用户名: 密码: 验证码:
内蒙古典型草原生长季内植物生长动态的数学模型与计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物种群的研究方法正在从静态走向动态模拟,从定性描述走向定量和模型化,并向多学科交叉的方向发展。植物生长动态模型就是集多学科知识为一体,以数学模型、系统分析原理和计算机模拟的技术来定量地描述植物的生长、发育、产量形成的过程及其对环境的反应。因此,采用植物生长动态模拟方法不但可以预测生物量,而且便于对生长过程进行分析,从机理上揭示不同植物生物量形成的内在规律及其与环境的关系,有助于进一步认识组成草原群落的各个种群的增长特点及互补功能,对把握草地的可持续利用具有重要意义。
     论文以种群生态学理论为指导,以著名的Logistic方程为基础,建立了植物生物量积累随单因素和多因素变化的数学模型,运用数理统计及微分方程理论,结合计算机模拟技术,在内蒙古典型草原退化后围栏封育24年的羊草+大针茅样地,选择不同退化阶段的代表性植物羊草、大针茅、冰草、冷蒿,对其在同一个生长季内的生长动态及其差异进行模拟和比较研究;作为对经典的Lotka-Volterra模型的演绎和应用,建立了植物对水分利用的种间竞争模型,以羊草、大针茅为对象,模拟其竞争状态下的生长动态,分析植物生长系统的稳定性。
     (1)阐述选用代表种(重要种)羊草、大针茅、冰草、冷蒿的研究依据及意义;运用数理统计方法,分别对采样数据进行分析、检验,结果表明,每一采样日期下的植物单株生物量数据基本满足正态分布。
     (2)根据实测数据,采用多种数量化指标,分别比较一个生长季内的生长动态、绝对生长速率AGR、相对生长速率RGR。结果表明,植物地上生物量均呈S形增长,8月中旬达到最大值;主要生长季内受降水不足的抑制作用依次为:羊草>冰草>大针茅>冷蒿。生长主要集中在中前期,AGR大小依次为:冷蒿(0.0993 g·株~(-1)·d~(-1))>大针茅(0.0295 g·株~(-1)·d~(-1))>羊草(0.0024 g·株~(-1)·d~(-1))>冰草(0.0022 g·株~(-1)·d~(-1))。生长季初期RGR均表现出最高,依次为:冷蒿(0.1079 g·株~(-1)·d~(-1)·g~(-1))>大针茅(0.0643 g·株~(-1)·d~(-1)·g~(-1))>羊草(0.0553 g·株~(-1)·d~(-1)·g~(-1))>冰草(0.0422g·株~(-1)·d~(-1)·g~(-1))。不同的生活型,其生长曲线、生长速率都存在很大的差异,但同属于根茎型的羊草和冰草,其生长动态却明显相似。
     (3)采用Logistic模型分别对其一个生长季内的生长动态及其差异进行模拟和比较研究。根据种群动态模型的一般形式,推导了个体生长模型的数学依据;通过对Logistic模型进行求解和分析,结合生态学理论,将植物生长划分为四个阶段,确定了速生期和突变点;结合模型分析诠释了模型的物理意义;对植物的持续生长期从生态学的角度给出了时间概念上的定义及相应的解释,并由此对草地管理及可持续利用提出了保护建议。根据实测数据进行拟合,结果表明,四种植物均符合Logistic增长,拟合方程分别为:y= 0.200/(1+e~(2.032-0.060t)),y=1.205/(1+e~(2.608-0.042t)),y=0.156/(1+e~(1.858-0.040t)), y=3.177/(1+e~(2.770-0.077t)),由模型求出了植物的最大生长速度,从大到小依次为:冷蒿6.112e-02(g·株~(-1)·d~(-1))>大针茅1.267e-02(g·株~(-1)·d~(-1))>羊草2.995e-03(g·株~(-1)·d~(-1))>冰草1.561e-03(g·株~(-1)·d~(-1));分属于不同生活型的羊草、大针茅、冷蒿在生长速度及生长曲线上均存在较大差异,而同一生活型(life form)中,羊草和冰草二者差异不大,在整个生长季内呈现相似的动态变化。
     (4)提出了改进的植物生长模型(?),推导出单因素的植物生长模型(?)和多因素的植物生长模型(?);采用多元线性回归和Logistic方程相集成的办法,证明了模型(?)能够模拟和预测不同年份的植物生物量;并且多因素影响下生物量的相对增长量W随时间t的变化(?)仍是符合Logistic规律的,模型同时给出了综合参数(?)和(?)的估算方法。
     (5)运用偏相关分析和逐步回归法确定了降水和积温因子是4种植物生物量形成的重要因子,但降水较积温因子的影响更大(r_(12,3)>r_(13,2);R_(1(2))~2 > R_(1(3))~2);对4种植物影响的重要性次序为:羊草(0.964)>冰草(0.937)>大针茅(0.928)>冷蒿(0.906);积温对植物影响的重要性次序为:羊草(0.918)>大针茅(0.909)>冰草(0.875)>冷蒿(0.754)。采用本文建立的单因素、多因素的植物生长模型,分别对4种植物生长特征进行了模拟和比较,结果表明,植物单株生物量随降水量变化、积温变化以及水热因子共同变化的潜在最大值一致表现为:冷蒿>大针茅>羊草>冰草,说明冷蒿具有较大的产量潜力;相对生长率的最大值一致表现为:冷蒿>大针茅>羊草>冰草,其中羊草和冰草的产量潜力、相对生长率最大值、相对生长率取得最大值的时间都很接近,说明二者具有相似的生长特征。
     (6)植物种间竞争模型的建立与分析。针对水分是当地植物生长限制因子的现实,建立了一个以水资源为约束条件的种间竞争的植物生长模型:dN_1/dt = (r_1N_1)/K_1(K_1-N_1-αλ_2K_1/r_1V_V_1N_2)dN_2/dt = r_2N_2/K_2(K_2-N_2-βλ_1K_2/r_2V_V_2N_1)与经典Lotka-Volterra模型相比,在涉及第二个种的地方引入了生态因子项,用以描述羊草与大针茅在竞争状态下的生长动态;并运用微分方程稳定性理论,分析了植物生长系统的稳定性。根据参数p_3、q_2的含义,分别对假定q_2=q_2(N_2)=r_1/(1+a_2N_2), p_3=p_3(N_1) =r_2/(1+a_1N_1)的情形下,进行了计算机模拟与数值分析,得到了各参数及模拟图象。结果表明,羊草和大针茅的生长均表现出与环境一定程度的适应性,其中羊草相对大针茅处于优势地位,逐渐成为建群种,而大针茅处于被抑制状态,但由于它们存在着某些生态位的分化,形成了既竞争又稳定共存的格局,显示出系统持续稳定生长的态势,其生长状况的某些特征已经接近原生群落。
The study on population is developing from static to dynamic, qualitative to quantitative and modeled, and integrated with other scientific branches. The plant growth dynamic model can describe the plant growth, development yield formation and environment reaction quantitatively by using mathematic model, systematic analysis and computer simulation. So the model can predict the biomass, analyze the growth process and reveal the inner rules of the biomass formation of different plant, which can help us to find the growth characteristics and the complementation function of the populations in the steppe communities, and has the significance for the sustainable utilization of the grassland.
