49-53
    [8] Shumway S.A..The Work Exchange for SWRO Energy Recovery.Desalination & Water Reuse,1999,8 (4):27-33
    [9] Steven J.D.,Foster J.,John Losch H.,et al.Interstage Turbine—Innovative use for Energy Recovery and Enhanced Water Production at a Membrane Desalination Facility.Desalination and Water Reuse,1999,8 (4):34-40
    [10] Van D.B.,Bart,Vande C.,et al. Distillation vs membrane filtration: Overview of Process evolutions in seawater desalination.Desalination,2002,143:207-218
    [11] Murrer John,Rosberg Rick.Desalting of seawater using UF and RO—results of a pilot study.Desalination,1998,118 (1-3):1-4
    [12] Takeshi matsuura.Progress in membrane science and technology for seawater desalination:a review.Desalination,2001,134 (1-3):47-54
    [13] Redondo J.A..Brackish sea and wastewater desalination.Desalination,2001,138(1-3):29-40
    [14] FilmTec产品与技术手册.美国陶氏.2004:40
    [15] Siavash M.S., Mohamarndi T.,Kazemi M.. Chemical cleaning of reverse osmosis membranes.Desalination,2001,134 (1-3):77-82
    [16] Teng C.K.,Hawlader M.N.A.,A. Malek.An experiment with different pretreatment methods.Desalination,2003,l56 (1):51-58
    [17]时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001:336-337
    [18] Merrilee A., James M.. Ultrafiltration for seawater reverse osmosis pretreatment.Membrane Technology,2004,1:5-8
    [19]王世昌.对发展我国海水淡化产业的几点考虑.2004海水淡化及利用技术国际研讨会(中国.天津).北京:2004,31-36
    [20] Vrouwenvelder J.,Kappelhof J.,Heijman S.,et al.Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water.Desalination,2003,157(1-3):361-365
    [21] Graeme Pearce,Santi Talo,Kamran Chida,et al.Pretreatment options for large scale SWRO plants:case studies of UF trials at Kindasa,Saudi Arabia,and conventional pretreatment in Spain[J].Desalination,2004,167 (1-3):175-189
    [22] Chua K.T.,Hawlader M. N. A.,Malek A..Pretreatment of seawater:Results of pilot trials in Singapore.Desalination,2003,159 (3):225-243
    [23] Van Hoof S.C.J.M.,Hashim A.,Kordes A.J..The effect of Ultrafiltration as pretreatmentto reverse osmosis in wastewater reuse and seawater desalination applications.Desalination,1999,124 (1-3):231-242
    [24] Mark W. , Kenneth K. . Effective new pretreatment for seawater reverse osmosis systems.Desalination,1998,117 (1-3):323-331
    [25] Redondo J.A.,Lomax I..Y2K generation FILMTEC RO membranes combined with new pretreatment techniques to treat raw water with high fouling potential:summary of experience.Desalination,2001,136 (1-3):287-306
    [26] Rosberg R..Ultrafiltration (new technology),a viable cost-saving pretreatment for reverse osmosis and nanofiltration--A new approach to reduce costs.Desalination,1997,110(1-2):107-114
    [27] Van Hoof S.C.J.M.,Minnery J.G.,Mack B..Dead-end Ultrafiltration as alternative pre-treatment to reverse osmosis in seawater desalination:a case study.Desalination,2001,139 (1-3):161-168
    [28] Brehant A.,Bonnelye V.,Perez M..Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination.Desalination,2002,144 (1-3):353-360
    [29] Teuler A.,Glucina K.,M.La?néJ..Assessment of UF pretreatment prior RO membranes for seawater desalination.Desalination,1999,125 (1-3):89-96
    [30] Halpern D.F. , McArdle J. , Antrim B. . UF pretreatment for SWRO : pilot studies.Desalination,2005,182 (3):317-326
    [31]张敬东,高顺明,刘炎伟,李长征,付东康,叶春松,内外压式超滤组件在反渗透预处理中的应用比较,工业用水与废水,2006,36(4):55-58
