用户名: 密码: 验证码:
高质量SnO_2薄膜的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于对短波长发光器件的巨大市场需求,人们越来越关注于宽禁带半导体的研究。ZnO(带隙为3.37 eV,激子束缚能为60 meV)和GaN(带隙为3.4 eV,激子束缚能为21 meV)一直以来是人们的研究热点,但现在SnO_2受到越来越多的关注。SnO_2是一种具有直接带隙的宽禁带半导体材料,具有非常稳定的物理化学性能。相比于ZnO和GaN,SnO_2有着更为优越的特征,首先是更宽的带隙和更高的激子束缚能,室温下分别是3.6 eV和130 meV;其次是更低的制备温度和更高的化学稳定性,因此SnO_2是一种很有前途的紫外发光材料。SnO_2薄膜作为一种优良的功能性材料,在透明导电薄膜(TCO)和化学气敏传感器等领域得到了广泛的应用。长期以来,对SnO_2薄膜的研究主要围绕这两方面的特性。对SnO_2薄膜光学性质的研究多在于透射、反射和折射等方面的性质,但对SnO_2材料的光致发光性质的报道较少,对具有实用价值的SnO_2薄膜室温光致发光的研究,目前尚无报道。如果能够通过对SnO_2薄膜的制备以及光致发光特性和机理进行深入的研究,获得具有稳定发光特性的SnO_2薄膜,我们就可以得到一种新的具有紫外-紫光发光特性的半导体材料。然而目前所用的磁控溅射、CVD和喷涂等方法制备的SnO_2材料,所得到的样品含有较多的缺陷,发光特性差,很难用作制造半导体发光器件。在这样的背景下,本论文开展了对高质量SnO_2薄膜的制备及其性质的研究。
     本论文分为两大部分。第一部分采用射频磁控溅射法制备出了Sb掺杂的SnO_2薄膜,研究了薄膜的结构和光学性质,并观察到一些新的光致发光现象;第二部分采用MOCVD方法制备出了高质量的SnO_2薄膜、Sb掺杂SnO_2薄膜以及In掺杂SnO_2薄膜,系统的研究了薄膜的结构、光学以及电学性质。
     第一部分主要的研究工作及结果如下:
     1.用射频磁控溅射法制备出了Sb掺杂SnO_2薄膜,叙述了薄膜的制备方法,探索了衬底材料、溅射功率以及退火处理对薄膜结构、光学以及光致发光性质的影响,并对相应的物理机制进行了分析。XRD测试结果表明,制备的SnO_2∶Sb薄膜为具有氧化锡四方金红石结构的多晶薄膜,具有(110)方向的择优取向性;薄膜的晶格常数略大于SnO_2晶体的标准数值,在蓝宝石(0001)衬底上制备薄膜的晶格常数与标准值最为接近;提高制备时的溅射功率或进行退火处理都可以使得薄膜的择优取向性增强,晶粒增大,结晶程度得到改善。150 W功率下制备样品的透射谱表明,薄膜的透过率较高,其可见光范围的透过率超过90%,光学带隙是3.80 eV。
     2.室温下对150 W功率下蓝宝石(0001)衬底上制备样品的光致发光性质进行了测试,首次在334 nm附近观测到紫外发光峰。同时另外两个分别位于393nm及430 nm附近的光致发光峰也观测到。样品经过600℃高温退火后,位于334 nm和393 nm处的发光峰强度有所增强,而430 nm附近的发光峰强度减弱。334 nm附近的紫外发光峰的起源被归结为电子从Sb~(5+)形成的施主能级到价带的跃迁;393 nm处发光峰的起源被归因于由Sb形成的施主能级和受主能级之间的跃迁;430 nm附近发光峰的起源被归因于样品中缺陷能级间的跃迁。
     第二部分主要的研究工作及结果如下:
     1.采用MOCVD方法,以高纯Sn(C_2H_5)_4作为锡源,高纯O_2作为氧源,高纯N_2作为载气,成功地制备出了高质量的SnO_2薄膜。XRD和SEM测试结果表明,在蓝宝石(0001)衬底上制备的薄膜具有最好的结晶质量。对不同衬底温度下蓝宝石(0001)衬底制备薄膜的结构、光学和电学性质进行了系统研究。XRD和AFM测试结果表明,随着衬底温度的升高,制备薄膜经历了由单晶向多晶的转变。600℃衬底温度下制备的薄膜具有最好的结晶质量。HRXRD和HRTEM测试结果表明该温度下制备的样品为具有四方金红石结构的单晶薄膜,其外延生长方向为SnO_2(100)//Al_2O_3(0001)。薄膜(200)面的ω摇摆曲线半高宽仅为0.11°,这一结果显示制备样品具有很好的单晶质量。据我们所知,这是目前报道的SnO_2外延薄膜(200)面摇摆曲线半高宽的最小值。样品的透射谱测量结果表明,不同衬底温度下制备薄膜的在可见光范围的透过率均超过90%。薄膜的光学带隙随衬底温度升高而发生相应变化,600℃衬底温度下制备的薄膜具有最小的光学带隙。样品的霍尔测试结果表明,制备薄膜的电阻率、霍尔迁移率和载流子浓度均随衬底温度的改变而发生相应变化,600℃衬底温度下制备样品的霍尔迁移率高达27.67 cm~2·v~(-1)·s~(-1)。
     室温下对600℃衬底温度下蓝宝石(0001)衬底制备的SnO_2薄膜进行光致发光测量,首次在331 nm附近观测到强而尖锐的紫外发光峰。低温测量时,331nm附近发光峰强度显著增强,位置出现蓝移。同时,另外三个分别位于369 nm、375 nm和500 nm附近的发光峰也被观测到。331 nm附近的紫外发光峰被归因于电子从导带到价带的跃迁;369 nm和375 nm附近的发光峰分别被归因于电子从导带到受主的跃迁和施主—受主对的跃迁;500 nm附近的发光峰被归因于由样品中的缺陷或杂质引起的能级之间的跃迁。
     2.首次采用MOCVD方法,以高纯Sn(C_2H_5)_4作为锡源,高纯Sb(CH_3)_3作为Sb源,在蓝宝石(0001)衬底上制备出了具有高稳定性的Sb掺杂的SnO_2透明导电薄膜。对不同掺杂浓度薄膜的结构、光学和电学性质进行了研究。XRD测试结果表明,制备薄膜均具有SnO_2四方金红石结构,且具有沿a轴的单一取向。样品的透射谱和霍尔测试结果表明,制备薄膜的光学带隙、电阻率、载流子浓度和霍尔迁移率均随掺杂浓度不同而发生变化。其中掺杂比例为5%的SnO_2∶Sb薄膜具有最佳的光电性能,其可见光透过率超过90%,光学带隙为3.75 eV;室温下该样品的电阻率、载流子浓度和霍尔迁移率分别达到了9.1×10~(-4)Ω·cm、5.33×10~(20)cm~(-3)和12.73 cm~2·v~(-1)·s~(-1)。5%掺杂SnO_2∶Sb样品的变温霍尔测试结果表明,在低温范围内薄膜的电离杂质散射占了主导地位,而在高温范围内,晶格振动散射则成为最主要的散射机制。样品的高温退火处理结果表明,所有制备薄膜的光电性能在900℃下均具有极佳的热稳定性。经1100℃的高温退火后,7%掺杂SnO_2∶Sb薄膜依然具有优良的光电性能。
     3.首次采用MOCVD方法,以高纯Sn(C_2H_5)_4作为锡源,高纯In(CH_3)_3作为In源,在蓝宝石(0001)衬底上制备出了与衬底晶格匹配良好的In掺杂的SnO_2薄膜。制备薄膜均具有SnO_2四方金红石结构和沿a轴的单一生长取向。对不同掺杂样品的结构性质研究表明,4%掺杂浓度的薄膜具有最佳的结晶质量。HRXRD和HRTEM测试结果表明该样品为具有氧化锡四方金红石结构的单晶薄膜,外延生长方向为SnO_2(100)//Al_2O_3(0001),其(200)面的ω摇摆曲线半高宽仅为0.055°。4%掺杂浓度样品的光学透射谱表明,薄膜的透过率较高,其可见光范围的透过率超过90%,光学带隙是3.64 eV。
