用户名: 密码: 验证码:
基于激光热应力的金属薄板无模成形的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在分析国内外金属板料无模成形技术研究的基础上,重点分析了基于激光热应力的板料柔性、无模成形技术存在的问题,并提出了目前板材热应力成形技术应用于生产所需要研究的内容。
     为了对激光热应力成形机理及其关键技术进行系统的研究,对激光诱导的热应力作用下板料的变形现象进行了实验和相关分析。实验中以AISl304、TA2、QT450、YG10板料等为研究对象,在2.5kw RS2000SM快轴流CO_2激光器上进行热应力弯曲成形试验。实验过程中采用空气冷却和水冷却两种方式。采用水冷却时,须保持试样表面露出水面。采用单因素试验法时,改变激光束能量、光斑直径、扫描速度、扫描次数等参数,使其他参数保持一定。为了保证扫描路径和相连两次扫描的时间间隔一致,激光束相对于工作台的运动由数控程序保证。为了确保实验数据的有效性,在设计实验方案前,先根据已知理论进行分析,或者先进行摸索试验,然后估计出能产生热应力弯曲的大致工艺参数组合,最后再进行实验方案的设计。通过多组工艺参数的试验,研究了厚度一定的不锈钢钢板弯曲成形时的工艺参数对弯曲角度的影响,并探讨了基于空气冷却和水冷却的AISI304不锈钢板材热应力成形规律。相关实验结果表明:当其它各参数不变时,增加光束功率后,能量密度(入射到单位表面积上的能量)随之加大,导致板料的弯曲角度显著增大;上述规律不是线性的,有一个最佳的工艺参数。随着扫描次数的增加,诱发热应力成形角度呈近似线性增大;增加扫描速度,则引起能量密度降低,使板料弯曲角减小,该规律是近似线性的。弯曲角度随光斑直径的增大反而下降;该规律是近似线性的。光斑直径满足加工要求是先决条件,线能量密度(P/V值)是关键参数;对0.6mm厚AISI304不锈钢冷轧钢板而言,采用空气冷却时,它的最佳的线能量密度应在30~40J/mm之间变化,否则成形的效率会很低,或者工件表面会产生烧伤现象;采用水冷却时,线能量小于80J/mm时,工件几乎不产生变形;在150~180J/mm范围内,热应力成形的效果最佳。在水冷却条件下,工件的表面烧蚀现象较空气冷却时大为改观,而且成形的稳定性较高。扫描路径为圆弧时,板材弯曲的幅度相对于直线扫描时弯曲的幅度要小得多。
     为了优化激光热应力成形的工艺参数,以正交试验理论为指导,通过改变激光束能量、光斑直径、扫描次数、扫描速度、板料厚度对0.6mm厚的AISI304不锈钢冷轧板进行激光热应力成形的正交试验,旨在评价上述参数的耦合作用,根据正交试验的原理,可判别相互影响的参数产生作用的主次关系。试验结果表明:在AISI304不锈钢冷轧板激光热应力成形时,正交试验中研究的五个工艺参数产生的作用是不同的,按其变化对弯曲变形量影响的大小排序,它们依次是扫描次数、激光束能量、板材厚度、光斑直径、扫描速度(在水冷却的条件下)。其中扫描次数、激光束能量是两个重要的影响因素,它们对增加弯曲变形都有较大潜力。为了对工艺参数进一步优化,本文对遗传算法的应用的方法进行了研究,阐述了遗传算法在激光热应力成形工艺参数优化上的应用思路。认为原始种群的规模必须较大,而且必须经过摸索试验获得种群。在选择优化模型时,要针对具体的成形条件,先确定其成形机理,再套用对应的计算模型。
     在研究成形区板料的力学性能、材料组织的变化时,实验中以HVS-1000显微硬度测试仪、X-350A型X射线应力测定仪为工具,使用2.5kW RS2000SM快轴流CO_2激光器对0.6mm厚的TA2板料进行扫描,按照正交试验理论安排成形时的工艺参数,研究TA2板料弯曲成形时主要工艺参数对弯曲角度的影响,以及试样表面残余应力的分布和试样断面上的显微硬度变化情况。结果表明:正交试验中研究的4个工艺参数产生的作用是不同的,按其变化对弯曲变形量影响的大小排序,它们依次是扫描次数、光斑直径、激光束功率、扫描速度。成形参数对试样表面的残余应力分布也存在一定的影响。在试样变形区断面上的显微硬度变化呈现出一定的规律。变形区组织产生了变化。
     为了有效地控制成形的质量,提出了激光热应力成形质量评估这一问题,研究了激光热应力成形工件表面质量评价指标;分别介绍了表面粗糙度及其相关检验方法、表面缺陷的检验方法和表面综合机械性能及其检验方法。探讨了激光热应力成形工件成形质量评价体系构建方法,为对激光热应力成形工件表面质量进行全面评价提供了参考。
     为了拓宽了热应力成形的工艺范畴。实验中以球墨铸铁QT-450、硬质合金YG10为研究对象,用CO_2激光器的激光束对球墨铸铁板条及YG10板条进行扫描,通过改变成形工艺参数,研究脆性材料成形的规律,研究试样热应力成形后表面形貌、性能和变形区组织的变化。为了研究试样表面的氧化情况,实验中采用有氮气保护和无氮气保护进行对比,并分析成形区组织变化情况和各元素含量的变化情况。研究结果表明:脆性材料在激光束的热效应作用下也可以弯曲成形。成形后的板料在变形区的组织、硬度和力学性能产生了变化。在有保护气、有水冷却的条件下进行试验效果明显优于在无保护气、无水冷却的条件下进行试验效果。变形区和其他区域的各元素含量相同。
In the light of analyzing existent problems of flexible and die-less sheet metal forming technology by laser induced thermal stress as a high spot, the research on die-less sheet metal forming technology at home and abroad was studied. And what is in need of research in applying sheet metal forming technology at present has been put forward.
     In order to make a systematic study the mechanism of laser forming with thermal stress and its key technology, the phenomenon of forming for sheet steel by laser thermal stress was studied and analyzed. In the experiment, sheets of AISI304 stainless steel, TA2 and QT450 were selected as test samples, the laser beam was produced by a 2.5kW CO_2 laser. Test samples were cooled by water or air. With water-cooling, the surface of the samples must be exposed out of the water. When the pattern of cooling