用户名: 密码: 验证码:
典型养殖海区潮动力结构特征的初步研究—观测与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑沟湾是我国黄海沿岸重要的水产增养殖水域,近年来,大面积高密度的海水养殖已经使该湾的潮动力结构发生重大改变。因此,深入了解桑沟湾的潮动力结构特征,探讨养殖活动对海区潮动力结构的影响机制,是研究该海区的养殖容量与环境之间关系的基础。本文的主要目标是通过现场观测分析桑沟湾的潮流垂直结构特征,然后建立一个适合该海域的水动力模型,利用此模型探讨大量养殖生物和养殖设施对潮流垂直结构的影响机制。
     本文首先由2006年春季和夏季两个航次在桑沟湾不同种类养殖区内5个站位(湾口北侧寻山站、湾口南侧楮岛站、湾中央连续站、湾口中部和湾顶中部)现场观测的水位资料和ADCP、ADV流速资料出发,经由准调和分析法得到潮汐、潮流各主要分潮的调和常数及潮流各主要分潮的椭圆要素。分析了在该海域养殖生物量最大的春季和最小的夏季里寻山站、楮岛站的潮汐各主要分潮的调和常数;各观测站的潮流流速剖面,水柱总动能,潮流上边界层和底边界层的摩擦速度、阻力系数,涡粘系数、应力的垂直分布,以及近底层湍动能耗散率、雷诺应力的分布特征。分析结果表明:①桑沟湾海区的潮汐类型为不正规半日潮,日不等现象明显。潮流类型为正规半日潮,M2分潮明显占优,水平潮流运动形式为往复流。养殖活动只改变了潮流流速,并没有改变潮波性质。②大量养殖生物和养殖设施的存在使得水柱上层的水平流速在垂向出现了速度梯度,潮流垂直结构发生重大改变,形成了该海区特有的潮流上边界层。该层遵守壁面律,流速剖面呈对数律分布。潮流上边界层平均阻力系数C DS大于底边界层平均阻力系数C DB,二者同在10-2量级,比自然海区的底边界层阻力系数高1个量级;粗糙长度在10-2~10-1m量级,比自然海区高3~4个量级。③在该海区,表层海水先于底层涨/落潮约1h,整个海湾出现涨/落潮不同时的现象,湾口最大潮流出现时间比湾顶提早约1h,但转流时刻相差不大。④养殖活动对水体阻力非常大,涡粘系数νT比自然海区高1~2个量级。⑤TKE耗散率ε比自然海区高1~2个量级,是个强耗散海区。
     然后,根据桑沟湾特有的潮流垂直结构特征,改进原有水动力模型,增加了对该海区非常重要的上边界条件的描述,建立了一个适用于该海区的一维双阻力水动力模型对湾口北侧海带养殖区的潮流垂直结构及其相应的剪应力垂直结构进行模拟,并通过改变模型中潮流上边界层的平均阻力系数C DS、底边界层平均阻力系数C DB和涡粘系数νT的取值来研究养殖活动对潮流垂直结构的影响机制。模型的输入参数由现场观测数据得来。数值实验结果显示:①在浅海非线性作用下,潮流流速随应力的改变呈非线性变化,而不是单调递增或递减。②养殖活动和底应力对潮流流速的垂直分布和涡粘系数的垂直分布有影响:当养殖密度减小后,水体受到的养殖阻力减小,上层海水流动加快,因此潮流上边界层变薄,底边界层变厚;随着底应力的减小,底层海水流动加快,潮流底边界层变薄,上边界层变厚。③养殖密度的增加阻碍了流出该湾的海水的流速,加快了流入海水的流速,而底应力的增加恰好相反,阻碍了流入该湾的海水,加快了流出海水的流速。④涡粘系数νT的变化既改变了潮流流速的量值,又改变了潮流流速的垂直分布。
Sanggou Bay is a main Chinese mariculture sea area along the Yellow Sea. In resent years, there has an alternative feature of tidal-dynamic structure induced by large-scale and over-heavy mariculture. Therefore further researches on the feature as well as the mechanism of the effect of mariculture on tidal-dynamic structure are fundamental to understand the relationship between carrying capacity and environment in this bay. In this paper, one of the main purposes is to analyze the feature of the vertical structure of tidal current from field observing, another is to discuss its mechanism numerically through a modified 1-D double-drag hydrodynamic model.
