用户名: 密码: 验证码:
黄河干流、河口及莱州湾南岸铀的分布及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铀系核素因其在海洋学过程中被广泛用作示踪剂和测年手段而被关注,铀在海洋中的分布及其源和汇的研究一直是很多研究者感兴趣的问题,而河流作为海洋中铀的主要输入源,其河水中铀的浓度对于研究海洋中铀的收支和平衡具有重要意义。河口区由于盐度、悬浮泥沙浓度等因素的时空变化频繁,加之吸附解吸等过程控制着化学元素在颗粒固相和溶液相之间的分配,因此对铀元素向海洋输送通量的影响很大。另外河口和滨海的潮间带及盐沼也是对海洋中铀的收支平衡有重要影响的区域,被认为是海洋中铀的重要归宿之一。
     黄河以其高含沙量而闻名,已有研究发现黄河水中的溶解铀含量不但远远超出了世界河流的平均值,而且也高于海水中铀的浓度,因此对黄河及其河口铀的浓度、来源及其行为进行研究具有区域特殊性意义。与黄河口邻近的莱州湾,其南岸具有广阔的潮间带及盐沼,是研究盐滩沉积物铀的输出及演变的良好场所。本研究采集了黄河干流和黄河口的水样及沉积物、莱州湾钻孔的地下卤水和沉积物样品,主要对其中的铀同位素进行了研究,并进行了实验室模拟,取得了如下研究结果:
     1、黄河干流溶解铀的浓度介于2.04 -7.83μg/l之间,平均值4.38μg/l,远高于世界河流平均值,也超过了海水的溶解铀浓度;溶解铀浓度沿黄河干流呈上升趋势。黄河水中234U/238U活度比介于1.36-1.67之间,平均值1.4。较高的234U/238U活度比说明黄河水中的溶解铀受到了硅酸盐风化及地下水输入的影响。
     2、黄河中游及其支流流经黄土高原,干旱半干旱的气候使得风化产物在颗粒表面富集,强烈的物理侵蚀又使大量黄土颗粒及风化壳进入黄河,黄土颗粒表面及风化壳中的铀极易溶出造成黄河水中铀浓度升高;另一方面,黄土中的铀还可以通过被淋滤进入地表径流和地下水,最终以溶解铀的形式被带入黄河。根据黄土悬浮平衡和淋滤模拟实验结果以及黄河径流和泥沙数据,利用箱式模型对黄河中游溶解铀来源的估算表明,黄河中游溶解铀2/3来自悬浮颗粒物释放,1/3来自地下水及径流输入。
     3、黄河口溶解铀呈现非保守行为,盐度低于20时有外来的溶解铀进入水体。每年有大约3.5×104 kg的溶解铀从悬浮颗粒物解吸或从沉积物间隙水中释放进入河口水体中。加上河流输入的溶解铀,每年河口水体输入的总溶解铀量为9.8×104 kg。这个数值占全球河流铀通量的1%左右。
     4、现场调查和模拟实验均显示,黄河口混合带溶解铀和磷酸盐随盐度增加具有同步变化的趋势。磷酸盐的增加主要来自于底沉积物间隙水向上覆水体的扩散,而增加的溶解铀主要来自水体中悬浮颗粒物的解吸。
     5、莱州湾南岸地下卤水溶解铀的浓度高于相同浓缩倍数的莱州湾海水的铀浓度,且程度随浓缩倍数的增大而增大,说明卤水中的溶解铀还有其他来源。该地区大面积的盐沼为海水中的铀在盐沼的输出提供了有利条件,盐沼沉积物中由于胶体絮凝或与铁锰氧化物共沉淀而从水体中沉淀下来的铀,可能在其被埋藏后经历的漫长的地质变迁过程中通过地下水的淋滤而进入卤水体系,或由于有机物的降解而导致铁锰氧化物被还原从而使部分铀元素被释放而重新进入地下卤水中,这是卤水中溶解铀的另一个重要来源。而地下卤水中较高浓度的HCO3-和PO43-可以和卤水中的溶解铀形成稳定的配合物从而使高浓度的铀得以保持。
U-series nuclides have been used extensively as tracers and chronometers of many oceanographic processes. Thus, the distribution of U in the oceans and its source and sink terms are of particular interest. The uranium concentration of river runoff, the dominant transport pathways which supply significant amounts of uranium to the ocean, is important to the evaluation of uranium budget and mass balance in the global ocean. The salinities and concentrations of suspended sediments in the estuarine mixing zone vary with time and space, which alter the element partitioning between solid phase and solution via adsorption and desorption and change the riverine input of uranium significantly. The intertidal salt marshes are also considered to be strong sinks of uranium at all salinities which will exert influences on the global uranium budget in the ocean.
     Yellow River is famous for its high suspended sediments. It has been found that the dissolved uranium in the Yellow River is not only higher than the average concentration of the world rivers but also exceed that of the average seawater. Therefore, it is of particularly interest in studying the concentrations, sources and behavior of uranium in the Yellow River and its estuary. The broad intertidal salt marshs along the southern coast of Laizhou Bay, which is adjacent to the Yellow River estuary, can serve as excellent sites to study the removal and evolution of uranium in the salt marsh sediments. In this study, the waters and sediments of the Yellow River and its estuary as well as the underground brine along the southern coast of Laizhou Bay were sampled. The uranium isotopes and other relevant elements of the samples were measured. Based on the data obtained from the field investigation and the laboratory simulation, the main results can be summarized below.
     1. The concentrations of dissolved uranium in the main channel of Yellow River range between 2.04 -7.83μg/l, averaging of 4.38μg/l, which is not only much higher than the global average river water uranium concentration, but also higher than the average concentration for seawater of salinity 35. The uranium concentrations generally increase downstream. The 234U/238U activity ratios of the Yellow River water vary from 1.36- 1.67 with a majority of values of 1.4. The relatively high 234U/238U activity ratios indicate the contribution of silicate weathering as well as the groundwater input.
     2. The Chinese Loess Plateau covers most of the middle reaches of the Yellow River drainage basin. The arid-semiarid climate make the uranium accumulated in grain surface and weathering crusts of loess deposits and the severe physical erosion results in these loess grain and weathering crusts entering into the Yellow River and the uranium can be released or dissolved easily from these materials which will enhance the concentrations of uranium in the Yellow River. On the other hand, the uranium can be leached to the surface runoff and ground water and then enter into the Yellow River ultimately as dissolved uranium. Based on the data of equilibration experiments and leaching experiments as well as the water and sediments discharge of Yellow River, the sources of dissolved uranium in the middle reaches of Yellow River is estimated by a box model. Which give a result that the suspended sediments contribute two thirds while the ground water and runoff contribute one third of dissolved uranium in the middle reaches of Yellow River.