     Based on the population ecological theory and the Logistic formula, a mathematic model which reflect the relations of plant biomass accumulation and the single or multi-factors were established. Using the model, statistic method, differential equation and computer simulation, the growth dynamics in one growth season of the Leymus chinensis, Stipa grandis, Agropyron michnoi and Artemisia frigida growing in the Leymus chinensis + Stipa grandis plots fenced for 24 years in different degenerated stages in the typical steppe of Inner Mongolia were simulated and compared. By applying the Lotka-Volterra model the water use competitive model was established to simulate the growth dynamics of Leymus chinensis and Stipa grandis under the inter-species competition, and analyze the stability of the plant growth system. Results showed;
     (1) The biomass data of the four species fitted the normal distribution;
     (2) According to the investigated data and the quantitative indexes, the growth dynamics, absolute growth rates and relative growth rates in a growth season were compared. Results showed that the aboveground biomass increased with the shape of "S" and got the maximum value in middle August. Aboveground biomasses of plants increased in middle August. The sensitiveness of the plants to the water stress in growth season was L. chinensis > A. michnoi> S. grandis > A. frigida. The plants grew mainly in early middle growth stage. The order of the AGR was A. frigida (0.099 g·plant~9-1)·d~(-1)) > S. grandis (0.029 g·plant ~(-1)·d~(-1)) > L.chinensis (0.003 g·plant~(-1)·d~(-1)) > A. michnoi (0.002 g·plant~(-1)·d~(-1)). The RGR of the four plants showed the highest in early growth season, and their order was A.frigida (0.108 g·plant~(-1)·d~(-1)·g~(-1)) > S. grandis (0.064 g·plant~(-1)·d~(-1)·g~(-1)) >L. chinensis (0.055g·plant ~(-1)·d~(-1)·g~(-1))>A. michnoi (0.042 g·plant~(-1)·d~(-1)·g~(-1)). The growth curve and growth rate of the plants with different life form were obviously different, but that of L. chinensis and A. michnoi which were all rhizomatous were evidently similar.
     (3) The growth dynamics in a growth season of the four plants were simulated and compared using Logistic model. According to the normal form of the population dynamic model the mathematic basis of the individual growth model was extrapolated. Based on the solution and the analysis of Logistic model and the ecological theories the plant growth was divided into four stages, and the rapid growth stage and the abrupt change point were determined. The physical meaning of the model was explained with the model analysis. The temporal definition of the sustained growth period of the plants was given from the ecological aspect. According to which the suggestions for the grassland management and sustainable utilization were brought forward. The fit test was done with measured data. Results showed the growth of four plants fitted with the Logistic model; The fit formula were y= 0.200/1+e~(2.032-0.060t),y=1.205/1+e~(2.608-0.042t), y=0.156/1+e~(1.858-0.040t) , y=3.177/+=1+e~(2.770-0.077t) respectively. The maximum growth rates of the plants were obtained by the model, the order was A. frigida 6.112e-02(g/plant·d) > S. grandis 1.267e-02(g/plant·d) > L. chinensis 2.995e-03(g/plant·d) > A. michnoil .561 e-03(g/plant·d); The growth rates and the growth curves of L. chinensis, S. grandis and A. frigida belonging to different life forms were apparently different, and that of L. chinensis and A. michnoi with same life form showed little different, and appeared similar dynamic changes in one growth season.