     In the present study, two companies of field observation are performed in spring and summer of 2006 respectively. There are totally 5 study stations schemed in all kinds of aquaculture region as follows: Xunshan, Chundao, Anchor station, middle of bay mouth and middle of inner bay. Basic to water level data in both Xunshan and Chudao and all ADCP and ADV data, harmonic coefficients of 6 main components of tide and tidal current and elliptic elements of tidal current are achieved by means of the quasi-harmonic analysis. Features of the harmonic coefficients of tide, vertical structures of tidal current, total kinetic energy of water column, both friction velocities and drag coefficients in tidal upper boundary layer and bottom boundary layer, distributions of eddy viscosity and the shear stress, TKE dissipation rate and the Reynolds stress near the sea bed in the two seasons are analyzed. As a result, Sanggou Bay is dominated by irregular semidiurnal tide and regular semidiurnal tidal components with tidal current flowing back and forth. Only tide speed is decreased by large-scale mariculture, rather than the character of tidal wave. The vertical velocity gradient occurs in upper water column because of plenty of mariculture organisms and culture structures. It changes the vertical structure of tidal current evidently to form a peculiarly tidal upper boundary layer. In the layer, the speed obeys law of the wall, whose logarithmic profile is obtained on integration. The drag coefficient of upper boundary layer C DS exceeds that of bottom boundary layer C DB, but both of them are of 10-2 magnitude, 1 order of magnitude higher than that in natural area. The roughness length is of 10-2~10-1m magnitude, 3~4 orders of magnitude higher than that in natural area. Significant 1-hour earlier-ebb-and-earlier-flooding appears in surface. In the entire bay, the peak tidal current occurs 1 hour earlier in the bay mouth than that inside. Eddy viscosityνT is 1~2 orders of magnitude higher than that in natural area, and TKE dissipation rateεis 1~2 orders of magnitude stronger as well.
     On the other hand, a modified 1-D double-drag hydrodynamic model is established to simulate the vertical structures of both tidal current and the corresponding shear stress in the kelp culture region, whose input parameters can be obtained from field measurements. Based on this model, the effects of mariculture on the vertical structure of tidal current are discussed through adjusting the values of the averaged drag coefficient in tidal upper boundary layer C DS, the averaged drag coefficient in bottom boundary layer C DB or eddy viscosityνT. As a result, tidal-current speed has a nonlinear tendency to change with the shear stress, because of the nonlinearity in shallow sea. Mariculture and bottom stress have an effect on the vertical structures of both tidal current and eddy viscosity. When the aquaculture density becomes lower, the aquaculture drag decreases resulting in the upper-layer water flows rapidly, thus having a thinner tidal-current upper boundary layer and a thicker bottom boundary layer. When the bottom stress is gradually lower and lower, the bottom-layer water speed up, so the bottom boundary layer is thinner and the upper boundary layer is thicker. The increasing aquaculture density blocks the outflows but speed up the inflows. On the contrary, the increasing bottom stress blocks the inflows, while speed up the outflows. The magnitude and the vertical structure of tidal current are affected by the eddy viscosity.
引文
[1]方国洪.潮汐分析和预报的准调和分潮方法,Ⅰ.准调和分潮.海洋科学集刊,1974,9:1~15
    [2]方国洪.潮汐分析和预报的准调和分潮方法,Ⅱ.短气观测的分析.海洋科学集刊,1976,11:33~55
    [3]方国洪.潮汐分析和预报的准调和分潮方法,Ⅲ.短期观测的分析.海洋科学集刊,1981,18:19~39
    [4]方建光,孙慧玲,等.桑沟湾海水养殖现状评估及优化措施.海洋水产研究,1996,17(2):95~102
    [5]方建光,匡世焕.桑沟湾栉孔扇贝养殖容量的研究.海洋水产研究,1996(17),2:18~31
    [6]冯士筰,孙文心主编.物理海洋数值计算.郑州:河南科学技术出版社. 1992
    [7]冯士筰,李凤岐,李少菁著.海洋科学导论.北京:高等教育出版社. 1999
    [8]国家海洋局第一海洋研究所.桑沟湾增养殖环境综合调查研究.青岛:青岛出版社,1988.188