     3. The dissolved U behaves non-conservatively at salinities <20 in the Yellow River estuary. There is addition of U dissolved from suspended sediments and/or diffused from interstitial water of bottom sediment as about 3.5×104 kg/yr to the estuarine waters. In addition to the dissolved uranium inputs by the river, the inventory of uranium input from the estuary of Yellow River to the ocean should be 9.8×104 kg/ yr, which account for about 1% of the global riverine uranium flux.
     4. Both field investigation and laboratory experiments indicate that in the Yellow River plume mixing zone, the variation in dissolved U with salinity assumes a similar pattern as that of PO43-. The diffusion of interstitial water from bottom sediment influences more the enrichment of PO43-, whereas desorption from the suspended sediments seems more responsible for the elevated dissolved U concentrations.
     5. The dissolved uranium concentration of underground brine along the southern coast of Laizhou Bay are higher than the concentrated seawater of Laizhou Bay under the same concentration factor and the discrepancy increase with the concentration factor, indicating sources of dissolved uranium other than the concentrated seawater. The wide intertidal salt marshes serve the condition of the removal of uranium from the seawater. The uranium deposited with the flocculation of colloid and/or coprecipitated along with the iron/ manganese oxides at the surface sediments may be leached by the groundwater during the geological evolution after being buried, or be released to the underground brine owing to the reduction of iron/ manganese oxides along with the degradation of organic material. The relatively high concentrations of HCO3- and PO43- in the underground brine can stabilize the high level of dissolved uranium by forming uranyl complex.
引文
1. A.M.奥弗琴尼科夫著,北京地质学院水文地质及工程地质教研室译.普通水文地质学.第一版.北京:煤炭工业出版社,1954,177-185
    2.蔡平河,黄奕普,邱雨生.九龙江河口区水体中的238U、234Th地球化学行为的研究.海洋学报,1996,18(5):52-60
    3.陈法正.鄂尔多斯盆地北部水文地质条件与铀成矿前景分析.铀矿地质,2002,18(5):287-294
    4.陈法正,赵金峰,常宝成,高俊义.鄂尔多斯盆地北部铀矿区砂岩型铀矿地浸水文地质条件初步分析评价.铀矿地质,2006,22(3):163-167
    5.陈国珍.海水分析化学.第一版.北京:科学出版社,1965. 17-344
    6.陈浩,周金星,陆忠臣,陈金荣.黄河中游流域环境要素对水沙变异的影响.地理研究,2002,21(2):179-187
    7.陈怀录,杨化中,韩敏,张红.用裂变径迹法测定兰州段黄河水中的铀含量.核技术,1995, 4:58-59
    8.陈静生,李远辉,乐嘉祥,王德春.我国河流的物理与化学侵蚀作用.科学通报,1984,15:932-936
    9.陈静生,张宇,于涛,何大伟.对黄河泥沙有机质的溶解特性和降解特性的研究——再论黄河水的COD值不能真实反映其污染状况.环境科学学报,2004,24(1):1-5
    10.陈静生,王飞越,何大伟.黄河水质地球化学.地学前沿(中国地质大学(北京);北京大学),2006,13(1), 58-73
    11.陈敏,黄奕普,邱雨生,陈性保,陈飞舟,蔡平河.九龙江河口区溶解态、颗粒态铀同位素的地球化学行为.台湾海峡,1999,18(4):456-464
    12.程华汉,马汉峰.利用裂变径迹方法研究碱交待作用中铀赋存状态的变化.铀矿地质,2000,16(5):291-296
    13.程杰,张连平.黄河水系放射性水平调查与卫生学评价.黄河出版社,济南,1999, 163pp
    14.傅国斌.黄河流域的水文. In:汤奇成,熊怡.中国河流水文.科学出版社,北京,1998, p.143-160
    15.高善明,李元芳,安凤桐,王一曼,严富华.黄河三角洲形成和沉积环境.北京:科学出版社,1989,30-50
    16.韩贵琳,刘丛强,王中良,张辉.贵州喀斯特地区乌江河水中铀的地球化学研究.地质地球化学,1999,27(4): 66-71
    17.韩美,孟庆海.莱州湾沿岸的地貌类型.山东师范大学学报(自然科学版),1996,11(3):63-67
    18.韩有松,孟广兰,王少青,等.中国北方沿海第四纪地下卤水.北京:科学出版社, 1996, 1~193
    19.韩有松,吴洪发.莱州湾滨海平原地下卤水成因初探.地质评论,1982,28(2): 126-131
    20.洪业汤,朴河春,姜洪波.黄河沙量记录与黄土高原侵蚀.第四纪研究,1990,1:10-20
    21.黄海军,李凡,庞家珍等.黄河三角洲与渤、黄海陆海相互作用研究.科学出版社,北京,2005,p. 82-118
    22.黄奕普,陈敏.海洋同位素示踪技术研究进展.厦门大学学报(自然科学版), 2001,40: 512-523
    23.姜爱霞,李道高.莱州湾南岸平原地下水水化学环境研究.山东师范大学学报(自然科学版),1997,12(2):174-180
    24.江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系.海洋与湖沼,2005,36(2):97-103
    25.康兴伦,程作联.山东渤海沿岸地下卤水的成分研究.海洋通报,1990,9(6): 25~
    29
    26.李峰山,秦明清.山东莱州湾南岸地下卤水开采与保护问题.海湖盐与化工,1994,23(3):22-24
    27.李晶莹,张经.黄河流域化学风化作用与大气CO2的消耗.海洋地质与第四纪地质. 2003,23(2):43-49
    28.李延丰,王升吉,袁存光,等.莱州湾北部沿海地下卤水资源评价.海湖盐与化工, 2000, 29(6): 38~42
    29.李月芳,姚檀栋,田立德,余武生.青藏高原天然水体中铀含量的区域分布特征.地球化学,2003,32(5):445-452
    30.林瑞芬,卫克勤,王志祥.太原地区地下水中铀含量和234U/238U比值研究.地球化学,1986,3:193-201
    31.林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,1994,16(4):82-90
    32.刘东生.黄土与环境[M].北京:科学出版社,1985,4-6:239-246
    33.刘韶,秦佩玲,张惠玲.长江水样中铀钍分布特征.矿物岩石地球化学通讯,1988, 1: 12
    34.刘玉兰.我国天然水系中天然放射性核素水平及评价. CNIC-00280, LIHNPH-0002.原子能出版社,北京,1988, p. 1-8
    35.刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献.中国岩溶,2000,19(4):293-300
    36.孟广兰,王珍岩,王少青,等.冰冻成因卤水的水化学标志I.卤水的δD值.海洋与湖沼,1999,30(4): 416~420
    37.宁劲松,于志刚,江雪艳.莱州湾沿岸地下卤水的化学组成,海洋科学. 2005,29(11): 13-17
    38.庞家珍,司书亨.黄河河口演变I.河口水文特征及泥沙淤积分布.海洋与湖沼,1980,11(4):295-305
    39.钱意颖,叶青超,周文浩.黄河干流水沙变化与河床演变.北京:中国建材工业出版社,1993,p77
    40.戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990.