was selected, the experiment adopts the single-factor method, which means that only one of the parameters such as laser power, laser spot, scan speed, number of passes is changed to investigate the mechanism of laser induced thermal stress forming. The scanning type is reciprocating and continuous, and the scan path and the time interval are consistent. It is carried out by numeral control. In order to ensure validity of experimental data, it is necessary to analyze according to known theory before designing experiment plan, and estimate combination process paramerters of the forming to bring bending, then design the experiment, The thickness of the test samples was a constant in the research, and the process parameters were multipacket, air-cooling and water-cooling were used in investigating the relationship of AISI304 stainless steel sheet laser bending. The results show that there is no bending for 0.6 mm thickness of AISI 304 sheet steel under the condition of water cooling when linear energy density is less than 80J/mm; the best value of the linear energy density is between 150 and 180J/mm for it; the technological parameters such as the thickness of sheet metal, laser spot and scanning times have great effect on the bending angle. And the ablation and stability of bending for AISI304-sheet metal in the experiment is evaluated as well. The new idea of sheet forming by laser thermal stress based on water-cooling is put forward, which provides the experimental foundation to control accurately the sheet forming by laser induced thermal stress. The above experimental result shows that the power density increases with the increase of laser power when other parameters keep constant, which eventually results in the distinct increase of the bending angle. The above-mentioned mechanisms are non-linear and there is an optimal process parameter. Bending angle induced by laser with thermal stress increases approximately in the linear proportion to the feed number. Increasing scan speed may decrease laser energy density, and then lessens bending angle. The effect of scan speed on the bending angle is approximately linear. Bending angle decreases when laser spot increases while other parameters keeps constant. The relationship mentioned above is approximately linear. It is obvious that the reasonable size of laser spot is one of the prerequisites in laser forming with thermal stress; the value (P/v) of the linear power density is the key process parameter. The best value of the linear power density is 30-40J/mm for 0.6 mm thickness AISI 304 sheet steel under the condition of air-cooling. Otherwise, bending angle is very small and ablation occurs on the surface. When the linear power density is less than 80 J/mm, there is no bending angle under the condition of water-cooling. And the best linear power density is 150-180J/mm; there is slight ablation on the surface of the samples, and the stability of forming is superior, the acquired angle of curve bending drops sharply, and decreases with the increase of the curvature.