    [32]王晓琳.膜的污染和劣化及其防治对策.工业水处理,2001,21:1-5
    [33] Van der B. B.,Braeken L.,Vandecasteele C..Evaluation of parameters describing flux decline in nanoflltration of aqueous solutions containing organic compounds.Desalination,2002,147 (1-3):281-288
    [34] Ning R.Y..Reverse osmosis process chemistry relevant to the Gulf.Desalination,1999,123 (2-3):157-164
    [35] Schafer A.I.,Fane A.G.,T. Waite.Fouling effects on rejection in the membrane filtration of natural waters.Desalination,2000,131 (1-3):215
    [36] Baudin I.,LaméJ.M.,Mandra V.Impact des matibères organiques naturelles sur le colmatage des membranes d’ultrafiltration appliquéesàla production d’eau potable.12émes Joumées Information Eauw JIE 96.1996:131~132
    [37]柴国墉,Greenberg A. R.,Krantz W.B..超声监测技术在膜分离过程中的应用研究.膜科学与技术.2003,23(8):134-140
    [38] Maartens A,Swart P,Jacobs E P.Methods to reduce membrane fouling by natural organic matter.Journal Membrane Science,1999,163 (1):51-62
    [39]王锦,王晓昌.直接超滤和混凝-超滤组合工艺的膜污染比较.上海环境科学.2002,21(2):83-86
    [40]王兴戬,刘国田.微絮凝/超滤组合工艺处理低浊度海水.天津城市建设学院学报.2004,10 (1):30-32
    [41] Bacchin P.,Aimar P,Sanchez V..Model for colloidal fouling of membranes.AIChE,1995,41:368-377.
    [42] Howell J.A..Sub-critical flux operation of microfiltration.J. Membr. Sci.,1995,107:165-171
    [43] Mcdonogh R.M.,Fane A.G.,Fell C.J.D.Charge effects in the crossflow filtration of colloids and particulates.J. Membr. Sci.,1989,43:69-85.
    [44] Bowen W.R.,Mongruel A.,Williams P.M..Prediction of the rate of cross-flow membrane ultrafiltration:a colloidal interaction approach.Chem. Eng. Sci.,1996,51:4321-4333
    [45] Belfort G.,Davis R.H.,Zydney A.L..The behavior of suspensions and macromolecular solutions in crossflow microfiltration.J. Membr. Sci.,1994,96:1-58.
    [46] Li H.,Fane A.G.,Coster H.G.L.,Vigneswaran S.An assessment of depolarisation models of crossflow microfiltration by direct observation through the membrane.J. Membr. Sci.,2000,172:135-147
    [47] Field R.W.,Wu D.,Howell J.A.,Gupta B.B.Critical flux concept for microfiltration fouling.J. Membr. Sci.,1995,100:259-272
    [48] Michaels A.S.New separation technique for the CPI.Chem. Eng. Prog.,1968,64:31-42
    [49] Porter M.C.Concentration polarisation with membrane ultrafiltration.Ind. Eng. Chem. Prod. Res. Dev.,1972 ,11:234-245
    [50] Bacchin P.A possible link between critical and limiting flux for colloidal systems: consideration of critical deposit formation along a membrane.J. Membr. Sci.,2004,228:237-241
    [51] Kwon D.Y.,Vigneswaran S.,Fane A.G.,Ben aim R.Experimental determination of critical flux in cross-flow microfiltration.Sep. Purif. Technol,2000,19 :169-181
    [52] Chen V.,Fane A.G,Madaeni S.,Wenten I.G.Particle deposition during membrane filtration of colloids:transition between concentration polarization and cake formation.J. Membr. Sci.,1997,125:109-122
    [53] Gesan-Guiziou G.,Wakeman R.J,Daufin G.Stability of latex crossflow filtration:cake properties and critical conditions of deposition.Chem. Eng. J.,2002,85:27-34
    [54] Fradin B.,Field R.W.Crossflow microfiltration of magnesium hydroxide suspensions:determination of critical fluxes,measurement and modelling of fouling.Sep. Purif. Technol,1999,16:25-45
    [55] Gesan-Guiziou G.,Daufin G.,Boyaval E.Critical stability conditions in skimmed milk crossflow microfiltration:impact on operating modes.Lait,2000,80:129-138