    41.世界江河数据库. http://www.cws.net.cn/riverdata
    42.石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨Ⅲ.磷酸盐交叉缓冲图及“稳定”pH范围.海洋与湖沼,2000,31(4):441-447
    43.石晓勇,史致丽,余恒,薛长玉.黄河口磷酸盐缓冲机制的探讨Ⅰ.黄河口悬浮物对磷酸盐的吸附-解吸研究.海洋与湖沼,1999,30(2):192-198
    44.水利部黄河水利委员会.黄河泥沙公报. 2004, P. 8. http://www.yellowriver.gov.cn
    45.水利部黄河水利委员会.黄河泥沙公报, 2005a , p7. http://www.yellowriver.gov.cn
    46.水利部黄河水利委员会.黄河水资源公报,2005b, http://www.yellowriver.gov.cn
    47.宋金明,李鹏程.南沙群岛海域沉积物环境与间隙水中的铁锰.环境科学学报,1996,16(3):294-301
    48.宋金明,李延,朱仲斌. Eh和海洋沉积物氧化还原环境的关系.海洋通报,1990,9(4):33-39
    49.孙恢礼,刘韶,张惠玲,吴良基,张承惠.珠江口水中铀的分布规律及其同位素组成初探.热带海洋,1987,6(4):55-60
    50.孙岩,刘云起.我国北方滨海平原区地下卤水资源开发利用前景.海洋地质动态,1998,(3):8-12
    51.汤奇成,熊怡.中国河流水文.北京:科学出版社,1998,p1-19
    52.涂光炽,张玉泉,王中刚等.西藏南部花岗岩类地球化学. [M].北京:科学出版社,1982,107
    53.汪品先等.我国东部第四纪海侵地层的初步研究.地质学报,1981,55(1):1-12
    54.汪蕴璞,王涣夫.四川盆地西南地区三叠系卤水形成问题及其勘查开发方向. In:汪蕴璞编,深层卤水形成问题及解决方法.第一版.北京:地质出版社,1982.1-85
    55.王春燕.台湾邻近海域及南海北部沉积物之铀钍同位素地化研究.台湾中山大学硕士论文,2004,10-15
    56.王东升.中国地下盐卤水的类型与分布.中国地质,1987,2:10-14
    57.王开荣,姚文艺,张希芳,李平.黄河口的现状及其治理.海洋科学,2001,25(10): 52-54
    58.王剑峰.铀地球化学教程.北京:原子能出版社,1986.
    59.王将克,常弘,廖金凤,郑卓,邹和平,王建华,钟月明.生物地球化学.广州:广东科技出版社.1999,390
    60.王强.对渤海西、南沿岸晚第四纪地层14C年代学的讨论.海洋学报,1980,8(1):72-82
    61.王文科,孔金玲,段磊,王雁林,马雄德.黄河流域河水与地下水转化关系研究.中国科学E辑技术科学,2004,34(增刊Ⅰ):23-33
    62.王晓亮,张龙军,苏征,李岩,张向上,高会旺.黄河口总碱度保守与非保守行为探讨.中国海洋大学学报,2005,35(6):1063-1066
    63.王亚强,曹军骥,张小曳,沈振民,梅凡民.中国粉尘源区表土碳酸盐含量与碳氧同位素组成.海洋地质与第四纪地质,2004,24(1):113-117
    64.王有乐.兰州市区城市水环境特征及保护.甘肃环境研究与监测,1994,7(4):1-3
    65.王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟.海洋地质与第四纪地质,2003,23(1): 49~53
    66.魏复盛,《水和废水监测分析方法编委会》.水和废水监测分析方法.第三版.北京:中国环境科学出版社,1989,178-186
    67.吴良基,秦佩玲,刘韶,张承惠,夏明.海洋沉积物中微量铀、钍分离流程.热带海洋,1982,1(2):126-132
    68.吴青,廖明,孙照东.黄河中游泥沙对重金属污染物的吸附-解吸模拟实验研究.黄河水资源保护科学研究所,1988.
    69.武晓林.山西省年降水量规律及系列代表性分析.海河水利,2006,3:1-5
    70.席家治.黄河水资源.黄河水利出版社,郑州, 1996, pp. 127
    71.夏邦栋.普通地质学.北京:地质出版社,1984,265-271
    72.许卉,杨昕.黄土中矿物元素的淋溶释放研究.土壤与环境,2002,11(1):38-41
    73.许炯心.黄河中游支流悬移质粒度与含沙量、流量间的复杂关系.地理研究,2003,22(1): 39-48
    74.徐丽君,周仲怀.黄河口铀的地球化学异常.海洋科学,1987,2:1-7
    75.杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质,1999a,19(2):19-26
    76.杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用.自然科学进展,1999b,9(10):930-937
    77.余晖,张学青,张曦,夏星辉,杨志峰.黄河水体颗粒物对消化过程的影响研究.环境科学学报,2004, 14(4):601-606
    78.于银亭,于延芳,徐丽君,殷丽,周仲怀.莱州湾沿岸地下浓缩海水中的铀与发展核电的关系.海湖盐与化工,1998,27(6):9-12
    79.苑庆忠.山东莱州湾滨海地下卤水及其制盐特点.山东轻工业学院学报,1993,7(4):31-35
    80.翟鹏济,康铁笙.洞庭湖水系铀的水环境背景值.地理科学, 1992, 12(2): 153-160
    81.张经.盆地的风化作用对河流化学成分的控制.张经主编:中国主要河口的生物地球化学研究——化学物质的迁移与环境.北京:海洋出版社,1996,p 1-15
    82.张经,黄薇文,刘敏光.黄河口及邻近海域中悬浮体的分布特征和季节性变化.山东海洋学院学报,1985,15(2):96-104
    83.张岚,倪晋仁,孙卫玲,赵蓉.高含沙水体中黄土吸持和释放铜的机理.环境科学,2003,24(3):79-84
    84.张利田,陈静生.我国河水主要离子组成与区域自然条件的关系.地理科学,2000,
    20(3):236-240
    85.张永祥,薛禹群,陈鸿汉.莱州湾南岸晚更新世后地层中沉积海水的特征及其形成环境.海洋学报,1996,18(6):61-68
    86.张永祥,薛禹群,陈鸿汉.潍坊咸-卤水入侵引起的地下水化学成分变化及其对环境的影响.环境科学学报,1997a,17(3): 295~301.