     在室温下对4%掺杂浓度SnO_2∶In薄膜进行光致发光测量,室温时在339 nm附近观测到唯一的强紫外发光峰。低温测量时,339 nm附近的紫外发光峰的强度增强,位置出现蓝移。同时,另外两个分别位于369 nm和493 nm附近的发光峰也被观测到。339 nm附近的紫外发光峰同样被归因于电子从导带到价带的跃迁;369 nm附近的发光峰被归因于电子从导带到In~(3+)受主能级的跃迁;493 nm附近的发光峰被归因于由样品中的缺陷或杂质引起的能级之间的跃迁。
In recent years,there has been increasing interest in the research of wide band gap semiconductors due to the huge commercial desire for short-wavelength luminescent devices.ZnO and GaN have been the research focus all along,but now it seems that there is more attention being paid to SnO_2.As a wide band gap semiconductor with direct bandgap,SnO_2 has very stable physical and chemical properties.Compared with ZnO and GaN,SnO_2 has some advantages,such as a wider band gap of 3.6 eV at room temperature,a higher exciton binding energy of 130 meV, a lower growth temperature,and higher chemical stability.All the virtues mentioned above make SnO_2 a promising UV and blue luminescence material.As a key functional material,SnO_2 has been widely used in the fields of transparent conducting oxides(TCO)and gas sensors.In the past,the investigation of SnO_2 films was mainly focused on these two fields.For the optical properties,much attention was paid on the transmission,reflection and refraction,seldom on the photoluminescence(PL).Until now,no study was reported on the available room temperature PL for SnO_2.If we can obtain SnO_2 films with stable PL properties through the study of preparation and PL mechanisms,we can get a new semiconductor material with UV-violet luminescent properties.However,the SnO_2 films prepared by the common methods such as sputtering,CVD,and spray pyrolysis are defective with bad PL properties and difficult to manufacture luminescent devices.Under such background,the preparation and characterization of high quality SnO_2 films are investigated in this article.
     The content of this article consists of two parts.In the first part,Sb-doped SnO_2 films were deposited by RF magnetron sputtering,the structural and optical properties of the films were investigated,and some new PL phenomena were observed.In the second part,high quality SnO_2 films,Sb-doped SnO_2 films,and In-doped SnO_2 films were prepared by MOCVD.The structural,optical and electrical properties of the films were investigated in detail.
     The major research work and results of the first part are as follows:
     1.Sb-doped SnO_2 films were prepared by RF magnetron sputtering,and the experimental procedure was described.The structural,optical and PL properties of the films as a function of substrate,sputtering power and annealing were investigated in detail,and the corresponding physical mechanisms were discussed.The XRD results indicated that the prepared samples were polycrystalline films having rutile structure of pure SnO_2 with preferred orientation of(110)direction;the lattice constants of the films were larger than the standard value of SnO_2 and films prepared on sapphire (0001)had the most appropriate lattice constants;both increased sputtering power and annealing could enhance the preferred orientation,enlarge the grain size and improve the crystallization of the films.The transmittance spectrum for the 150 W deposited SnO_2:Sb film exhibited high transmittance,with absolute average transmittance over 90%in the visible region and optical band gap of 3.80 eV obtained.