     In order to optimize process parameters of bending with thermal stress induced by laser, an orthotropic experimental method was adopted here. In this experiment, laser bending of the 0.6mm thick AISI 304 sheet was studied by changing the laser power density, laser spot, scan speed, number of scan passes and thickness of sheet, and it can make a comprehensive evaluation on coupling of process parameters. According to the principle of orthotropic experimental method, the relationships of the interacted parameters can be distinguished. The results show that the five parameters develop different effects under the condition of water-cooling. Number of passes ranks first, followed by power density, thickness of sheet, laser spot and scan speed in terms of their effects on the bending angle, and the two most potential important parameters are the number of passes and the power density, They have strong potential to increase bending angle in laser bending.
     In the interest of further optimization of process parameters, Genetic algorithms was studied here, and the applying plan to optimize process parameters of bending with thermal stress induced by laser using Genetic algorithms was set forth. It is thought that the scope of population should be large, and the population should come from grope test. The condition of forming should be considered firstly when choosing optimization model, choose the mechanism of laser forming, and then apply mechanically the computational model.
     For the sake of studying mechanical performance and metallographic phase of forming area, a 2.5 kW CO_2 laser, a HVS-1000 Micro-hardness measuring instrument and an X-350A X-ray stress-measuring-instrument were adopted in the experiment where 0.6mm thickness sheet steel of TA2 was studied to evaluate the process parameters of bending with thermal stress induced by laser. Bending angle was measured as the function of main processing parameters. These processing parameters were arranged according to the theory of orthotropic experiment. Distribution of residual stress on the surface and variation of micro-hardness on the cross section of samples were studied after forming. The results show that these parameters bring different effects. The number of passes ranks first, followed by laser spot in terms of their effect on the bending angle, with power of laser beam and scan speed being the last two factors. Parameters of laser forming also have some influence on the distribution of residual stress on the surface of samples. Certain regularity appears in the variation of micro-hardness on the cross section of samples. The structure in the deforming area changed.
     To control forming quality effectively, the problem of how to evaluate forming quality was raised; the evaluating index of the surface quality on the samples after laser bending were studied here; surface roughness and its measurement, surface flaw and its measurement, surface association mechanical property and its measurement were introduced. The method of how to establish quality-evaluating system was discussed, which provides reference to a comprehensive evaluation on the surface quality for test sample after laser bending.
     By way of widening the forming technology, a RS2000SM CO2 laser of 2.5kW was used here to irradiate the nodular cast iron plate and hard alloy plate, the forming rule of brittle material QT-450 and YG10 was studied by changing the parameters of the laser beam and the machine tool; and the change of the surface properties of the QT-450 plate after laser forming was investigated. In order to study the oxidation in laser forming, Nitrogen-protecting and no protecting are adopted in the test; the structure and the content of elements of forming area was investigated. The analyses showed that the brittle material, such as nodular cast iron, can also be bent by thermal effect of laser beam; the structure, appearance, hardness and the mechanical performance of the plate in the deforming area also changed; and the case with Nitrogen-protecting and water-cooling is more excellent than that without air-protecting and water-cooling. The content of elements of forming area and other area is sameness.