    87.张永祥,薛禹群,陈鸿汉.莱州湾南岸潍坊地区咸-卤水入侵及其地下水化学特征.地球科学——中国地质大学学报,1997b,22(1): 94-98
    88.张祖还,赵懿英,章邦桐,沈渭洲.铀地球化学.北京:原子能出版社,1984,301-306
    89.张祖陆.渤海南岸滨海平原的黄土研究.科学通报,1995a,40(1):93-94
    90.张祖陆.渤海莱州湾南岸平原黄土阜地貌及其古地理意义.地理学报,1995b,50(5):464-470
    91.张祖陆.渤海莱州湾南岸滨海平原的黄土.海洋学报,1995c,17(3):127-134
    92.赵德三,尹泽生,张祖陆等.山东省沿海区域环境与灾害. [M].北京:科学出版社,1992.
    93.赵景波.黄土的本质与形成模式.沉积学报,2003,21(2):198-204
    94.赵蓉,倪晋仁,孙卫玲,张岚.黄河中游泥沙对铜离子的吸持行为研究.环境科学学报,2003,23(4):441-446
    95.赵树森,刘明林,乔广生.鲁南两城地区水的铀同位素研究及其应用.岩石学报,1994, 10(2): 202-210
    96.郑士民,颜望明,钱新民.自养微生物.北京:科学出版社,1983,187-189
    97.郑守仪,郑执中,王喜堂,傅钊先.山东省打渔张灌区第四纪有孔虫及其沉积环境的初步探讨.海洋科学集刊,第13集.北京:科学出版社. 1978,16-30
    98.中国标准出版社总编室. GB 17378.4-1998.北京:中国标准出版社,1999a,136-138
    99.中国标准出版社总编室. GB 17378.4-1998.北京:中国标准出版社,1999b,176-178
    100.中国科学院青海盐湖研究所分析室编著.卤水和盐的分析方法.第二版.北京:科学出版社,1988. 47-221
    101.周孝德.渭河泥沙对重金属污染物吸附的实验研究.水利学报,1993,97:44-49
    102.周仲怀,徐丽君.黄河口水中铀浓度及其分布规律的初步研究.海洋科学,1986,10(4):42-43
    103.周仲怀,徐丽君,刘兴俊.黄河口铀的化学行为.海洋科学,1989,2:38-42
    104.周仲怀,徐丽君,刘兴俊.莱州湾沿岸地下浓缩海水中高浓度铀的发现及其地球化学异常.海洋与湖沼,1989,20(1):52-57
    105.周仲怀,徐丽君,刘兴俊.莱州湾沿岸地下浓缩海水微量元素地球化学异常及其成因的研究.海洋与湖沼,1990,21(6):585-588
    106.周仲怀,徐丽君,刘兴俊,赵其渊,李家丰,张勇.莱州湾海水中U的不均匀分布规律及地球化学研究.海洋科学,1991,3:45-48
    107.庄振业,李建华.莱州湾东南岸的全新世海侵.见:国际地质对比计划第200号项目中国工作组.中国海平面变化.北京:海洋出版社,1986,91~97
    108. Abdelouas, A., Lutze, W. and Nuttall, E. Chemical reactions of uranium in ground water at a mill tailings site. Journal of Contaminant Hydrology, 1998, 34: 343-361
    109. Andersson, P. S., Porcelli, D., Gustafsson, ?., Ingri, J. and Wasserburg, G. J. The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary. Geochimica et Cosmochimica Acta, 2001, 65(1): 13-25
    110. Andrews J. N. and Kay R. L. F. 234U/238U activity ratios of dissolved uranium in groundwater from a Jurassic limestone aquifer in England. Earth Planet. Sci. Lett., 1982, 57: 139-151
    111. Andrews J. N. Ford D. J., Hussain N., Trivedi D. and Youngman M. J. Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochimica et Cosmochimica Acta, 1989, 53: 1791-1802
    112. Audry, S., Blanc, G., Sch?fer, J. and Robert, S. Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molybdenum and uranium distributionin the Gironde estuary, France. Chemical Geology, 2007, 238:149-167
    113. Barnes, C. E., Cochran, J. K. Uranium removal in oceanic sediments and oceanic U balance. Earth and Planet Sci. Lett. 1990, 97: 94-101
    114. Banner J. L., Wasserburg G. J., Chen J. H., Moore C. H. 234U-238U-230Th-232Th systematics in saline groundwaters from central Missouri. Earth and Planetary Science Letters, 1990, 101(2): 296-312
    115. Barnes, C. E. and Cochran, J. K. Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Lett., 1990, 97 (1-2): 94-101
    116. Bein A.and Arad A. Formation of saline groundwaters in the Baltic region through freezing of seawater during glacial periods. Journal of Hydrology, 1992, 140: 75-87
    117. Bertine, K. K., Chan, L. H. and Turekian, K. K. Uranium determinations in deep-sea sediments and natural waters using fission tracks. Geochimica et Cosmochimica Acta, 1970, 34(6): 641-648
    118. Bhat, S. G. and Krishnaswami, S. Isotopes of uranium and radium in Indian rivers. Proc. Ind. Acad. Sci. (Earth Planet. Sci). 1969, 70: 1-17
    119. Bloch, S. Some factors controlling the concentration of uranium in the world ocean. Geochimica et Cosmochimica Acta, 1980, 44 (2): 373-377
    120. Borole, D. V., Krishnaswami, S. and Somayajuju, B. L. K. Investigations on dissolved uranium, silicon and on particulate trace elements in estuaries. Estuarine Coastal Mar. Sci., 1977, 5: 743-754
    121. Borole, D. V., Krishnaswami, S. and Somayajuju, B. L. K. Uranium isotope in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget. Geochimica et Cosmochimica Acta, 1982, 46: 125-137
    122. Boyle, E. A., J. M. Edmond, and E. R. Sholkovitz. The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 1977, 41: 1313-1324
    123. Bonotto, D. M., Andrews, J. N. and Darbyshire, D. P. F. A laboratory study of the transfer of 234Uand 238U during water-rock interactions in the Carnmenellis granite (Cornwall, England) and Implications for the interpretations of field data. Applied Radiation and Isotopes, 2001, 54: 977-994
    124. Bottomley D.J., Katz A. Chan L. H., Starinsky A. Douglas M., Clark I. D. and Raven K. G. The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chemical Geology, 1999, 155: 295-320
    125. Bottomley D. J., Renaud R., Kotzer T., and Clark I. D. Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield. Geology, 2002, 30: 587-590
    126. Boulegue, J., Lord, C. J., and Church, T. M. Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim, Cosmochim. Acta, 1982, 46: 453-464
    127. Bruno, J., Casas, I., Puigdomenech, I. The kinetics of dissolution of UO2 under reducing conditions and the influence of an oxidized surface layer (UO2+x): Application of a continuous flow-through reactor. Geochim. Cosmochim. Acta, 1991, 55: 647-658