     2.The PL spectra of the 150 W deposited SnO_2:Sb film were measured at room temperature.A ultra-violet(UV)PL peak near 334 nm was observed for the first time. In the meanwhile,two other PL peaks located near 393 and 430 nm were also observed.After annealing at 600℃,the PL peaks near 334 and 393 nm became more intense,while the intensity of the PL peak near 430 nm decreased.The PL peaks near 334,393,and 430 nm were ascribed to the electron transition between the donor level formed by Sb~(5+)and the valence band,the electron transition between the donor level and the acceptor level formed by Sb ions,and the electron transition related to the structural defects or impurities formed during the growth,respectively.
     The major research work and results of the second part are as follows:
     1.High-quality SnO_2 films were successfully prepared by MOCVD.Ultra high purity Sn(C_2H_5)_4,N_2 and O_2 were used as the organometallic source,carrier gas,and oxidant,respectively.XRD and SEM results indicated that SnO_2 films deposited on sapphire(0001)had the best crystalline quality.The structural,optical and electrical properties of the SnO_2 films deposited on sapphire(0001)at different substrate temperatures were investigated in detail.XRD and AFM results showed that as substrate temperature increased,the films changed from single crystalline to polycrystalline,and SnO_2 film prepared at 600℃had the best crystalline quality.The HRXRD and HRTEM results indicated that the 600℃prepared sample was single crystalline film having the rutile structure of pure SnO_2 with a clear epitaxial relationship of SnO_2(100)//Al_2O_3(0001).The full width at half maximum of theω-rocking curve of(200)reflection is only 0.11°,indicating a high quality crystalline structure obtained.To our knowledge,this is the smallest value obtained until now. The optical transmittance spectra showed that the average transmittance in the visible range for all films was over 90%.The optical band gap changed with the substrate temperature,with a minimum value of 3.58 eV obtained at 600℃.The Hall measurements indicated that resistivity,Hall mobility and carrier concentration for the films also changed with the substrate temperature.Film deposited at 600℃exhibited the highest Hall mobility of 27.67 cm~2·v~(-1)·s~(-1).
     The PL spectra of the SnO_2 film deposited at 600℃on sapphire(0001)were measured.An intense and sharp UV PL peak near 331 nm was observed at room temperature for the first time.While measured at low temperature,the intensity of this UV PL peak increased sharply and the peak position shifted towards higher energy.In the meanwhile,three other PL peaks near 369,375,and 500 nm were also observed. The origin of the UV PL peak near 331 nm was ascribed to the electron transition from the conduction band to the valence band.The PL peaks near 369,375,and 500 nm were ascribed to the band-acceptor transition,the donor-acceptor pair transition, and the electron transition related to the structural defects or impurities formed during the growth,respectively.