     (4)The improved growth model (?) was proposed,and the single factor growth model and multi-factor growth model were extrapolated; The multiple linear regression and Logistic formula wereintegrated and applied to demonstrate that the model wj =(?)could simulate and predict the biomasses of different years; The changes of the relative biomass growth rate (W) with time (t) affected by multi-factors were still fitted the Logistic rule, meanwhile the estimation method for integration parameters of (?) and (?) was given.
     (5) The application of partial correlation analysis and stepwise regression determined that the precipitation and accumulated temperature were the important factors influencing the biomass formation, between them the precipitation was more effective than accumulated temperature(r_(12,3)>r_(13,2);R_(1(2))~2 > R_(1(3))~2; The effectiveness of the precipitation to the four plants was L. chinensis (0.964) > A. michnoi (0.937) > S. grandis(0.928) > A. frigida (0.906) , that of the accumulative temperature was L chinensis(0.918)>S. grandis(0.909)>A. michnoi(0.875)>A. frigida (0.754) . The growth characteristics of the four species were simulated and compared by using single factor growth model and multi-factor growth model. Results showed the potential maximum change of the individual biomass with the changes of precipitation, accumulative temperature or them two was A. frigida> S. grandis > L. chinensis > A. michnoi, which meant A. frigida has the maximum yield potential among the four species; The maximum RGR was A. frigida> S. grandis > L. chinensis > A. michnoi; The yield potential, the maximum RGR and the time reaching the maximum RGR were similar in L. chinensis and A. michnoi, which meant they have the similar growth characters.
     (6) The establishment and analysis of inter-species competition model. Arming at the fact that the moisture is the restriction factor for the plant growth, an inter-species competition model was established conditioning upon water: dN_1/dt = r_1N_1/K_1(K_1-N_1-αλ_2K_1/r_1V_V_1N_2)dN_2/dt = r_2N_2/K_2(K_2-N_2-βλ_1K_2/r_2V_V_2N_1)
     Compared with classical Lotka-Volterra model, the eco-factors were introduced into the model to describe the growth dynamics of I. chinensis and S. grandis under competition; The stability of the plant growth system was analyzed by applying the theory of differential equation stability. According to the meaning of parameters (p_3、q_2), supposing q_2=q_2(N_2)=r_1/1+a_2N_2, p_3 = p_3(N_1) =r_2/1+a_1N_1, all parameters and simulation image were obtained by computer simulation and numerical analysis. Results demonstrated that the growth of L. chinensis and S. grandis appeared adaptability to environment to some extent, and L. chinensis was at more dominant position than S. grandis and was becoming the dominant species, whereas S. grandis was in the status of being inhibited. Because there were some ecological niche differences between the two species, it formed the pattern of either competition or stability, and made the community grew sustained and stable, and some characteristics of the community were approximate to the original community.
引文
[1] Ecophy-Hodges J.Predicting Crop Phendogy[M]. USA: CRC Press, 1991,1-189
    