    128. Carroll, J. L. and Moore, W. S. Uranium removal in the Ganges-Brahmaputra River mixing zone. Transactions American Geophysical Union, 1988, 69:1255
    129. Carroll, J. and Moore, W. S. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone. Geochimica et Cosmochimica Acta, 1993, 57(21-22): 4987-4995
    130. Chabaux, F., Riotte, J., Clauer, N. and France-Lanord, C. Isotopic tracing of the dissolved U fluxes of Himalayan rivers: Implications for present and past U budgets of the Ganges-Brahmaputra system. Geochimica et Cosmochimica Acta, 2001, 65(19): 3201-3217
    131. Chen, J. H., Edwards, R. L., Wasserburg, G. J. 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters, 1986, 80: 241-251
    132. Church, T. M., Lord, C. J. and Somayajulu, B. L. K. Uranium, thorium and lead nuclides in salt marsh sediments. Estuarine, Coastal Shelf Science, 1981, 13: 267-275
    133. Church, T. M., Sarin, M. M., Fleisher, M. Q. and Ferdelman, T. Salt marshes: An important coastal sink for dissolved uranium. Geochimica et Cosmochimica Acta, 1996, 60(20): 3879-3887
    134. Cizdziel J., Farmer D., Hodge V., Lindley K., and Stetzenbach K. U-234/U-238 isotope ratios in groundwater from Southern Nevada: a comparison of alpha counting and magnetic sector ICP-MS. Science of the Total Environment, 2005, 350: 248-260
    135. Cochran, J. K., Carey, A. E., Sholkovitz, E. R., Surprenant, L. D. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimica et Cosmochimica Acta, 1986, 50: 663-680
    136. Cochran, J. K. The oceanic chemistry of the U and Th series nuclides. In: Ivanovich, M., Harmon, R. S. (Eds.), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon Press, Oxford, 1992, pp. 334-395
    137. Comans, R. N. J. and Van Dijk, C. P. J. Role of the complexation processes in cadmium mobilization during estuarine mixing. Nature, 1988, 336: 151-154
    138. Cowart J. B. Uranium isotopes and 226Ra content in the deep groundwaters of the tri-state region, U. S. A. Journal of Hydrology, 1981, 54(1): 185-193
    139. Cowart J. B., Kaufman M. I., Osmond J. K. Uranium–isotope variations in groundwaters of the Florida aquifer and Boulder Zone of south Florida. Journal of Hydrology, 1978, 36(1):161-172
    140. Culbert R. R. and Leighton D. G. Uranium in alkaline waters, Okanagan area, British Columbia. Can. Min. Metall. Bull., 1978, 71: 103-110.
    141. Dunk, R. M., R. A. Mills and W. J. Jenkins. A reevaluation of the oceanic uranium budgetfor the Holocene. Chemical Geology, 2002, 190: 45-67
    142. Edmond, J. M., Spivack, A., Grant, B. C., Hu, M. H., Chen, Z. X., Chen, S., Zeng, X. S. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 1985, 4: 17-36
    143. Farnham I. M., Johannesson K. H., Singh A. K., Hodge V. F., and Stetzenbach K. J. Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 2003, 490: 123-138
    144. Froehlich, P. N., Klinkhammer, G. P., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagnesis. Geochimica et Cosmochimica Acta, 1979, 43: 1075–1090
    145. Garnier, J.-M., Pham, M. K., Ciffroy, P., Martin, J,-M. Kinetics of trace metal complexation with suspended matter and filterable ligands in freshwater. Environmental Science and Technology, 1997, 31:1597-1606
    146. Garnier, J.-M., Guieu, C. Release of cadmium in the Danube estuary: contribution of physical and chemical processes as determined by an experimental approach. Marine Environmental Research, 2003, 55: 5-25
    147. Garzione, C. N., Quade, J., DeCelles, P. G. And English, N. B. Prediction paleoelevation of Tibet and the Himalaya fromδ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 2000, 183: 215-229
    148. Gascoyne M. High levels of uranium and radium in groundwaters at Canada’s underground research laboratory, Lac du Bonnet, Manitoba, Canada. Applied Geochemistry, 1989, 4: 577-591
    149. Gascoyne, M. Geochemistry of the actinides and their daughters. In: Ivanovich, M., Harmon, R. S. (Eds.), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon Press, Oxford, 1992, p. 34-61
    150. Gascoyne, M. Evolution of redox conditions and groundwater composition in recharge- discharge environments on the Canadian shield. Hydrogeology Journal, 1997,5 (3): 4-18
    151. Gascoyne, M. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba. Applied Geochemistry, 2004, 19: 519-560
    152. Gavrieli I., Yechieli Y., Halicz L., Spiro B., Bein A., Efron D. The sulfer system in anoxic subsurface brines and its implication in brine evolutionary pathways: the Ca-chloride brines in the Dead Sea area. Earth and Planetary Science Letters, 2001, 186: 199-213
    153. Gómez P., Garralón A., Buil B., Turrero M. J., Sánchez L., and De La Cruz B. Modeling of geochemical proceses related to uranium mobilization in the groundwater of a uranium mine. Science of the Total Environment, 2006, 366, 1(31): 295-309
    154. Grenthe, I., Fuger, J., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H. and Forest, I. Chemical Thermodynamics of Uranium, Elsevier, 1992.