     2.Sb-doped SnO_2 transparent conducting films were prepared on sapphire(0001) substrates by MOCVD for the first time.High purity Sn(C_2H_5)_4 and Sb(CH_3)_3 were used as the organometallic sources.The structural,optical and electrical properties of the films dependent on doping level were investigated in detail.The XRD results showed that all the films had the tetragonal rutile structure and a single orientation along a-axis.The optical transmittance spectra and Hall measurements indicated that the optical band gap,resistivity,carrier concentration and Hall mobility for the films changed with the doping level.The 5%Sb-doped SnO_2 film exhibited the best optical and electrical properties with average transmittances over 90%in the visible range and optical band gap of 3.75 eV.The resistivity,carrier concentration and Hall mobility for the 5%Sb-doped SnO_2 film were 9.1×10~(-4)Ω·cm,5.33×10~(20)cm~(-3)and 12.73 cm~2·v~(-1)·s~(-1),respectively.The low temperature Hall measurements indicated that ionized impurity scattering was dominant in the low temperature range and lattice vibration scattering was dominant in the high temperature range.The high temperature annealing showed that all the SnO_2:Sb films had good thermal stability under 900℃,and the 7%Sb-doped SnO_2 film still exhibited good electrical and optical properties even at 1100℃.
     3.In-doped SnO_2 films were prepared on sapphire(0001)substrates by MOCVD for the first time.High purity Sn(C_2H_5)_4 and In(CH_3)_3 were used as the organometallic sources.All the films had the tetragonal rutile structure of SnO_2 and a single orientation alongα-axis with the best single crystalline structure obtained at 4%of In concentration.HRXRD and HRTEM results indicated that the 4%In-doped sample was single crystalline film of rutile structure with a clear epitaxial relationship of SnO_2(100)//Al_2O_3(0001)and full width at half maximum of 0.055°for theω-rocking curve of(200)reflection.The transmittance spectrum for the 4%In-doped SnO_2 film exhibited high transmittance,with absolute average transmittance over 90%in the visible region and optical band gap of 3.64 eV obtained.
     The PL spectra of the 4%In-doped SnO_2 film were measured.Only a UV PL peak near 339 nm was observed at room temperature.While measured at low temperature,the intensity of this UV peak increased sharply and the peak position shifted toward higher energy.In the meantime,two other PL peaks near 369 and 493 nm were also observed.The PL peaks near 339,369,and 493 nm were ascribed to the electron transition from the conduction band to valence band,electron transition from the conduction band to the acceptor level formed by In~(3+),and electron transition related to the structural defects or impurities formed during the growth,respectively.
引文
[1] G. Popovici, G. Xu et al, J. Appl. Phys. 82 (1997) 4020
    