    [56] Manttari M.,Nystrom M..Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry.J. Membr. Sci.,2000,170:257-273
    [57] Wu D.X.,Howell J.A.,Field R.W..Critical flux measurement for model colloids.J. Membr. Sci.,1999,152:89-98
    [58] Metsamuuronen S.,Howell J.,Nystrom M.Critical flux in ultrafiltration of myoglobin and baker’s yeast.J. Membr. Sci.,2002,196:13-25
    [59] Espinasse B.,Bacchin P.,Aimar P..On an experimental method to measure critical flux in ultrafiltration.Desalination,2002,146:91-96
    [60] Le Clech P.,Jefferson B.,Chang I.S.,Judd S.J..Critical flux determination by the flux-step method in a submerged membrane bioreactor.J. Membr. Sci.,2003,227:81-93
    [61] Bowen W.R.,Doneva T.A.,Yin H.B..Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes.J. Membr. Sci.,2002,206:417-429
    [62] Bromley A.J.,Holdich R.G.,Cumming I.W..Particulate fouling of surface microfilters with slotted and circular pore geometry.J. Membr. Sci.,2002,196:27-37
    [63] S. Kuiper,C.J.M. van Rijn,W. Nijdam,G.J.M. Krijnen,M.C. Elwenspoek,Determination of particle-release conditions in microfiltration: a simple single-particle model tested on a model membrane,J. Membr. Sci. 180 (2000) 15-28
    [64] Huisman I.H.,Vellenga E.,Tragardh G.,Tragardh C..The influence of the membrane zeta potential on the critical flux for crossflow microfiltration of particle suspensions.J. Membr. Sci.,1999,156:153-158
    [65] Youravong W.,Grandison A.S.,M.J. Lewis,Effect of hydrodynamic and physicochemical changes on critical flux of milk protein suspensions,J. Dairy Res.,2002.69:443-455
    [66] Bacchin P.,Aimar P.,Sanchez V..Influence of surface interaction on transfer during colloid ultrafiltration.J. Membr. Sci.,1996,115:49-63
    [67] Chan R.,Chen V.,The effects of electrolyte concentration and pH on protein aggregation and deposition:critical flux and constant flux membrane filtration.J. Membr. Sci.,2001,185:177-192
    [68] Espinasse B..Approche th′eorique et exp′erimentale de la filtration tangentielle de colloides:flux critique et colmatage,Ph.D Dissertation,Universit′e Paul Sabatier,2003
    [69] Seidel A.,Elimelech M..Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes:implications for fouling control.J. Membr. Sci.,2002,203:245-255
    [70] Aimar P., Sanchez V..A novel approach to transfer limiting phenomena during ultrafiltration of macromolecules.Ind. Eng. Chem. Fundam,1986,25:789-798
    [71] Persson A.,Jonsson A.S.,Zacchi G..Separation of lactic acidproducing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow.Biotechnol. Bioeng,2001,72:269-277
    [72] Harmant P., Aimar P..Coagulation of colloids in a boundary layer during cross flow filtration.Colloids Surf,1998,138:217-230
    [73] Madaeni S.S.,Fane A.G.,Wiley D.E..Factors influencing critical flux in membrane filtration of activated sludge.J. Chem. Techno. Biotechnol,1999,74:539-543
    [74] Sur H.W.,Cui Z.F..Experimental study on the enhancement of yeast microfiltration with gas sparging.J. Chem. Technol. Biotechnol,2001,76:477-484
    [75] Cabassud C.,Laborie S.,Durand-Bourlier L.,Laine J.M..Air sparging in ultrafiltration hollow fibers : relationship between flux enhancement , cake characteristics and hydrodynamic parameters.J. Membr. Sci.,2001,181:57-69