    [9]刘慧,方建光,等.莱州湾和桑沟湾养殖海区主要营养盐的周年变动及限制因子.中国水产科学,2003a,10(3):227~234
    [10]刘慧,方建光,等.莱州湾和桑沟湾养殖海区浮游植物的研究II.海洋水产研究,2003b,24(3):20~28
    [11]刘志宇,魏皓.黄海潮流底边界层内湍动能耗散率与底应力的估计.自然科学进展,2007(17),3:362~369
    [12]毛兴华,朱明远,等.桑沟湾大型底栖植物的光合作用和生产力的初步研究.生态学报,1993,13(1):25~29
    [13]毛兴华,杨小龙.桑沟湾浮游动物生产力及其转换效率.海洋学报,1997,19(4):138~141
    [14]孙耀,赵俊,等.桑沟湾养殖海域的水环境特征.中国水产科学,1998,5(3):69~75
    [15]王丽霞,石磊,孙长青.桑沟湾海域的潮流数值计算.青岛海洋大学学报专辑,1994a(8):77~83
    [16]王丽霞,赵可胜,孙长青.桑沟湾海域物理自净能力分析.青岛海洋大学学报专辑,1994b(8):84~91
    [17]汪亚平,高抒,贾建军.海底边界层水流结构及底移质搬运研究进展.海洋地质与第四纪地质,2000(20),13:101~106
    [18]魏皓,鹿有余,孙文心,等.湍能封闭模型在渤海潮流模拟中的应用.青岛海洋大学学报,1997,27(4):453~458
    [19]魏皓,赵亮,等.浅海底边界动力过程与物质交换研究.地球科学进展,2006(21),11:1180~1184
    [20]叶安乐,李凤岐编著.物理海洋学.青岛:青岛海洋大学出版社. 1992
    [21]张为先.桑沟湾增养殖.北京,海洋出版社,1992. 6
    [22]张兆顺著.湍流.北京:国防工业出版社.2001
    [23]赵俊,周诗赉,孙耀,等.桑沟湾增养殖水文环境研究.海洋水产研究,1996,17(2):68~79
    [24]山东省科学技术委员会.山东近海水文图集.济南:山东省地图出版社. 1989
    [25]海洋图集编委会编.渤海、黄海、东海海洋图集(水文).北京:海洋出版社. 1993
    [26]海洋图集编委会编.渤海、黄海、东海海洋图集(地质、地球物理).北京:海洋出版社. 1990
    [27]魏皓,武建平,张平.海洋湍流模式应用研究.青岛海洋大学学报,2001,31(1)7~13
    [28] Agrawal, Y.C., E.A. Terray, M.A. Donelan et al. Enhanced dissipation of kinetic energy beneath surface waves. Nature, 1992, 359: 219~22
    [29] Blumerg, A., G. A. Mellor. Description of a three dimensional coastal ocean circulation mode1. In: Heaps N ed, Three-dimensional coastal models. [C] Washington D C: American Geophysical Union, 1987, 4: 208
    [30] Bowden, K. F., L. A. Fairbairn, P. Hughes. The distribution of shearing stresses in a tidal current. Geophysical Journal of the Royal Astronomical Society 1959, 2: 288~305
    [31] Bowden, K.F. Turbulence. In: The Sea, (Ed.) Hill M.N., 1962, 1: 802~825 Wiley-Interscience, New York
    [32] Boyd, A.J., K.G. Heasman. Shellfish mariculture in the Benguela System: water flow patterns within a mussel farm in Saldanha Bay, South Africa. J. Shellfish Res., 1998, 17: 25~32
    [33] Cacchione, D.A., D.E. Drake. Shelf sediment transport: an overview with applications to the northern California continental Shelf. In: LeMehaute, B., Hanes, D.M. (Eds.), The Sea, Wiley Interscience, New York. 1990, 9( Part B): 729~773
    [34] Campbell, D.E., C.R. Newell. MUSMOD(c), a production model for bottom culture of the blue mussel, Mytilus edulis L. J. Exp. Mar. Biol. Ecol., 1998, 219: 171~203
    [35] Caughey, S.J., J.C. Wygnaard. The turbulent kinetic energy budget in convective conditions. Q. J. R. Meteorol. Soc. 1979, 105: 231~239
    [36] Chen, D., S. G. Horrigan, D. P. Wang. The late summer vertical nutrient mixing in Long Island Sound. J. Mari. Res., 1988, 46: 753~770
    [37] Davies, A. M, J. Xing. An inter-comparison and validation of a range of turbulence energy schemes used in three dimensional tidal models. In: Lynch D R, Davies A. M. eds. Qualitative skill assessment for coastal ocean models. [C] Washington D C: AGU, 1995. 71~95
    [38] Deacon, E.L. The measurement of turbulent transfer in the lower atmosphere. Advances in Geophysics, 1959, 6: 211~228
    [39] Elliott, A. J. The Boundary Layer Character of Tidal Currents in the Eastern Irish Sea. Estuarine, Coastal and Shelf Science, 2002, 55, 465~480
    [40] Fang, G., T. Ichiye. On the vertical structure of tidal currents in a homogeneous sea. Geophysical Journal International, 1983, 73 (1): 65~82
    [41] Fischer, H. B., J. Imberger, E. J. List, et al. Mixing in Inland and Coastal Waters. Academic Press, New York, 483 pp. 1979
    [42] Fréchette, M., C.A. Butman, W.R. Geyer. The importance of boundary layer flows in supplying phytoplankton to the suspension feeder. Mytilus edulis L. Limnol. Oceanogr. 1989, 34: 19~36
    [43] Gadd, P. E, J. W. Lavelle, D. J. P. Swift. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Petrology, 1978, 48: 239~252
    [44] Gibbs, M.M., M.R. James, S.E. Pickmere, et al. Hydrodynamics and water column properties at six stations associated with mussel farming in Pelorus Sound, 1984–85. N.Z. J.Mar. Freshwater Res., 1991, 25: 239~254.