引文
[1]李亚非,陈辉,徐新泰,等.曲面薄壁异形件旋压成形工艺研究.锻压技术,2005,(5):58-61
    [2]邝卫华,夏琴香,阮锋.铝合金薄壁管缩径旋压成形缺陷及工艺分析.轻合金加工技术,2006,34(4):25-28
    [3]尹长城,王元勋,吴胜军.金属板材单点渐进成形过程的数值模拟.塑性工程学报,2005,12(2):17-21
    [4]蔡中义,李明哲,付文智.板材多点成形中压痕缺陷的分析与控制.锻压技术,2003,(1):16-19
    [5]惠学芹.板料数字化渐进成形技术初探.机械制造与研究,2005,34(6):26-27,30
    [6]周六如,莫健华,肖祥芷.板料零件数控渐进成形工艺研究.塑性工程学报,2003,10(4):27-29
    [7]周建忠,张兴权,王广龙,等.金属板料激光喷丸成形新技术.中国工程科学,2005,7(11):94-97
    [8]佟铮,马万珍,成博.球形容器无模爆炸成形质量控制.制造与安装,2004,121(9):29-31,57
    [9]董大栓,柳存根,谭家华.水火弯板计算中高斯分布热源模型各参数的实验确定.上海交通大学学报,2001,35(10):1459-1463
    [10]董大栓,柳存根,谭家华.水火弯板温度场规律的分析.造船技术,2002,(4):16-19
    [11]王新平,孟祥军,余巍,等.水火弯板加热参数对钛合金板材组织和性能的影响.材料开发与应用,2001,16(3):9-11
    [12]花银群,陈瑞芳,杨继昌,等.40Cr钢表面激光复合强化机理研究.中国激光,2005,32(10):1445-1448
    [13]张永康,高立,杨超君.激光冲击TA2板料变形的理论分析和实验研究.中国激光,2006,33(9):1282-1287
    [14]张永康.激光冲击强化提高航空材料疲劳寿命的研究.南京:南京航空航天大学,1995:43-44
    [15]杨继昌,周建忠,张永康,等.激光冲压金属板料成形的研究.江苏大学学报(自然科学版),2002,23(1):1-4
    [16]张永康,周建忠,叶云霞.激光加工技术,第一版.北京:化学工业出版社,2004
    [17]陈敦军,吴诗惇,向毅斌,等.板料激光成形的机制及其应用.兵器材料科学与工程,2000,23(6):58-61
    [18]M.Marya,G.R.Edwards.A study on the laser forming of near-alpha and metastable beta titanium alloy sheets Journal of Materials Processing Technology.108(2001):376-383
    [19]Y.Namba.Laser forming in space.Int.Conf.On Lasers'85,Japan:Osaka Univ.,1986,403-407
    [20]K.Scully.Laser line heating.Ship Production,1987,3(4):237-246
    [21]H.Arnet,F.Vollertsen.Extending laser bending for the generation of convex shapes.Proc.Instn.Mech.Engrs.Germany:Univ of Erlangen-Nuremberg,1995,433-455
    [22]M.Oeiger.Synergy of laser Material Processing and Metal Forming.Annals of the CIRP,1994,43(2):563-569
    [23]李纬民.金属板材激光弯曲成形规律的研究.中国激光.1998,25(9):860-864
    [24]季忠,焦学健,吴诗淳.板料激光弯曲成形动力显式有限元模拟.应用基础与工程科学学报,2001,9(23):208-214
    [25]李俐群,王威,林尚扬,等.温度梯度机理下激光参数对激光成形的影响.热加工工艺,2002,(3):25-27
    [26]王秀凤,Janos Takacs,Gyorgy Karllics.薄板激光弯曲机理的研究.锻压技术,2001,(4):29-33
    [27]管延锦,孙胜,季忠.板料激光成型技术的实验研究.光学技术,2000,26(3):260-262
    [28]周龙早,刘顺洪,林武,等.激光诱发热应力成形试验研究.电加工与模具,2000,(6):20-23
    [29]陈敦军,向毅斌,吴诗淳,等.钛合金板料激光曲线弯曲及热辐射对其组织性能的影响.金属学报,2001,37(6):643-646
    [30]李俐群,王旭友,林尚扬,等.能量因素对激光弯曲成形的影响.应用激光,2002,22(2):155-159
    [31]管延锦,季忠,郝滨海,等.材料性能参数对板料激光弯曲成形的影响.光电子·激光,2001,12(1):87-90
    [32]王秀凤,王秀彦,林道盛.板料激光弯曲的试验研究.锻压机械,1999,(3):8-10
    [33]Thomas Hennige.Development of irradiation strategies for 3D-laser forming.Journal of Material Processing Technology,2000,103:102-108
    [34]刘顺洪,周龙早,王令红,等.金属板材的三维激光弯曲成形的研究.应用激光,2001,21(1):18-19,40
    [35]Wenchuan Li,Lawrence Yao Y.Laser bending of tubes:mechanism,analysis,and prediction.Journal of Manufacturing Science and Engineering,2001(11):674-681
    [36]刘顺洪,方熊,樊昕荣.管材激光弯曲规律的试验研究.激光技术,2004,28(4):340-343
    [37]陈敦军,向毅斌,吴诗,等.激光成形工艺方法及其发展前景.热加工工艺,2003,(3):50-51