    [76] Akoum O. Al, Ding L.H.,Jaffrin M.Y..Microfiltration and ultrafiltration of UHT skim milk with a vibrating membrane module.Sep. Purif. Technol,2002,28:219-234
    [77] Huuhilo T.,Vaisanen P.,Nuortila-Jokinen J.,Nystrom M.Influence of shear on flux in membrane filtration of integrated pulp and paper mill circulation water.Desalination,2001,141:245-258
    [78] Ahn K.H.,Song K.G..Application of microfiltration with a novel fouling control method for reuse of wastewater from a large-scale resort complex.Desalination,2000,129:207-216
    [79] Gesan-Guiziou G.,Boyaval E.,Daufin G..Critical stability conditions in crossflow microfiltration of skimmed milk:transition to irreversible deposition.J. Membr. Sci.,1999,158:211-222
    [80] Schwinge J.,Neal P.R.,Wiley D.E.,Fane A.G..Estimation of foulant deposition across the leaf of a spiral-wound module.Desalination,2002,146:203-208
    [81] Bacchin P.,Si-Hassen D.,Starov V.,Clifton M.J., Aimar P..A unifying model for concentration polarization,gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions.Chem. Eng. Sci.,2002,57:77-91
    [82] Bacchin P.,Meireles M.,Aimar P..Modelling of filtration:from the polarised layer to deposit formation and compaction.Desalination,2002,145:139-146
    [83] Schock G., Miquel A. Mass transfer and pressure loss in spiral wound modules.Desalination,1987,64:339-352
    [84] Sutakover I,Hasson D,Semiat R.Simple technique for measuring the concentration polarization level in a reverse osmosis system.Desalination,2000,131:117-127
    [85] Jones K.L.,O’Melia C.R..Protein and humic acid adsorption ontohydrophilic membrane surfaces:Effects of pH and ionic strength.Journal of Membrane Science,2000,165:31-46
    [86]许赵辉,王焕章,李必文,邢卫红,徐南平,王怀林.陶瓷膜过滤谷氨酸发酵液过程中的膜污染与对策.食品工业科技,2002,23 (2):32-34
    [87]吴俊,邢卫红,徐南平.无机陶瓷膜处理印染废水的实验研究.染料与染色,2004,41 (4):240-243
    [88] Anton Dafinov,Josep Font,Ricard Garcia-Valls.Processing of black liquors by UF/NF ceramic membranes.Desalination,2005,173:83-90
    [89] Li Xu,Li Wenping,Lua Shuqun,Wang Zhi,Zhu Qixin,Yi Lingb.Treating dyeing waste water by ceramic membrane in crossflow microfiltration.Desalination,2002,149:199-203
    [90] Ahmad A.L., Mariadas A..Baffled microfiltration membrane and its fouling control for feed water of desalination.Desalination,2004,168:223-230
    [91] Bendick J. A.,Modise C. M.,Miller C. J.,Neufeld R. D.,Vidic R. D..Application of Cross-Flow Microfiltration for the Treatment of Combined Sewer Overflow Wastewater.J. Envir. Engin,2004,130(12):1442-1449
    [92]陈艳,董秉直,高乃云等.超滤处理地表原水膜阻力特性研究.佳木斯大学学报,2006,24 (2):298-231
    [93] Wu J.,Xing W.H.,Xu N.P..Study on treatment of dyeing and printing waste water by inorganic ceramic membrane.Applied Chemical Industry (Chinese),2004,33:56-59
    [94] Malgorzata Kabsch-Korbutowicz.Application of Ultrafiltration intefrated with coagulation for improved NOM removal.Desalination,2005,174:13-22
    [95]严煦世,范瑾初.给水工程.北京:中国建筑工业出版社,1999.213-215
    [96]常青.水处理絮凝学.化学工业出版社,北京,2003.52-65
    [97] Gauthie E.,Fortier I.,Courchesne F.,Pepin P., Mortimer J.,Gaivireai D.. Aluminium forms in drinking water and risk of Alzheimer’s disease.Env. Res. Sec. A,2000,84:234-246
    [98]金鹏康,王晓昌.天然有机物的混凝特性研究.西安建筑科技大学学报,2000,32 (2):156-159
    [99]王九思,陈学民,肖举强,伏小勇.水处理化学.北京:化学工业出版社,2002.143-145
    [100]金鹏康,王晓昌,王广华.天然有机物与无机悬浮物的混凝特性对比.西安建筑科技大学学报,2005,37 (3):307-321
    [101]姚玉英.化工原理.天津:天津科学技术出版社.第一版,1995.335-337