    155. Grzymko, T. J., Marcantonio, F., Mc Kee, B. A. and Stewart, C. M. Temporal variability ofuranium concentrations and 234U/ 238U activity ratios in the Mississippi river and its tributaries. Chemical Geology, 2007, 243: 344-356
    156. Gu, Z. Y., Liu, T. S. and Zheng, H. S. A preliminary study on quartz oxygen isotope in Chinese loess and soils. In: Liu, T. S. (Eds.), Aspects of Loess Research. China Ocean Press, Beijing,China, 1987. pp. 291-302
    157. Gu, Z. Y., Lal, D., Liu, T. S., Guo, Z. T., Southon, J. and Caffee, M. W. Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic 10Be. Geochimica et Cosmochimica Acta, 1997, 61(24): 5221-5231
    158. Guo, L., Santschi, P. H., Baskaran, M. Interactions of thorium isotopes with colloidal organic matter in oceanic environments. Colloids and Surfaces A: Physicochemical Engineering Aspects, 1997, 120: 255-271
    159. Herut B, Starinsky A, Katz A, et al. The role of seawater freezing in the formation of subsurface brines. Geochimica et Cosmochimica Acta, 1990, 54: 13-21
    160. Herzl, V. M. C., Millward, G. E., Wollast, R. and Achterberg, E. P. Species of dissolved Cu and Ni and their adsortption kinetics in turbid riverwater. Estuarine, Coastal and Shelf Science, 2003, 56: 43-52
    161. Holland, H. D. The chemistry of the atmosphere and oceans [M]. New York: John Wiley & Sons, Inc., 1978,15-55; 81-152
    162. Howarth, R. W. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science, 1979, 203: 49-51
    163. Hu, M. H., Stallard R. F. and Edmond, J. M. Major ion chemistry of some large Chinese rivers. Nature, 1982, 298: 550-553
    164. Huang, W. W., Zhang, J. and Zhou, Z. H. Particulate element inventory of the Huanghe (Yellow River): A large, high turbidity river. Geochimica et Cosmochimica Acta, 1992, 56: 3669-3680
    165. Hussain, N., Andrews, J. N. Excess 234U in laboratory leachates of igneous rocks. Abstract of sixth International Conference on Geochronology, Cosmochronology and Isotope Geology, Cambridge, Terra Cognita, 1986, 6: 265
    166. Ivanovich, M. and Harmon, R.S. (Eds.). Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Second Ed. Clarendon Press, Oxford, 1992, pp 910
    167. Jerden J. L., Sinha A. K. and Zelazny L. Natural immobilization of uranium by phosphate mineralization in an oxidizing saprolite-soil profile: chemical weathering of the Coles Hill uranium deposit, Virginia. Chemical Geology, 2003, 199: 129-157
    168. Jiang, X. Y., Yu, Z. G., Ning, J. S., Chen, H. T., Mi, T. Z. Genesis of underground brine along south coast of Laizhou Bay: Hydrochemical characteristics. Chinese Journal of Oceanology and Limnology,2006, 24(4):435-442
    169. Jurado Vargas, M., Vera Tomé,F., Martín Sánchez, A., Crespo Vázquez, M. T. and GascónMurillo, J. L. Distribution of uranium and thorium in sediments and plants from granitic fluvial area. Appl. Radiat. Isot., 1997, 48(8): 1137-1143
    170. Kigoshi, K. Alpha recoil 234Th: dissolution into water and the 234U/ 238U disequilibrium in nature. Science, 1971, 173: 47-48
    171. Kim Y. S., Park H. S., Kim J. Y., Park, S. K., Cho B. W., Sung I. H., and Shin D. C. Health risk assessment for uranium in Korean groundwater. Journal of Environmental Radioactivity, 2004, 77: 77-85
    172. Klindnammer, G. P., Palmer, M. R. Uranium in the oceans: Where it goes and why. Geochim. Cosmochim. Acta 1991, 55(7): 1779-1806
    173. Kolahchi, Z. and Jalali, M. Effect of water quality on the leaching of potassium from sandy soil. Journal of Arid Environments, 2007, 68: 624-639
    174. Koshikawa, M. K., Takamatsu, T., Takada, J., Zhu, M. Y., Xu, B. H., Chen, Z. Y., Murakami, S., Xu, K. Q., Watanabe M. Distributions of dissolved and particulate elements in the Yangtze estuary in 1997-2002: Background data before the closure of the Three Gorges Dam. Estuarine Coastal and Shelf Science, 2007, 71(1-2): 26-36
    175. Kraemer T. F. 234U and 238U concentration in brine from geopressured aquifers of northern Gulf of Mexico basin. Earth and Planetary Science Letters, 1981, 56: 210-216
    176. Kronfeld J., Gradsztan E., Muller H. W., Radin J., Yaniv A., Zach R. Excess 234U: an aging effect in confined water. Earth and Planetary Science Letters, 1975, 27(2): 342-345
    177. Kronfeld, J., Godfrey-Smith, D. I., Johannessen, D. and Zentilli, M. Uranium series isotopes in the Avon Valley, Nova Scotia. Journal of Environmental Radioactivity, 2004, 73: 335-352
    178. Kronfeld, J. and Vogel, J. C. Uranium isotopes in surface waters from southern Africa. Earth and Planetary Science Letters,1991,105: 191-195
    179. Ku, T. L. An evaluation of the 234U/238U method as a tool for dating pelagic sediment. Journal of Geophysical Research,1965,70(14):3457-3474
    180. Ku, T. L., Knauss ,K. G. and Mathieu, G. G. Uranium in the open ocean: concentration and isotopic composition. Deep-Sea Research, 1977, 24: 1005-1017
    181. Ku, T. L., Luo, S. D., Lowenstein, T. K., Li, J. and Spencer, R. U-series chronology of lacustrine deposits in Death Valley, California. Quaternary Research, 1998, 50: 261-275
    182. Kurrtio P., Auvinen A., Salonen L., Saha H., Pekkanen J., Makelainen I., Vaisanen S. B., Penttila I. M., and Komulainen H. Renal effects of uranium in drinking water. Environmental Health Perspectives, 2002, 110: 337-342