    [45] Goring, D. G., V. I. Nikora, Despiking Acoustic Doppler Velocimeter Data. J. Hydr Engrg., 2002, 128(1): 117~126
    [46] Grant, W. D., O. S. Madsen. Combined wave and current interaction with a rough bottom, J. Geophys. Res., 1979, 84(C4): 1797~1808
    [47] Grant, W. D., O. S. Madsen. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 1982, 87(C1): 469~481
    [48] Grant W.D., A.J. Williams III, S.M. Glenn. Bottom stress estimates and their prediction on the northern California continental shelf during CODE-1: the importance of wave-current interaction. J. Phys. Oceanogr., 1984, 14: 506~527
    [49] Grant, W. D., O. S. Madsen. The continental shelf bottom boundary layer. Annu. Rev. Fluid Mech., 1986, 18: 265~305
    [50] Grant, J., J. Stenton-Dozey, P. Monteiro, et al. Shellfish culture in the Benguela system: a carbon budget of Saldanha Bay for raft culture of Mytilus galloprovincialis. J. Shellfish Res., 1998, 17: 41~49
    [51] Grant, J., C. Bacher. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can. J. Fish. Aquat. Sci., 2001, 58: 1003~1011
    [52] Green, M.O., J.E. Hewitt, S.F. Thrush. Seabed drag coefficient over natural beds of horse mussels (Atrina zelandica). J. Mar. Res., 1998, 56: 613~637
    [53] Green, M.O. Spectral estimates of bed shear stress at subcritical Reynolds numbers in a tidal boundary layer. J. Phys. Oceanogr., 1992, 22: 903~917
    [54] Gross, T.F., A.R.M. Nowell. Mean flow and turbulence scaling in a tidal boundary layer. Cont. Shelf Res., 1983, 2: 109~126
    [55] Gross, T. F., A. Nowell. Spectral scaling in a tidal boundary layer. J. Phys. Oceanogr., 1985, 15, 496~508
    [56] Gross, T.F., A.J. Williams, E.A. Terray. Bottom boundary layer spectral dissipation estimates in the presence of wave motions. Cont. Shelf Res., 1994, 14 (10/11): 1239~1256
    [57] Heathershaw, A.D., J.H. Simpson. The sampling variability of the Reynolds stress and its relation to boundary stress and drag coefficient measurements. Estuarine and Coastal Marine Science, 1978, 6: 263~274
    [58] Huntley, D.A. A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. J. Phys. Oceanogr., 1988, 18: 339~346
    [59] Huntley, D.A., D.G. Hazen. Seabed stresses in combined wave and steady flow conditions on the Nova Scotia Continental Shelf: field measurements and perditions. J. Phys. Oceanogr., 1988, 18: 347~362
    [60] Jackson, G.A., C.D. Winant. Effect of a kelp forest on coastal currents. Continental Shelf Res., 1983, 2: 75~80
    [61] Kaimal, J.C., J.C. Wyngaard, Y. Izumi et al. Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Meteorological Society, 1972, 98:563~589
    [62] Kang, S. K., M. G. G. Foreman, H. J. Lie, et al. Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. J. Geophys. Res.,, 2002, 107 (C3): 10
    [63] Kim, S.C., C.T. Friedrichs, J.P.-Y. Maa et al. Estimating bottom stress in tidal boundarylayer from acoustic Doppler velocimeter data. J. Hydraul. Eng., 2000, 126 (6): 399~406
    [64] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR1941, 30:9~13 (Reprinted in Proc. Royal Soc. Lond. A, 434:913,1991)
    [65] Li, Z., A. J. Elliott. Modelling the vertical structure of tidal currents and temperatures in the UK shelf seas. Estuarine, Coastal and Shelf Science, 1993, 36: 549~564
    [66] Long, C.E., P.L. Wiberg, A.R.M. Nowell. Evaluation of von Karman’s constant from integral flow parameters. J. Hydraul. Eng. 1993, 119 (10): 1182~1190
    [67] Lozovatsky, I D, H. J. S. Fernando. Turbulent mixing on a shallow shelf of the Black Sea. J. Phys. Oceanogr., 2002, 32 (3): 945~956
    [68] Lueck, R. G., Y. Lu. The logarithmic layer in a tidal channel. Continental Shelf Res., 1997, 17: 1785~1801
    [69] Mellor, G. L., P. A. Durbin. The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 1975, 5: 718~728