    [38]刘韧,季忠,张鹏,等.板料激光成形及其研究进展.锻压设备与制造技术,2004,(3):17-21
    [39]张鹏.板料激光三维弯曲成形的工艺研究.热加工工艺技术与装备,2006,4:94-96
    [40]William.M.Steen.Laser Material Processing.British:Springer-Verlag London Limited 1991
    [41]季忠,吴诗惇,李淼泉.板料激光成形时的温度场研究.塑性工程学报,1997,4(2):14-18
    [42]季忠,吴诗惇.板料的激光快速成形技术及其应用.中国机械工程,1996,7(6):54-55
    [43]郑瑞伦,刘俊.强激光辐照下金属材料表面热力学效应.光子学报,2002,31(2):480-484
    [44]郑瑞伦,陈洪,刘俊.矩形激光脉冲辐照下金属板材料温度分布研究.物理学报,2002,51(3):554-558
    [45]王秀凤,Janos Takacs,Gyorgy Krallics.激光弯曲机理的试验研究.北京航空航天大学学报,2002,28(4):473-476
    [46]刘顺洪,周龙早,万鹏腾.激光诱发热应力成形技术的研究.激光技术,2001,(4):259-264
    [47]方刚.激光成形技术的特点极其应用.应用激光,2001,(2):107-111
    [48]刘顺洪,周龙早,李志远.激光诱发热应力成形技术.电加工与模具,2000,(4):37-41
    [49]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.An analytical model for the prediction of distortions causedby the laser forming process.Journal of Materials Processing Technology,2000,104:94-102
    [50]M.Marya,G.R.Edwards.A study on the laser forming of near-alpha and metastable beta titanium alloy sheets.Journal of Materials Processing Technology,2001,108:376-383
    [51]苏余鹏,王秀凤,陈光南,等.激光弯曲机理的评述.材料科学与工艺,2004,12(5):543-545
    [52]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002
    [53]Chen Dunjun,Wu Shichun,Xiang Yibin,et al.MECHANISMS AND APPLICATION OF LASER FORMING OF SHEET.ORDNANCE MATERIAL SCIENCE AND ENGINEERING,2000,23(6):58-61
    [54]M.Geiger,M.Merklein.,M.Pitz.Laser and forming technology--an idea and the way of implementation.Journal of Materials Processing Technology,2004,(151):3-11
    [55]WANG Xiufeng,Janos Takacs,Gyorgy Krallic.Research on Laser Bending Mechanism.Journal of Beijing University of Aeronautics and Astronautics,2002,28(4):473-476
    [56]Jitae Kim,S.J.Na.Feedback control for 2D free curve laser forming.Optics & Laser Technology,2005,(37):139-146
    [57]F.Vollertsen.An analytical model for laser bending.Lasers in Engineering,1994,2:261-276
    [58]李适民,黄维玲等编著.激光器原理与设计,第一版.北京:国防工业出版社,2005
    [59]马养武,陈钰清编著.激光器件,第一版.浙江:浙江大学出版社,1994
    [60]徐荣甫,刘敬海编著.激光器件与技术教程,第一版.北京:北京工业学院出版社,1986
    [61]M.Marya,G.R.Edwards.A study on the laser forming of near-alpha and metastable beta titanium alloy sheets.Journal of Materials Processing Technology,2001,(108):376-383
    [62]K.Scully.Laser line heating.Ship Production,1987,3(4):237-246
    [63]H.Arnet,F.Vollertsen.Extending laser bending for the generation of convex shapes.Proc.Instn.Mech.Engrs.,Germany:Univ of Erlangen-Nuremberg,1995,433-455
    [64]M.Geiger,M.Merklein.,M.Pitz.Laser and forming technology—an idea and the way of implementation.Journal of Materials Processing Technology,2004,(151):3-11
    [65]J.Dutta Majumdar,A.K.Nath,I.Manna.Studies on laser bending of stainless steel.Materials Science and Engineering A,2004,(385):113-122