    [2] C. J. Youn, T. S. Jeong et al., J. Cryst. Growth 250 (2003) 331
    
    [3] M. A. Sanchez-Garcia, J. L. Pau et al., Mater. Sci. Eng. B 93 (2002) 189
    
    [4] A. P. Zhang, F. Ren, T. J. Anderson et al., Crit. Rev. Solid State 27 (2002) 1
    
    [5] Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441 (2006) 325
    
    [6] J. Mei, F. A. Ponce, R. S. Qhalid Fareed, J. W. Yang, M. Asif Khan, Appl. Phys. Lett. (2007) 221909
    
    [7] M. Imura, K. Nakano, T. Kitano, N. Fujimoto, G. Narita, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, K. Shimono, T. Noro, T. Takagi, A. Bandoh, Appl. Phys. Lett. 89 (2006) 221901
    [8] D. M. Bagnall et al., Appl. Phys. Lett. 70(17) (1997) 2230
    [9] Y. Segawa et al., Phys. Stat. Sol. (b) 202 (1997) 202
    [10] D. C. Reynolds et al., Solid State Commu. 99 (12) (1996) 873
    [11] G. Blattner et al., Solid State Commu. 33 (1980) 341
    [12] J. Jeong et al., Solid State Commu. 127 (2003) 595
    [13] T. W. Kim, D. U. Lee, Y. S. Yoon, J. Appl. Phys. 88 (2000) 3759
    [14] F. Gu, S. F. Wang et al., Chem. Phys. Lett. 372 (2003) 451
    [15] J.Q. Hu, Y. Bando, D. Golberg, Chemical Physics Letters 372 (2003) 758
    [16] Baolong Yu, Congshan Zhu, Fuxi Gan, Optical Materials 7(1-2) (1997) 15
    [17] Z. M. Jarzebski, Journal of Electrochemical Society 123 (7) (1976) 199
    [18] Madeleine Meyer, Giovanni Onida, Maurizia Palummo, Lucia Reining, Phys. Rev. B. 64 (2001) 045119
    [19] W. Spence, J. Appl. Phys. 38(1967) 3767
    [20] K. B. Sundaram, G. K. Bhagavat, J. Phys. D 14 (1981) 921
    [21] E. Burstein, Phys. Rev. 93 (1954) 632
    [22] John Robertson, Phys. Rev. B. 30 (1984) 3520
    [23] C. G. Fonstad, R. H. Reduker, J. Appl. Phys. 42 (1971) 2911
    [24] S. Samson, C. G Fonstad, J. Appl. Phys. 44 (1973) 4618
    
    [25] J. M. Themlin, M. Chtaib, Phys. Rev. B. 46 (1992) 6, 2460
    
    [26] S. Munnix, M. Schmeits, Phys. Rev. B 27 (1983) 7624
    
    [27] M. Sinner-Hettenbach, M. G(O|¨)thelid, T. Weifi, N. Barsan, U. Weimar, H. von Schenck, L. Giovanelli, G. Le Lay, Surf. Sci. 499 (2002) 85
    
    [28] J. M. Themlin, R.Sporken, J. Darville, Phys. Rev. B. 42 (1990) 18, 11914
    
    [29] (?)etin Kili(?) and Alex Zunger, Phys. Rev. B. 88 (2002) 9, 095501
    
    [30] Matti A. Maki-Jaskari and Tapio T. Rantala, Phys. Rev. B. 65 (2002) 245428
    
    [31] David F. Cox, Teresa B. Fryberger, and Steve Semancik, Phys. Rev. B. 38 (1988) 2072
    
    [32] M. S. Moreno, Phys. Rev. B, 71 (2005) 035103
    
    [33] Aron Walsh and Graeme W. Watson, Phys. Rev. B. 70 (2004) 235114
    
    [34] H. Kenko, K. Miyake, J. Appl. Phys, 55 (1982) 3629
    
    [35] Xiaolong Zhu, Juergen Geis-Gerstorfer, Chem. Eng. Technol. 26(10) (2003) 1084
    