    183. Langmuir,D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 1978, 42: 547-569
    184. Lee L. NADA: Nondetects and Data Analysis for Environmental Data. 2005, www.r-project.org.
    185. Lee M. H., Choi G. S., Cho Y. H., Lee C. W., and Shin H. S. Concentrations and activityratios of uranium isotopes in the groundwater of the Okchun Belt in Korea. Journal of Environmental Radioactivity, 2001, 57: 105-116
    186. Li, Y.-H., and Chan, L.-H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary. Earth and Planetary Science Letter, 1979, 43: 343-350
    187. Liss, P. S. Conservative and non-conservative behavior of dissolved constituents during estuarine mixing. In: Burton, J. D. and Liss, P. S. (Eds.), Estuarine Chemistry. Academic Press, London, 1976, pp. 93-130
    188. Long, Y. Q. and Xiong, G. S. Sediment measurement in the Yellow River. In Erosion and Sediment Transport Measurement (Proc. Florence Symp.) Int. Assoc. Hydrol. Sci. Pub., 1981, 133: 275-285
    189. Luo, S. D., Shi, W. Y., Chen, Z. and Huang, Y. P. A new method for separation and determination of U and Th in deep-sea manganese nodules. Acta Oceanologica Sinica, 1987, 6(1): 87-93
    190. Lu, H. Y., Wang, X. Y., An, Z. S., Miao, X. D., Zhu, R. X., Ma, H. Z., LI, Z., Tan, H. B. and Wang, X. Y. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Science in China Ser. D: Earth Sciences, 2004. 47(9): 822-833
    191. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 1978, 42: 547-569
    192. Lord, C.J. and Church, T. M. The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim. Cosmochim. Acta. 1983, 47: 1381-1391
    193. Luther, G. W., Church, T. M., Scudlark, J. R., Cosman, M. Inorganic and organic sulfur cycling in salt-marsh porewaters. Science, 1986, 232: 746-749
    194. Maeda, M. and Windom, H. L. Behavior of uranium in two estuaries of the south-eastern United States. Mar. Chim., 1982, 11: 427-436
    195. Mangini, A., Sonntag, C., Bertsch, G. and Müller, E. Evidence for a higher natural uranium content in world rivers. Nature, 1979, 278: 337-339
    196. Martin, J. M., Nijampurkar, V. N. and Salvadori, F. Uranium and thorium isotopes behaviour in estrarine systems. In: Goldburg, E. D. (Eds.), Biogeochemistry of estuarine sediments.UNESCO, Paris, 1978, pp. 111-127
    197. Mason, C. F.V., Turney, W. R. J. R., Thomson, B.M., Lu, N., Longmire, P. A. and Chisholm-Brause, C. J. Carbonate leaching of uranium from contaminated soils. Envirom. Sci. Technol. 1997, 31: 2707-2711
    198. Massmann G., Pekdeger A., Merz C. Redox processes in the Oderbruch polder groundwater flow system in Germany. Applied Geochemistry, 2004, 19: 863-886
    199. McCaffrey M A, Lazar B, Holland H D. The evaporation path of sea water and the coprecipitation of Br- and K+ with halite. Journal of Sediment Petrology, 1987, 57: 928-937
    200. McKee, B. A., DeMaster, D. J. and Nittrouer, C. A. Uranium geochemistry on the AmazonShelf: evidence for uranium release from bottom sediments. Geochim. Cosmochim. Acta, 1987, 51: 2779-2786
    201. Michael K., Machel H. G., Bachu S. New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. Journal of Geochemical Exploration, 2003, 80:193-219
    202. Milliman, J. D. and Meade, R. H. World-wide delivery of river sediments to the oceans. The Journal of Geology, 1983, 9(1): 1-21
    203. Moore,W. S, DeMaster, D. J., Smoak, J. M., McKee, B. A., Swarzenski, P. W. Radionuclide tracers of sediment-water interactions on the Amazon shelf. Continental Shelf Research, 1996, 16(5/6): 645-665
    204. Moore, W. S. Radionuclides of the uranium and thorium decay series in the estuarine environment. In: Ivanovich, M., Harmon, R. S. (Eds.), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon Press, Oxford, 1992, pp. 396-422
    205. Moore, W. S. and Shaw, T. J. fluxes and behavior of radium isotopes, barium and uranium in seven Southeastern US rivers and estuaries. Marine Chemistry, 2007, In Press doi:10.1016/j.marchem.2007.03.004.
    206. Moran, S. B., Buesseler, K. O. Short residence time of colloids in the upper ocean estimated from 238U/234Th disequilibria. Nature, 1992, 359: 221-223
    207. Moran, S. B., Buesseler, K. O. Size-fractionated 234Th in continental shelf waters of New England: implications for the role of colloids in oceanic trace metal scavenging. J. Mar. Res., 1993, 51: 893-922
    208. Mouchel, J. M. Fractionation of selected metals between the dissolved and particulate phases in the Rhone river estuary. Water Pollution Research Report, 1990, 20: 525-545
    209. Muxart, T., A. Billard, E. Derbyshire and J. Wang. Variation in runoff on steep, unstable loess slopes near Lanzhou, China: Initial results using rainfall simulation. In: Kirkby, M. J. (ed.) Process models and theoretical geomorphology. British Geomorphological Research Group Symposia Series 8. Chichester: Wiley, 1994, pp. 337-355
    210. Nelson K H, Thompson T G. Deposition of salts from sea water by frigid concentration. J. Mar. Res. 1954, 13: 166~182
    211. Nyffeler, U. P., Li, Y. R., Santschi, P. H. A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim Cosmochim Acta, 1984, 48: 1513-1522
    212. Osmond, J. K. and Cowart, J. B. Theory and uses of natural uranium isotopic variations in hydrology. Atomic Energy Review, 1976, 14: 621-679
    213. Osmond, J. K. and Ivanovich, M. Uranium-series mobilization and surface hydrology. In: Ivanovich, M., Harmon, R. S. (Eds.), Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Clarendon Press, Oxford, 1992, pp. 259-289
    214. Palmer, M. R. and Edmond, J. M. Uranium in river water. Geochimica et Cosmochimica Acta, 1993, 57: 4947-4955
    215. Pande, K., Sarin, M. M., Trivedi, J. R., Krishnaswami, S. and Sharma, K. K. The Indus River system (India-Pakistan): Major-ion chemistry, uranium and strontium isotopes. Chemical Geology, 1994, 116: 245-259
    216. Porcelli, D., Andersson, P.S., Wasserburg, G. J., Ingri, J., Baskaran, M. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea. Geochimica et Cosmochimca Acta, 1997, 61(19): 4095-4113
    217. Porcelli, D. and Swarzenski, P. W. The behavior of U- and Th-series nuclides in groundwater. Review in Mineralogy and Geochemistry, 2003, 52(1): 317-361
    218. Ray, S. B., Mohanti, M. and Somayajulu, B. L. K. Uranium isotopes in the Mahanadi river-estuarine system, India. Estuarine, Coastal and Shelf Science, 1995, 40: 635-645
    219. Reimann C., Otteson, R. T. and Cramer J. Uranium in drinking-water? NGU, Geological Survey of Norway, 2005, Trondheim, Norway.
    220. Rengarajan, R., Sarin, M. M. And Krishnaswami, S. Dissolved uranium and 234U/238U in the Yamuna and the Chambal rivers, India. Aquatic Geochemistry, 2006, 12: 73-101
    221. Riotte, J. and Chabaux, F. (234U/238U) activity ratios in freshwaters as tracers of hydrological processes: the Strengbach watershed (Vosges, France). Geochimica et Cosmochimica Acta, 1999 63, 1263–1275
    222. Riotte, J., Chabaux, F., Benedetti, M., Dia, A., Gerard, M., Boulegue, J., Etame, J Uranium colloidal transport and origin of the 234U-238U fractionation in surface waters: new insights from Mount Cameroon. Chemical Geology, 2003, 202(3): 365-381
    223. Rosholt, J. N., Shields, W. R. and Garner, E. L. Isotope fractionation of uranium in sandstone. Science, 1963, 139: 224-226
    224. Rydell, H.S. The implications of uranium isotope distributions associated with the Floridan aquifer in north Florida: Unpublished doctoral dissertation, Florida State University (Tallahassee), 1969, 119p.