    [2] Penning devires FWT, Jansen DM, Ten Berge HFM, et al. Simulation of siologicalProcesses of Growth in Several Annual Crops[M]. Wageningen: Pudoc, 1989,1-20
    
    [3] Whisler FD, Acock B, Baker DN, et al. Crop simulation models in agroromicsystems[J]. Advences in Agronomy, 1989,10: 149-208
    
    [4]沈国权.影响作物发育速度的非线性温度模式[J].气象,1980,1(6):9-11
    
    [5]张俊平,陈常铭.水稻群体生长过程和产量动态模拟[J].生态学报, 1990,10(4):311-316
    
    [6]胡包钢,赵星,严红平等.植物生长建模与可视化——回顾与展望[J].自动 化学报,2001,27(6):816-835
    
    [7] Gates D J. Competition between two types of plants located at random on alattice[J]. Math Biosci, 1980,48(3): 157-194
    
    [8] McMartrie R,WolfL. A model of competition between trees and grass for radiation,water and nutria-ents[J]. Ann Bot, 1983,52(4): 449-458
    
    [9] Walker B H, Ludwig D, Holling C S, et al. Stabitity ofsemi-arid savanna grazingsystems[J]. J Ecol, 1981,69: 473-498
    
    [10]张银萍,张继涛.三种群Lotka_Volterra非周期食饵.捕食系统的持久性[J]. 应用数学和力学,2000,21(8):792-797
    
    [11]郭瑞海,袁晓风.一类微生物种群生态数学模型的Hopf分支[J].应用数学 和力学,2000,21(7):693-670
    
    [12] Olson RLJ, Sharpe PJH, Wu Hsin-I.Whole-plant modelling: A continuous-timeMarkov(CTM) ap-proach[J]. Ecological Modelling, 1985, (29): 171-187
    
    [13] Sharpe PJH, WalkerJ, WuHsin-I.Physiologically based continuous-time Markovapproach plant growth modeling in semi-arid woodlands [J]. EcologicalModelling, 1985, (29): 189-213
    
    [14] Harpe Rj L. Population Biology of Plants[M]. London/New York: AcademicPress, 1977, 892
    
    [15]张大勇.理论生态学研究[M].北京:高等教育出版社,2000,5-10
    
    [16]王昱生.中国东北部贝加尔针茅草原生物量与生态因素的关系及其预测模型 [J].植物生态学与地植物学学报,199l,15(3):286-295
    
    [17]马克平.小叶樟草甸地下生物量形成规律的研究[J].草业科学,1992,??9(2):24-28
    
    [18]肖玮,殷华,阎秀峰等.星星草种群地上生物量形成规律的数学拟合[J].哈尔 滨师范大学学报自然科学版,1997,13(1):102-105
    
    [19]李德新,白永飞,赵虎生.降水量的季节分配对羊草种群地上生物量影响的数 学模型[J].中国草地,1996,6:1-5
    
    [20]郝敦元,刘钟龄,王炜.内蒙古草原退化群落恢复演替的研究Ⅲ.群落演替的数 学模型[J].植物生态学报,1997,21(6):503-511
    
    [21] Thornley JHM, Johnson IR. Plant and Crop Modeling: A Mathematical Approach to plant and Crop Physiology[M]. New york: Oxford University Press ,1990,34-50.
    
    [22]徐春明,贾志宽,韩清芳.巨人201+Z苜蓿地上部分生长特性的研究[J].西北 植物学报,2003,23(3):481-484
    
    [23]法郎士J,索恩利JHM.金之庆,高亮之译.农业中的数学模型——农业及其 有关科学若干问题的数学研究[M].北京:农业出版社,1991,100-102
    
    [24] Pening devries FWT. The costs of maintenance process in plant cell[J]. Annals ofBotany, 1975, 39:77-92
    
    [25] Thornley JHM.Energy, repiratin and grow thin plants[J].Annals of Botanny,1997,135: 721-728
    
    [26]姜妙男.水稻伸长生长的数学模型[J].生物数学学报,1995,10(2):54-63
    
    [27]向志民,何敏.几种杨树生长进程动态分析[J].西北林学院学报,1994, 9(2):82-86
    
    [28]程述汉,束怀瑞,魏钦平.苹果树新梢生长动态的数学模型[J].生物数学学 报,1999,14(1):82-85
    
    [29] Prusink iewicz P. Modeling of spatial structure and development of plant: A review[J]. Scientia Horticultural, 1998, 74:113-149
    