    [36] J. L. Vossen, E. S. Poliniak, Thin Solid Films 13 (1972) 281
    
    [37] A. G. Sabnis, L. K. Feisel, J. Vac. Sci. Technol. 14 (1977) 685
    
    [38] A. G. Sabnis, J. Vac. Sci. Technol. 15 (1978) 1565
    
    [39] E. Shanthi, V. Dutta, A. Banerjee, J.Appl. Phys. 51 (1980) 6243
    
    [40] A. Rohatgi, T. Vrerio and L. H.Slack, J. Am. Ceram. Soc. 57 (1974) 278
    
    [41] A. F. Carrol and L. H. Slack, J. Electrochem. Soc. 123 (1976) 19
    
    [42] E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, J.Appl. Phys. 53 (1982) 1615
    
    [43] M. Kojima, H. Kato, A. Imai., J. Appl. Phys 51 (1988) 902
    
    [44] Espinos J. P, Caballero A, Contreras L, Thin Solid Films 353 (1999) 113-123
    
    [45] A. Forleo, S. Capone, M. Epifani, P. Siciliano, R. Rella, Appl. Phys. Lett. 84 (2004) 744
    [46] J. Potz, D. Ganz, G. Gasparro et al. Journal of Sol-gel Sicence and Technology, 13 (1998) 789
    
    [47] F. M. Amanullaj, K. J. Pratap, V. Hari et al. Mater. Sci. Eng. B. 52 (1998) 92
    [48] M. Kojima, F. Takahashi, K. Kinoshita et al. Thin Solid Films 392 (2001) 349
    [49] B. Thangaraju, Thin Solid Films 402 (2002) 71
    [50] S. Yamanaka and T. Oohashi, Jpn. J. Appl. Phys. 8 (1969) 1058
    [51] R. H. Deich, E. J. West, T. G. Giallorenzi, Appl. Opt. 13 (1974) 712
    [52] G. N. Advani, A. G. Jordan, Mater. Sci. Eng. 4 (1979) 99
    [53] M. Kojima, H. Kato, A. Imai et al., J. Appl. Phys. 51 (1988) 902
    [54] J. P.Espinos, A. Caballero, L. Contreras et al., Thin Solid Films 353 (1999) 113
    [55] J. P. Santos, T. Brousse et al, J. Power Source 97-98 (2001) 232
    [56] S. S. Park, H. Zheng et al., Mater. Lett. 17 (1993) 346
    [57] M. Macck, B. Orel, Solar Energy Mater. & Solar Cells 54 (1998) 121
    [58] D. Vaufrey, M B. Khalifa et al., Synthetic Metals 127 (2002) 207
    [59] T. Tatte, T. Avarmaa et al., Mater. Sci. Eng. C 19 (2002) 101
    [60] T. Seiyama, A. Kato et al., Anal. Chem. 34 (1962) 1502
    [61] Jakashi Oyabu, J.Appl Phys.53 (1982) 2785
    [62] V. T. Agekyan, Phys. Stat. Sol. A 43 (1975) 11
    [63] S. Semancik, R.E. Cavicchi, Thin Solid Films 206 (1991) 81
    [64] J. Vetrone, Y. W. Chung, R. Cavicchi, S. Semancik, J. Appl. Phys. 73 (1993) 8371
    
    [65] D. S. Lee, G. H. Rue, J. S. Huh, S. D. Choi, D. D. Lee, Sens. Actuators B 77 (2001) 90
    
    [66] Z. Zhang, P.A. Van Rompay, J.A. Nees, C.A. Stewart, X.Q. Pan, L. Fu, P.P. Pronko, Proc. SPIE 3935 (2000) 86
    