    225. Salas J and Ayora C. Groundwater chemistry of the Okelobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modeling. Journal of Contaminant Hydrology, 2004, 69: 115-137
    226. Sarin, M. M. and Church T. M. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries. Estuarine, Coastal and Shelf Science, 1994,39:619-631
    227. Sarin, M. M., Krishnaswami, S., Somayajulu, B. L. K. and Moore, W. S. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 1990, 54: 1387-1396
    228. Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K. and Moore, W. S., Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and flux tothe Bay of Bengal. Geochimica et Cosmochimica Acta,1989,53: 997-1009
    229. Sarin, M. M., Krishnaswami, S., Sharma, K. K. and Trivedi, J. R. Uranium isotopes and radium in the Bhagirathi-Alaknanda river system: Evidence for high uranium mobilization in the Himalaya. Current Science, 1992, 62(12): 801-805
    230. Sawyer, E. W. The influence of source rock type, sorting on the geochemical weathering of clastic sediments from the Quatico matasedimentary belt, Superior Province, Canada. Chemical Geology, 1986, 55: 77-95
    231. Scott, M. R. The chemistry of U- and Th-series nuclides in rivers. In: Ivanovich, M. and Harmon, R. S. (Eds.), Uranium series disequilibrium: applications to environmental problems, 1st Edn. Clarendon Press, Oxford, 1982, pp.181-201
    232. Sholkovitz, E. The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth and Planetary Science Letters, 1978, 41: 77-86
    233. Shulkin, V. M and Bogdanova, N. N. Mobilization of metals from riverine suspended matter in seawater. Marin Chemistry, 2003, 83: 157-167
    234. Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., Tullio, J. O. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 2002, 17: 259-284
    235. Smedley P. L., Zhang M-Y, Zhang G-Y, and Luo Z-D. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003, 18: 1453-1477
    236. Smedley, P. L., Smith, B., Abesser, C. and Lapworth, D. Uranium occurrence and behaviour in British groundwater. British Geological Survey, Groundwater Systems & Water Quality Programme, Commissioned Report, 2006, CR/06/050N
    237. Smith B., Hutchins M. G., Powell A. E., Talbot D. K., Trick J. K., Gedeon R., Amro A., Kilani S., Constantinou G., Afrodisis S., and Constantinou C. The distribution of natural radioelements in groundwaters and post-Cretaceous sediments from the southern Mediterranean margin. Proceedings of the Conference: Third International Conference on the Geology of the Mediterranean, 2000, 355-363
    238. Smith B., Powell J., Gedeon, R, and Amro H. Groundwater pollution by natural radionuclides: an evaluation of natural and mining contamination associated with phosphorite (Jordan). Proceedings of the Conference: Second IMM Conference on Minerals, Metals and the Environment, 1996, Prague.
    239. Somayajulu, B. L. K., Martin, J. M., Eisma, D. et al. Geochemical studies in the Godavari estuary, India. Marine Chemistry, 1993, 43: 83-93
    240. Somayajulu, B. L. K. Uranium isotopes in the Hooghly estuary, India. Marine Chemistry, 1994, 47: 291-296
    241. Stallard, R. F. and Edmond, J. M. Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 1983,88: 9671-9688
    242. Starinsky A. and Katz. A. The formation of natural cryogenic brines. Geochimica et Cosmochimica Acta, 2003, 67(8):1475-1484
    243. Stewart I. S., Sauber J. and Rose J. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat. Sci. Rev., 2000, 19: 1367-1389
    244. Swarzenski, P. W., McKee, B. A. Seasonal uranium distributions in the coastal waters off the Amazon and Mississippi Rivers. Estuaries, 1998, 21(3): 379-390
    245. Swarzenski, P. W., and Baskaran, M. Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida. Marine Chemistry, 2007, 104 (1-2): 43-57
    246. Swarzenski, P. W., Campbell, P., Porcelli, D. and McKee, B. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers. Continental Shelf Research, 2004, 24: 2357-2372
    247. Swarzenski, P. W., McKee, B. A., and Booth, J. G. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient. Geochimica et Cosmochimica Acta, 1995, 59(1): 7-18
    248. Swarzenski, P. W., Porcelli, D., Andersson, P. S., and Smoak, J, M. The Behavior of U- and Th-series Nuclides in the Estuarine Environment. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 577-606
    249. Tijani, M.N. Evolution of saline waters and brines in the Benue-Trough, Nigeria. Applied Geochemistry, 2004, 19(9): 1355-1365
    250. Toole, J., Baxter, M. S. and Thomson, J. The behaviour of uranium isotopes with salinity change in three U. K. estuaries. Estuarine, Coastal and Shelf Science, 1987, 25: 283-297
    251. Turekian, K. K., Chan, L. A. The marine geochemistry of the uranium isotopes, Th-230 and Pa-231. In: Bransfelt, A. O. and Steinnes, E.(eds.), Activation analysis in geochemistry and Cosmochemistry. Universitetsforlaget Oslo., 1971, 311~320
    252. Turner, A., Millward, G. E., Bale, A. J., Morris, A. W. Application of the Kd concept to the study of trace metal removal and desorption during estuarine mixing. Estuarine, Coastal and Shelf Science, 1993, 36: 1-13
    253. Wang Y Q, Chen X B, Meng G L, et al. On changing trends ofδD during seawater freezing and evaporation. Cold Regions Science and Technology, 2000, 31: 27-31
    254. Welch A. H., and Lico M. S. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 1998, 13: 521-539
    255. Windom H., Smith, R., Niencheski, F. and Alexander, C. Uranium in rivers and estuaries of globally diverse, smaller watersheds. Marine Chemistry, 2000, 68:307-321
    256. Wu, L. L., Huh, Y., Qin, J. H., Du, G. and Lee, S. D. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochimica et Cosmochimica Acta, 2005, 69(22): 5279-5294
    257. Yang, Z., Cheng, Y. and Wang, H., The Geology of China. Clarendon Press, Oxford. 1986.
    258. Zhang, J. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 1996, 16(8): 1023-1045
    259. Zhang, J., Huang, W. W., Liu, M. G., Gu, Y. Q. And Gu, Z. Y. Element concentration and partitioning of loess in the Huanghe (Yellow River) drainage basin, north China. Chem. Geol. 1990, 89: 189-199
    260. Zhang, J., Huang, W. W., Létolle, R. and Jusserand, C. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. Journal of Hydrology, 1995, 168: 173-203
    261. Zielinski R. A., Asher-Bolinder S., Meier A. L., Johnson C. A., and Szabo B. J. Natural or fertilizer-derived uranium in irrigation drainage: a case study in southeastern Colorado, USA. Applied Geochemistry, 1997, 12: 9-21
    262. Zukin J. G., Hammond D. E., Ku T. L., Elders W. A. Uranium- thorium series radionuclides in brine and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California. Geochimica Cosmochimica Acta, 1987, 51(10): 2719-2731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700