    [30]崔启武,刘家冈.生物种群增长的营养动力学[M].北京:科学出版社,1991, 67-77
    
    [31] Zhan Z, Wang Y, de Reffye P, et al. Architectural modeling of wheat growth and Validation study[C]. In:ASAE.Annual International Meeting. Wisconsin: Milwaukee, 2000, 98-106
    
    [32]白永飞,许志信.降水量的季节分配对羊草草原群落地上部生物量影响的数 学模型[J].草业学报,1997,6(2):1-6
    
    [33] Marcelis L F M, Heuvelink E, Goudriaan J. Modding biomass production and yield of horticultural crops: Areview[J]. Scientia Horticulture, 1988,74: 83-111
    
    [34]张彩琴,郝敦元.可持续发展理论的数学分析[J].内蒙古农业大学学报,2004,??25(1):99-103
    
    [35]张彩琴.林业可持续发展的最优控制问题[D].硕士学位论文,内蒙古大学, 2003
    
    [36]Mey R.M.1976:(孙儒泳等译),理论生态学,科学出版社,北京,1980
    
    [37]李文深.自然环境与生物种群的生灭关系[J].东北林业大学学报,1999,27(3): 56-59
    
    [38] Lauenroth W. K. & Sala, O. E. Long-term forage production of North America shortgrass Steppe[J]. Ecological Application, 1992, 2(4): 397-403
    
    [39] 李德新,白永飞,赵虎生.降水量的季节分配对羊草种群地上生物量影响 的数学模型[J].中国草地,1996,6:1-5
    
    [40]郭继勋,祝廷成.气候因子对东北羊草草原群落产量影响的分析.植物学报, 1994,3(10):790-796
    
    [41]李育中,李博.内蒙古锡林河流域羊草草原生物量动态的研究[J].中国草地, 1991,13(1):5-8
    
    [42] Pandey C B and Singh J S. Influence of rainfall and grazing on herbage dynamics in a seasonally drytropival savanna[J].Vegetatio, 1992,102(2): 107-124
    
    [43] Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production[J].Science, 2001,291:481-482
    
    [44]李德新,白永飞,赵虎生.降水量的季节分配对羊草种群地上生物量影响的数 学模型[J].中国草地,1996,6:1-5
    
    [45]袁文平,周广胜.中国东北样带三种针茅草原群落初级生产力对降水季节 分配的响应.应用生态学报,2005,16(4):605-609
    
    [46] Fang J Y, Piao S L,Tang Z Y. Inter-annual variability in net primary production and precipitation[J]. Science, 2001,293: 1723-1724
    
    [47]李绍良,陈有君.锡林河流域栗钙土及其物理性状与水分动态的研究.中国草 地,1999,9(3):71-76
    
    [48]牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究.草地学报, 2001,9(4):277-288
    
    [49]李镇清,刘振国,等.中国典型草原区气候变化及其对生产力的影响.草业学报, 2003,12(1):4-10
    
    [50]李镇清,任继周.草原生物适宜度模型及其应用.生态学杂志,1997,16(3): 71-75.
    
    [51]白永飞,许志信.降水量的季节分配对羊草草原群落地上部生物量影响的数 学模型[J].草业学报,1997,6(2):1-6.
    
    [52]蔡学彩,李镇清,陈佐忠等.内蒙古草原大针茅群落地上生物量与降水量的 关系.生态学报,2005,25(7):1657-1662.
    
    [53] Oesterheld M, Loreti J, Semmartin M, et al. Inter-annual vatiation in primary production of a semi-arid grassland related to previous-year production[J]. Journal of Vegetation Science, 2001,12: 137-142.
    
    [54] Sinclair T R, N G Seligman. Crop modeling: form infancy to maturity [J]. Agronomy Journal, 1996,88:689-704.
    
    [55]李曲谟,马祖飞.展望数学生态学与生态模型的未来[J].生态学报,2000, 20(6):1083-1089
    
    [56]白永飞,许志信.羊草草原群落初级生产力动态研究草地学报1995,3(1): 57-64
    
    [57]杨持,李永宏,燕玲.羊草草原主要种群生物量与水热条件定量关系初探[A]. 北京:科学技术出版社,1985,24-27
    
    [58]马克平.小叶樟草甸地下生物量形成规律的研究[J].草业科学,1992,9(2): 24-28
    
    [59]白永飞,许志信.典型草原9种牧草生长规律的研究[J].中国草地,1994,6: 21-27
    
    [60]李秋元,孟得顺.logistic曲线的性质及其在植物生长分析中的应用[J].西北 林学院学报,1993,8(3):81-86
    
    [61]王炜,梁存拄,刘仲龄等.草原群落退化与恢复演替中的植物个体行为分析 [J].植物生态学报,2000,24(3):268-274
    
    [62]刘美玲,杨持.不同干扰强度对冷蒿再生生长的影响[J].内蒙古大学学报(自 然科学版),2002,33(4):446-451
    
    [63]汪诗平,李永宏,王艳芬等.不同放牧率下冷蒿小禾草草原放牧演替规律及 数量分析[J].草业学报,1998,6(4):299-305
    
    [64]白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生 态学报1999,23(2):155-160
    