    [102] Muhammad H.,Al-Malack.Coagulation-crossflow microfiltation of domestic wastewater.J of membrane science,1996,121:59-70
    [103] Yiantsios S.G.,Karabelas A.J..An experimental study of humic acid and powdered activated carbon deposition on uf membranes and their removal by backwashing.Desalination,2001,140:195-209
    [104] Boerlage S.F.E., Kennedy M.D., Aniye M.P., Abogrean E.M., Galjaard G., Schippers J.C..Monitoring particulate fouling in membrane systems.Desalination,1998,118:131-142
    [105] Wang Yingge, Combe Corine, Clark M.M..The effects of pH and Calxium on the diffusion coefficient of humic acid.Journal of membrane science,2001,183:49-6 0
    [106] Hong S.,Faibish R.S.,Elimilech M..Kinetics of permeate flux decline in crossfow membrane filtration of colloidal suspensions.Jour. Colloid & Interface Sci.,1997,196:267-268
    [107]美国海德能公司产品技术手册.2004:60~110
    [108] Katsuki Kimura,Yasushi Hanea,Yoshimasa Watanabea,et al.Irreversible membrane fouling during ultrafiltration of surface water.Water Research,2004,38 (4):3431-3441
    [109]冯逸仙,杨世纯.反渗透水处理工程.北京:中国电力出版社,2000:63-65
    [110] Decloux M.,Tatoud L..Importance of the control mode in ultrafiltration: case of raw cane sugar remelt.Journal of Food Engineering,2000,44:119 - 126
    [111] Defrance L.,Jaffrin M.Y..Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment.Journal of Membrane Science,1999,152:203 - 210
    [112] Vyas H.K.,Bennett R.J.,Marshall A.D..Performance of crossflow microfiltration during constant transmembrane pressure and constant flux operations.International Dairy Journal,2002,12:473 - 479
    [113]于柞斌.五种消毒剂消毒饮水后形成三氯甲烷的研究.中国给水排水,1994,10(4):44~47
    [114] Aguer J.P,Richard C.,Trubetskaya O.,Trubetskoj O.,Leveque J.,Andreux F..Photoinductive efficiency of soil extracted humic and fulvic acids.Chemosphere,2002,49:259 - 262
    [115] Sch?fer A.I.,Schwicker U.,Fischer M.M.,Fane A.G.,Waite T.D..Microfiltration of colloids and natural organic matter.Journal of Membrane Science,2000,171:151 - 172
    [116] Adham S. S. ,Snoeyink V. L.,Clark M.M.,Bersillon J.L..Predicting and verifying organics removal by PAC in an ultrafiltration system.Journal of the American Water Works Association,1991,83(12):81-91
    [117] Van Boxtel A.J.B.,Otten A.E.H.,Van der Linden H.J.L.J..Evaluation of process models for fouling control of reverse osmosis of cheese whey.J. Membr. Sci.,1991,58:89-111
    [118] Grozes G.,Anselme C.,Malleviale J..Effect of adsorption of organic mater on fouling of Ultrafiltration membranes.J. Membr. Sci.,1993,84:61-67
    [119] Eaton A.D..Measuring UV-absorbing organics:AS standard method.Jour.AEEA,1995,87 (2):86-90
    [120]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义.重庆建筑大学学报,2002,24(2):61-65
    [121] Edzwald J.K..Coagulation in drinking water treatment: particles,organics and coagulants. Control of organic material by coagulation and floc-separation process.Water science and technology.Oxford:Perganond Press,1993.21-35
    [122] Kwon D.Y.,Vigneswaran S.,Ngo H.H.,Shin H.S..An enhancement of critical flux in crossflow microfiltration with a pretreatment of floating medium flocculator/ prefilter.Water Science and Technology,1997,36:267 - 274
    [123] Kevin Y. C.,Brian A. D..In-line coagulation with low-pressure membrane filtration.Water Research,2004,38(19):4271-4281