    [66]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.An analytical model for the prediction of distortions causedby the laser forming process.Journal of Materials Processing Technology,2000,(104):94-102
    [67]P.J.Cheng,S.C.Lin.An analytical model to estimate angle formed by laser.Journal of Materials Processing Technolog,2001,(108):314-319
    [68]Z.Hu,R.Kovacevic,M.Labudovic.Experimental and numerical modeling of buckling instability oflaser sheet forming.International Journal of Machine Tools & Manufacture,2002,(42):1427-1439
    [69]Guan Yanjin.,Sun Sheng,Zhao Guoqun,et al.Finite element modeling of laser bending of pre-loaded sheet metals.Journal of Materials Processing Technology,2003,(142):400-407
    [70]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.Numerical and experimental investigation of the laser forming process.Journal of Materials Processing Technology,1999,(87):281-290
    [71]J.Lawrence,M.J.J.Schmidt,L.Li.The forming of mild steel plates with a 2.5 kW high power diode laser.International Journal of Machine Tools & Manufacture,2001,(41):967-977
    [72]K.C.Chan,J.Liang.Thermal expansion and deformation behaviour of aluminium-matrix composites in laser forming.Composites Science and Technology,2001,(61):1265-1270
    [73]P.J.Cheng,S.C.Lin.Using neural networks to predict bending angle of sheet metal formed by laser.International Journal of Machine Tools & Manufacture,2000,(40):1185-1197
    [74]季忠,吴诗.板料激光弯曲变形的几何与能量效应研究.航空精密制造技术,1966,32(4):21-23
    [75]周益军,张永康,周建忠,史建国.激光诱发板材热应力成形技术及其研究现状,激光技术,2006,30(4):425-428
    [76]周益军,张永康,周建忠,冯爱新,史建国.不锈钢钢板热应力成形试验研究及其工艺参数评价,现代制造工程,2005,10:8-11
    [77]管延锦,孙胜,赵国群,等.预约束应力作用下的激光弯曲成形仿真工艺研究.中国激光,2002,29(8):755-758
    [78]美国金属学会.金属手册.第二卷,第九版.北京:机械工业出版社,1991
    [79]美国金属学会.金属手册.第三卷,第九版.北京:机械工业出版社,1991
    [80]马庆芳,方荣生.实用热物理性质手册.北京:中国农业机械出版社,1986
    [81]张永康,周益军,周建忠,史建国.激光热应力成形工艺参数综合作用试验及评估.江苏大学学报.2006,27(4):303-305
    [82]廖永平,严擎宇.正交试验法在机械工业中的应用.北京:中国农业机械出版社,1982
    [83]崔恒林,徐斌,董英.苦瓜皂甙的提取过程研究.江苏大学学报(自然科学版),2002,4:269-289
    [84]姜松,林琳,王海鸥,等.苹果整果TPA试验的研究.江苏大学学报(自然科学版),2005,25(3):189-192
    [85]Holland J H.Adaptation in Nature and Artificial Systems.The University of Michigan Pres,1975,MIT press,1992
    [86]熊信银,吴耀武.遗传算法及其在电力系统中的应用.华中科技大学出版社.2002
    [87]李敏强,等著.遗传算法的基本理论与应用.科学出版社.2002
    [88]玄光男,程润伟著.遗传算法与工程优化.清华大学出版社.2004
    [89]陈国良,王煦法,庄镇泉等.编著遗传算法及其应用.人民邮电出版社.1996
    [90]王小平,曹立明著.遗传算法 理论、应用与软件实现.西安交通大学出版社.2002
    [91]Zbigniew Michalewicz.演化程序 遗传算法和数据编码的结合.科学出版社.2000
    [92](日)玄光男,程润伟.遗传算法与工程设计.科学出版社.2000
    [93]周明,孙树栋.遗传算法原理及应用.国防工业出版社.1999
    [94]李明兰,高齐圣.基于遗传算法的参数设计方法.青岛化工学院学报,2000,21(1):91-94
    [95]杨杰,刘云,汤漾平.基于遗传算法的激光加工工艺参数选择.湖北工学院学报,2003,18(2):14-18
    [96]Stender(Ed).Parallel Genetic Algorithms:Theory and Application.IOS Press,1993