    [65]王仁忠,李建东.羊草草地放牧退化演替中种群消长模型的研究[J].植物生态 学报,1995,19(2):170-174
    
    [66]杨持,宝音陶格涛,李良.冷蒿种群在不同放牧强度胁迫下构件变化规律[J]. 生态学报,2001,21(3):76-80
    
    [67].安渊,李博,杨持等.内蒙古大针茅草原草地生产力及其可持续利用研究. Ⅲ.植物补偿性生长研究[J].内蒙古大学学报(自然科学版),2000,31(6): 608-612
    
    [68]王静,杨持.冷蒿抗旱生理特性的研究[J].内蒙古大学学报(自然科学版),??2002,33(6):672-676
    
    [69]王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J]. 应用生态学报,2005,16(12):2316-2320
    
    [70]李政海,王炜,刘钟龄.退化草原围封恢复过程中草场质量动态的研究[J].内 蒙古大学学报(自然科学版),1995,26(3):334-338
    
    [71]李博.生态学[M].北京:高等教育出版社,2000,64-70
    
    [72]王德利.植物生态场导论[M].长春:吉林科学技术出版社,1994,68-90
    
    [73]王刚,张大勇.生物竞争理论[M].西安:陕西科技出版社,1995,50
    
    [74] TILMAN D. Competition and biodiversity in spatially structured habitats [J].Ecology, 1994,75: 2-16
    
    [75] TILMAN D. Resource competition and community structure[M]. Princeton NJ:Princeton University Press, 1982:296
    
    [76] ABRAMS P A.Monotonic orunimodal diversity-productivity gradients:Whatdoes competition theory predict[J].Ecology, 1995,76: 2019-2027
    
    [77]张大勇.理论生态学研究[M].北京:高等教育出版社,2000,1 54
    
    [78]郝敦元,刘钟龄,王炜.内蒙古草原退化群落恢复演替的研究Ⅲ.群落演替 的数学模型[J].植物生态学报,1997,21(6):503-511
    
    [79]石霞,郝敦元,任涛等.内蒙古典型草原动态监测的取样问题[J].干旱区资源 与环境,2001,15(6):80-84
    
    [80]郝敦元,刘钟龄,王炜.内蒙古草原植物群落组织力的分析[J].干旱区资源与 环境,2002,16(3):97-102
    
    [81] Chapin, F. S.,B.H.Walker, R.J.Hobbs, et al. Biotic control over the functioning of ecosystems[J]. Science, 1997,277: 500-503
    
    [82]白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其 对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647
    
    [83]章文波,陈红艳.SPSS12.0实用数据统计分析及应用[M].北京:人民邮电出 版社,2006,57-64
    
    [84]陆璇.应用统计[M].清华大学出版社1999,68
    
    [85]王义凤.1989.大针茅草原地上生物量形成的规律与特点[J].植物生态学与 地植物学学报,13(4):297-308
    
    [86]王炜,刘钟龄,郝敦元,等.1996.内蒙古草原退化群落恢复演替的研究Ⅱ. 恢复演替时间进程的分析[J].植物生态学报,20(5):460-471
    
    [87]张彩琴,杨持.植物生长模拟与数学模型研究[J].内蒙古大学学报,2006, 37(4):435-440
    
    [88]陈佐忠,汪诗平.中国典型草原生态系统.北京:科学出版社,2000,55-117
    
    [89]贾志斌,杨持,洪洋.中温型和暖温型草原大针茅+羊草群落结构特征的比较 [J].生态学报,2002,22(10):1774-1780
    
    [90]贾志斌,杨持,洪洋.中温型和暖温型草原五种植物构件生长与水热组合关 系研究[J].生态学报,2002,14(1):43-46
    
    [91]李皓鸣,王菊风.生态对策影响种群增长的数学模型研究[J].生物数学学报, 1994.,9(4):207-213
    
    [92]祝廷成,羊草生物生态学[M].长春:吉林科学技术出版社,2004,24-60
    
    [93] Li Dexin. Fluctuations of stipa klemenzii desert steppe community in Inner Mongolia plateau[C]. In: Proceedings of the international symposium on grassland vegetation. Beijing: Science press: 1990,433-438
    