    [70] Nikora, V. I., D. G. Goring. ADV measurements of turbulence: can we improve their interpretation. J. Hydraul. Eng., 1998, 124(6): 630~634
    [71] Nikora, V. I., D. G. Goring. Flow turbulence over fixed and weakly mobile gravel beds. J. Hydraul. Eng., 2000, 126(9): 679~690
    [72] Oey, L. Y., G. L. Mellor, R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary. I: Description of the model and model simulation. J. Phys. Oceanogr., 1985, 15: 1676~1692
    [73] Pilditch, C.A., J. Grant, K.R. Bryan. Seston supply to sea scallops (Placopecten magellanicus) in suspended culture. Can. J. Fish. Aquat. Sci., 2001, 58: 241–253
    [74] Raillard, O., A. Menesguen. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser., 1994, 115: 117~130
    [75] Richardson, L. F. Weather prediction by numerical process. Cambridge University Press. 1922
    [76] Robert, J. L., Y. Ouellet. A three-dimensional finite element model for the study of steady and non-steady natural flows. In: Three-dimensional models of marine and estuarine dynamics, edited by J. C. Nihoul and B. M. Jamart, 45, In: Elsevier Oceanography Series, Elsevier. 1987
    [77] Rodi, W. Turbulence models and their application in hydraulics-A state of the art review. Netherlands: Book Pub of IAHR, 1980. 104
    [78] Sherwood, C. R., J. R. Lacy, G. Voulgaris. Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA. Cont. Shelf Res., 2006, 26(17~18): 1995~2018
    [79] Soulsby, R. L. The bottom boundary layer of shelf seas. In: Physical oceanography of coastal and shelf seas. ed. B. Johns, Elsevier Oceanography Series, Elsevier, Amsterdam, 1983, 35: 189~266
    [80] Souza, A J, L G Alvarez, T. D. Dickey. Tidally induced turbulence and suspended sediment. Geophys. Res. Lett., 2004, 31: L20309
    [81] Souza, A., C. Friedrichs. Near-bottom boundary layers. In: H Z Baumert, J. Simpson et al., Marine Turbulence: Theories, Observations, and Models. Cambridge Uni. Press, 2005. 283~296
    [82] Sreenivasan, K. R. On the universality of the Kolmogorov constant. Phys Fluids, 1993,7(11): 2778~2784
    [83] Stips, A., H. Prandke, T. Neumann. The structure and dynamics of the bottom boundary layer in shallow sea areas without tidal influence: an experimental approach. Progress in Oceanography, 1998, 41: 383~453
    [84] Tennekes, H, J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge, Mass., 1972
    [85] Trowbridge, J.H. On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Oceanic Technol., 1998, 15: 290~298
    [86] Trowbridge, J., S. Elgar. Turbulence measurements in the surf zone. J. Phys. Oceanogr., 2001, 1: 2403~2417
    [87] Umlauf L., H. Burchard, K. Bolding. GOTM sourcecode and test case documentation (Version 4.0). www.gotm.net. 2007
    [88] Voulgaris, G., J. H. Trowbridge. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol., 1998, 15(1): 272~289
    [89] Weatherly, G. L., P. J. Martin. On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 1978, 8: 557~570
    [90] William, G., O. Madsen. The continental-shelf bottom boundary. Ann. Rev. Fluid Mech., 1986, 18: 265~305
    [91] Wyngaard, J. C., O. R. Cote. The budgets of turbulent kinetic energy and temperature variance in the atmosphere surface layer. J. Atmos. Sci., 1971, 28: 190~201
    [92] Xing, J., A. N. Davies. Application of three dimensional turbulence energy models to the determination of tidal mixing and currents in a shallow sea. Prog. Oceanogr., 1995, 35: 153~205
    [93] Xing, J., A. M. Davies. Application of turbulence energy models to the computation of tidal currents and mixing intensities in shelf edge regions. J. Phys. Oceanogr., 1996, 26: 417~447
    [94] Xu, J.P., L.D. Wright, J.D. Boon. Estimation of bottom stress and roughness in Lower Chesapeake Bay by the inertial dissipation method. J. Coas.l Res., 1994, 10 (2): 329~338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700