    [97]Smith S.A Learning System Based on Genetic Adaptive Algorithms:[Ph D Dissertation].University of Pittsburgh,1980
    [98]季忠,刘韧,王忠雷,等.基于遗传算法的板料激光弯曲成形工艺优化设计.锻压装备与制造技术,2003,(5):79-82
    [99]管延锦,张红梅,张守云.激光弯曲成形对板料组织与性能的影响.汽车工艺与材料,2002,(1):5-7
    [100]L.Zhang,E.W.Reutzel,P.Michaleris.Finite element modeling discretization requirements for the laser forming process.International Journal of Mechanical Sciences,2004,46:623 - 637
    [101]Lu Zhang,P.Michaleris.Investigation of Lagrangian and Eulerian nite element methods for modeling the laser forming process.Finite Elements in Analysis and Design,2004,40:383-405
    [102]X.Lin,T.M.Yue,H.O.Yang,et al.Laser rapid forming of SS316L/Rene88DT graded material.Materials Science and Engineering A,2005,391:325-336
    [103]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.An analytical model for the prediction of distortions caused by the laser forming process.Journal of Materials Processing Technology,2000,104:94-102
    [104]P.J.Cheng,S.C.Li.An analytical model for the temperature field in the laser forming of sheet metal.Journal of Materials Processing Technology.2000,101,260-267
    [105]J.Gary Cheng,Y.Lawrence Yao.Process synthesis of laser forming by genetic algorithm.International Journal of Machine Tools & Manufacture,2004,44:1619 - 1628
    [106]柯斯克·A,罗伯逊·G,著.王文山,等,译.光弹性应力分析.上海:上海科学技术出版社,1979
    [107]朱明海.用光弹性贴片法测量强旋薄壁圆筒残余应力.理化检验·物理分册,1994,30(2):34-36
    [108]赞德曼F,雷德诺S,戴利J W.光弹贴片法.北京:机械工业出版社,1978
    [109]路俊攀.铜及铜合金加工制品残余应力的测定方法.无损检测,2004,26(12):633-637
    [110]J.阿弗里尔,陈棣华,等,译.实验应力分析手册.北京:机械工业出版社,1985
    [111][日]木内学.板、棒、管材残余应力理论分析及测定.伸铜技术研究会志,2000,39(1):30-36
    [112][日]三谷洋二,等.铜及铜合金分条变形的测定方法.伸铜技术研究会志,2000,39(1):37-46
    [113]孙东立,等.尺寸稳定性评定的新方法—圆环开口法的初步尝试.理化检验·物理分册,1999,35(10):
    [114][日]山本隆一,等.铜合金圆棒残余应力的测定方法.伸铜技术研究会志,2000,39(1):45-48
    [115][日]泽圣建,等.铜及铜合金管残余应力测定方法.伸铜技术研究会志,2000,39(1):49-51
    [116]田荣璋,王祝堂.铜合金及其加工手册.长沙:中南大学出版社,2002
    [117]罗瑞灵,等.电磁超声换能器在残余应力超声测量中的应用.无损检测,1998,20(11):316-319
    [118]付自普,王成然.通信机柜表面质量的判定.信息技术与标准化,2005,(6):42-44
    [119]Majumdar J D,Nath A K,Manna I.Studies on laser bending of stainless steel.Materials Science and Engineering A,2004,(385):113-122
    [120]Thomson G,Pridham M.Material property changes associated with laser forming of mild steel components Journal of Material Processing Technology,2001,(118):40-44
    [121]D.J.Chen,Y.B.Xiang,S.C.Wu,et al.Application of fuzzy-neural network to laser bending process of sheet metal.Mater.Sci.Technol.2002;18(6):677-680
    [122]J.Gary Cheng,Y.Lawrence Yao.Process synthesis of laser forming by genetic algorithm.International Journal of Machine Tools & Manufacture.2004,44:1619-1628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700