    [94]王义凤.内蒙古地区大针茅草原中主要种群生物量季节动态的初步观测[A]. 见:中国科学院内蒙古草原生态系统定位站.草原生态系统研究第一集[C]. 北京:科学出版社:1985,64-73
    
    [95]李绍良.栗钙土的水分状况与牧草生长[A].中国科学院内蒙古草原生态系统 定位站.草原生态系统研究第二集[C].北京:科学出版社,1988,10-19
    
    [96]王玉辉, 周广胜.内蒙古地区羊草草原植被对温度变化的动态响应[J].植物 生态学报2004,28(4):507-514
    
    [97]高贤明,陈灵芝.1998.植物生活型分类系统的修订及中国暖温带森林植物 生活型谱分析[J].植物学报,40(6):553-559
    
    [98]马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社, 2000,5-18.
    
    [99] Mey R.M. Simple mathematical models with very complicated dynamics[J]. Natury, 1976
    
    [100]李自珍.应用生态学研究—生态系统的分析、调控与模拟[M].兰州:甘肃 科学技术出版社,1991,234-316.
    
    [101] May R M. Sun R Y(transfer) Theoretical ecology[M], Beijing: Science press, 1976. 261-459.
    
    [102]常杰,葛滢.统合生物学纲要[M].北京:高等教育出版社,2005.65-66.
    
    [103]李自珍,刘小平,蒋文兰.人工草地放牧系统优化模式研究Ⅰ.人工草地的 最大持续产量模型和最优控制方法及应用[J].草业学报,1998,7(4):61-66.
    
    [104]殷祚云.Logistic曲线拟合方法研究[J].数理统计与管理,2002,21(1):41-46
    
    [105]马占山.单纯形加速法拟合生态学中非线性模型[J].生物数学学报,1992, 7(2):160-167.
    
    [106] Milton S J, Dean W R J, Duplessis M A, et al. A conceptual model of arid rangeland degradation[J]. Bioscience.1994,44: 70-76
    
    [107]延晓冬.崔-Lawson和Logistic方程参数的优化估计方法[J].应用生态学报, 1991,2(3):275-279
    
    [108]王振中.Logistic曲线K值的四点式平均值估计法[J].生态学报,1987, 7(3):193-197
    
    [109]张彩琴,杨持.内蒙古典型草原生长季内不同植物生长动态的模拟[J].生态 学报,2007,27(9):361 8-3629
    
    [110]唐启义,胡国文,冯明光,等.Logistic方程参数估计中的错误与修正[J].生物 数学学报,1996,11(4):135-138
    
    [111]张彩琴,杨持.内蒙古典型草原几种不同植物的生长动态比较[J].生态学杂 志,2007,26(11):1712-1718
    
    [112]白永飞,许志信,李德新.羊草草原群落生物量季节动态研究[J].中国草地, 1994,3:1-5
    
    [113]沈享里.农业生态学[M].北京:中国农业出版社,1996
    
    [114] Boote K J, Jones J W, Pickering N B. Potential uses and limitations of cropmodels[J]. Agronomy Journal,1996,88: 704-716
    
    [115] Sinclair T R, N G Seligman. crop modeling: from infancy to maturity [J].Agronomy Journal, 1996, 88: 698-704
    
    [116]王道波,张广录.基于气象因子的玉米生长模型拟合研究[J].玉米科学, 2005,13(1):119-122
    
    [117]吕新.生态因素对玉米生长发育影响及气候生态模型与评价系统建立的研 究[D].博士学位论文,山东农业大学,2002,6-10
    
    [118]盖钧缢.试验统计方法[M].北京:科学出版社,2000,193:209-376.
    
    [119]胡健颖,冯泰.实用统计学.北京:北京大学出版社,1996,279-282
    
    [120]黄富祥,高琼,傅德山等.内蒙古鄂尔多斯高原典型草原百里香-本氏针 茅草地地上生物量对气候响应动态回归分析[J].生态学报,2001,21(8): 1339-1346
    
    [121]李永宏.内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和 趋同[J].植物生态学与地植物学学报,1988,12(3):189-196
    
    [122]邢黎峰.生物生长的Richards模型[J].生物数学学报,1998,13(3):348-353
    
    [123]李凤日.Richards函数与Schnute生长模型的比较[J].东北林业大学学报, 1993,21(4):390-393
    
    [124] Prescott D M. Relations between cell growth and cell division[J]. Exp. Cell Res,1995, 9(2): 328-337
    