    [67] H. Kimura, T. Fukumura, H. Koinuma, M. Kawasaki, Physica E 10 (2001) 265
    [68] V. Caslavska, R. Roy, J. Appl. Phys. 40 (1969) 3414
    [69] M. Nagano, J. Cryst. Growth 67 (1984) 639
    [1]杨邦朝,王文生,《薄膜物理与技术》,电子科技大学出版社,1994
    [2]田民波,刘德令,《薄膜科学与技术手册》,机械工业出版社,1991
    [3]杨树人,丁墨元,《外延生长技术》,国防工业出版社,1992
    [4]H.M.Manasevit,Appl.Phys.Lett.,12(1968)156
    [5].J.S.Roberts et al.,J.Cryst.Growth,68(1984)42
    [6]杨于兴,漆璿,《X射线衍射分析》,上海交通大学出版社,1994
    [7]周上祺,《X射线衍射分析原理·方法·应用》,重庆大学出版社,1991
    [8]刘世宏,《X射线光电子能谱分析》,科学出版社,1988
    [1]C.Terrier,J.P.Chatelon,J.A.Roger,Thin Solid Films,295(1997)95
    [2]J.Tan,L.Shen,X.Fu,W.Hou,X.Chen,Dyes and Pigments 61(2004)31
    [3]R.Reiche,D.Dobler,J.P.Holgado,A.Barranco,F.Yubero,J.P.Espin,Surf.Sci.537(2003)228
    [4]H.Miao,C.Ding,H.Luo,Microelectron.Eng.66(2003)142
    [5]J.Fayat,M.S.Castro,J.Eur.Ceram.Soc.23(2003)1598
    [6]王玉恒、马瑾、计峰、余旭浒、张锡键、马洪磊,物理学报54(2005)1731
    [7]F.Gu,S.F.Wang,M.K.LU,X.F.Cheng,S.W.Liu,G.J.Zhou,D.Xu,D.R.Yuan,J.Cryst.Growth 262(2004)182
    [8]C.G.Fonstad,R.H.Rediker,J.Appl.Phys.42(1971)2911
    [1]T.J.Ghuang,C.R.Brundle,D.W.Rice,Surf.Sci.59(1979)413
    [2]F.M.Amanullah,K.J.Pratap,V.H.Babu,Mater.Sci.Eng.B 52(1998)93
    [3]S.Munnix,M.Schmeits,Phys.Rev.B 27(1983)7624
    [4]M.Sinner-Hettenbach,M.GOthelid,T.Weiβ,N.Barsan,U.Weimar,H.von Schenck,L.Giovanelli,G.Le Lay,Surf.Sci.499(2002)85
    [5]G.Blattner,C.Klingshirn,R.Helbig,Solid State Commun.33(1980)341
    [6]J.Jeong,S.-P.Choi,C.I.Chang,D.C.Shin,J.S.Park,B.-T.Lee,Y.-J.Park,H.-J.Song,Solid State Commun.127(2003)595
    [1]C.Terrier,J.P.Chatelon,J.A.Roger,Thin Solid Films,295(1997)95
    [2]J.Tan,L.Shen,X.Fu,W.Hou,X.Chen,Dyes and Pigments 61(2004)31
    [3]R.Reiche,D.Dobler,J.P.Holgado,A.Barranco,F.Yubero,J.P.Espin,Surf.Sci.537(2003)228
    [4]H.Miao,C.Ding,H.Luo,Microelectron.Eng.66(2003)142
    [5]E.Kh.Shokr,M.M.Wakkad,H.A.Abd E1-Ghanny,H.M.Ali,J.Phys.Chem.Solids 61(2000)75
    [6]D.H.Zhang,H.L.Ma,Appl.Phys.A.62(1996)4
    [1]Zhenguo Ji,Zhenjie He,Yongliang Song,Kun Liu,Zhizhen Ye,J.Cryst.Growth 259(2003)282
    [2]Zhenguo Ji,Lina Zhao,Zuopeng He,Qiang Zhou,Chen Chen,Mater.Lett.60(2006)1387
    [3]A.Salehi,M.Gholizade,Sensors and Actuators B,89(2003)173
    [4]《背散射分析技术》,朱唯干[美],1986年10月
    [5]Y.H.Wang,J.Ma,F.Ji,X.H.Yu,H.L.Ma,J.Lumin.114(2005)71
    [6]J.Jeong,S.-P.Choi,C.I.Chang,D.C.Shin,J.S.Park,B.-T.Lee,Y.-J.Park,H.-J.Song,Solid State Commun.127(2003)595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700