    [124] Song L.,Elimelech M..Particle deposition onto a permeable surface in laminar flow.Journal of Colloid and Interface Science,1995,173:165 - 180
    [125]王锦,王晓昌,何自琦.浊度和腐殖酸对超滤膜污染过程的研究.膜科学与技术,2002,22 (1):24-28
    [126] Kwon D.Y.,Vigneswaran S..Modelling of critical flux in cross-flow microfiltration,in: Proceedings of the Second International Symposium on Environmental Hydraulics.Hong Kong,1998.765-770
    [127] Kwon D.Y.,Vigneswaran S..Influence of particle size and surface charge on critical flux in crossflow microfiltration.J. Water Sci. Technol.,1998,38 (45):481-488
    [128] Srisurichan Surapit, Jiraratananon Ratana,Fane A. G..Humic acid fouling in the membrane distillation process.Desalination,2005,174:63-72
    [129] Aoustin E.,Schafer A.I.,Fane A.G.,Waite T.D..Ultrafiltration of natural organic matter.Separation and purification technology,2001,22 (23):63-78
    [130] Grozes G.,Jacangelo J.,Anselme C..Proceedings of the AWWA membrane technology conference,Reno,1995:457-485
    [131] Cohen-Stuart M.A.,Fleer G.J.,Lyklema J..Adsorption of ions, polyelectrolytes and proteins.Adv. coll. Interface Sci.,1991,34:477-535
    [132]黄海,笪良龙,张林.基于蒙特卡罗方法的海洋环境不确定性仿真.计算机仿真,2007, 24(9):308-311
    [133]李元鹏,郭寰,唐玉兰,丁大力.蒙特卡罗仿真方法在水处理中的应用研究进展.辽宁化工,2006,35(7):391-393.
    [134] Ulrich S.,Laguecir A. and Stol1 S..Complex formation between a nanoparticle and a weak polyelectrolyte chain:Monte Carlo simulations.Journal of Nanoparticle Research,2004,6:595-603
    [135] Zhon H. and Smith D.W..Kinetics of ozone disinfection in a CSTR system.J. Envir. Engn., ASCE,1994,120(4):84l-858
    [136] Zhon H. and Smith D.W..Evaluation of parameter estimation methods for ozone disinfection kinetics.Wat. Res., 1995,29(2):679-686
    [137] Olivier i A.,Eisenberg D.,Soller J..Estimation of pathogen removal in an advanced water treatment facility using Monte Carlo simulation.Wat. Sci. Tech.,1999,40(4-5):223-233
    [138] Boeije G.,Vanrolleghemand P.,Matthies M..A ge-ordereneed aquatic exposure prediction methodology for downth drain chemicals.Wat. Sci. Tech.,1997,36(5):251- 258
    [139] Syposs Z.,Reichart O. and Meszaros L..Microbiological risk assessrnent in the beverage industry.Food Control,2005(16):515-521
    [140] Albert S. K.,and Eric H. M.V..Cake Structure in Dead-End Membrane Filtration:Monte Carlo Simulations.Envir. Engi.,Sci.,2002,19(6):373-386
    [141] Chen J.C.,Menachem E.,Albert S.K..Monte Carlo simulation of colloidal membrane filtration:Model development with application to characterization of colloid phase transition.J. Membr. Sci.,2005,255:291-305
    [142] Robert H. D..A similarity solution for steady-state crossflow Microfiltration.Chem. Engin. Sci.,1990,45(11):3203-3209
    [143]傅献彩,沈文霞,姚天扬.物理化学.第四版.北京:高等教育出版社,2004.1023-1033
    [144] Hamaker H.C..The London-van der Waals attraction between spherical particles. Physica,1937,4:1058-1072
    [145] Bell G.M.,Levine S.,McCartney L.N.. Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres.J. Colloid Interface Sci,1970,33:335–359
    [146] Chew W.C.,Sen P.N.. Potential of a sphere in an ionic solution in thin double layer approximations. J. Chem. Phys.,1982,77:2042-2044
    [147] Bowen W.R.,Jenner F..Dynamic ultrafiltration model for charged colloidal dispersions: a Wigner-Seitz cell approach,Chem. Eng. Sci.,1995,50:1707-1736

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700