    [125] Richards F J. A flexible growth function for empirical use[J]. J. Exp. Bot, 1959,10(29): 290-300
    
    [126] Yang yi-qun, WU liang hua, WU ji-miao. On the Richards Curve[J]. Journal of Miomathematics,2000,15(4):385-387
    
    [127]邢黎峰,刘贤喜,法永乐.Richards生长模型描述弹性分析[J].山东农业大 学学报,1997,28(4):460-464
    
    [128] lexandrow V A, Hoogenboom G. The impact of climate variability and change on major crops in Bulgaria [J].Agricultural and Forest Meteorology, 2000, 104(4): 315-327
    
    [129]黄冲平.马铃薯生长发育的动态模拟研究[D].博士学位论文,浙江大学, 2003
    
    [130]刘铁梅.小麦光合生产与物质分配的模拟模型[D].博士学位论文,南京农 业大学,2000
    
    [131]王平,王天慧,周道玮.植物地上竞争与地下竞争研究进展[J].生态学报, 2007,27(8):3489-3499
    
    [132] Strobeck, C. N Species competition [J]. Ecology, 1973, 54: 650-654
    
    [133]陆凡,李自珍.固沙植物油蒿、柠条水分竞争模型的稳定性分析[J].兰州大 学学报(自然科学版),2002,38(6):85-87
    
    [134]陆凡,李自珍.沙区植物种的一类种间竞争模型及应用[J].西北植物学报 2003,23(1):138-140
    
    [135]E.C.皮洛著,卢泽愚译.数学生态学引论[M].北京:科学出版社,1978
    
    [136] Shukla V P. Modeling the dynamics of wetland macrophytes: keoladeo national park wetland India[J]. Ecological modeling, 1998,109: 99-114
    
    [137] Alis, Vijayan V S. Keoladeo national park ecology study[M]. In: Bimbay Natural History-Society[R]. 1986:1980-1985
    
    [138]中山大学.常微分方程[M].北京:高等教育出版社,1978.256-263
    
    [139]毛凯,李日华.种群竞争模型的稳定性分析[J].生物数学学学报,1999, 14(3):288-292
    
    [140]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社, 2001
    
    [141]陈兰荪.数学生态学模型与研究方法[M].科学出版社,1988
    
    [142]C.W.克拉克著[加].周学勤译.数学生物经济学[M].北京:农业出版社, 1984
    
    [143]曲颖,李自珍,李文龙.湿地植物生长模型的改进及其动态的计算机模拟 分析[J].西北植物学报,2004,24(3):418-423
    
    [144] MURRAY J D. Methematical biology[M]. Berlin Heidelberg: Springer-Verlag, 1993: 83-84
    
    [145]李文辉,刘树德,宋强.单纯形加速法的一种改进方案[J].控制理论与应用, 1994,2:23-25
    
    [146]杨运清.提高非线性模型拟合结果可靠性的一种方法——χ~2值Marquardt法 [J].生物数学学报,1993,3:150-155
    
    [147]李仲来,刘来福.种群增长的分段指数模型及参数估计[J].生物数学学报, 1998,3
    
    [148] Ratkowsky D A(translated by Hong Zaiji). Nonlinear RegressionMadeling-A Unified Practcal Approach[M]. Nanjing: Nanjing Univeasity Press, 1986, 85-90
    
    [149]崔党群.Logistic曲线方程的解析与拟合优度测验[J].数理统计与管理, 2005,24(1):112-115
    
    [150]王莽莽.用Marquardt方法最优拟合Logistic曲线[J].生态学报,1986,6(2): 142-147
    
    [151]练健生,江海声.Logistic种群增长模型参数的生态学意义及其辩识[J].中山 大学学报论丛,1995,3:160-163
    
    [152] Begon, M, et al. Ecology[M]. Blackwell Scientific Publications, 1986
    
    [153] Varley, G.C. et al(translated by Li Zumen et al.).Insect Population Ecology[M],USA: University of California Press, 1974
    
    [154] Woods, R. Theoretical population geography[M]. Longman, London and NewYork,1982
    
    [155]崔启武.Logistic方程中的速度参数等于种群的内禀增长率吗?[J].生态学 杂志,1985,5(1):56-58
    
    [156]丁岩钦.昆虫种群数学生态学原理与应用[M].北京:科学出版社,1980
    
    [157]杨昭军,师义民.Logistic模型参数估计及预测实例[J].数理统计与管理, 1997,16(3):105-108
    
    [158]史密斯J M著.郎所译.生态学模型.北京:科学出版社,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700